SGS Thomson Microelectronics STPS20L40CFP Datasheet

®
STPS20L40CF/CW/CT/CFP
LOW DROP POWER SCHOTTKY RECTIFIER
MAJOR PRODUCTS CHARACTERISTICS
I
F(AV)
V
RRM
2x10A
40 V
Tj (max) 150°C
V
(max) 0.5 V
F
FEATURES AND BENEFITS
LOW FORWARD VOLTAGE DROP MEANING
VERY SMALL CONDUCTION LOSSES LOW DYNAMIC LOSSES AS A RESULT OF
THE SCHOTTKY BARRIER INSULATED PACKAGE: ISOWATT220AB,
TO-220FPAB Insulating voltage = 200V DC Capacitance = 12pF
AVALANCHE CAPABILITY SPECIFIED
DESCRIPTION
Dual center tap Schottky rectifiers designed for highfrequencyswitchedmodepowersuppliesand DC to DC converters.
ABSOLUTE RATINGS (limiting values, per diode)
A1
A2
K
A1
TO-220FPAB
STPS20L40CFP
K
A1
ISOWATT220AB
STPS20L40CF
K
A2
K
A2
A1
TO-220AB
STPS20L40CT
A2
A1
A2
K
TO-247
STPS20L40CW
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
Repetitive peak reverse voltage RMS forward current Average forward
current
I
FSM
I
RRM
I
RSM
P
ARM
T
Tj
dV/dt
dPtot
*:
Surge non repetitive forward current tp = 10 ms Sinusoidal Peak repetitive reverse current tp=2µssquare F=1kHz Non repetitive peak reverse current tp = 100 µs square Repetitive peak avalanche power tp = 1µs Tj = 25°C
stg
Storage temperature range Maximum operating junction temperature * Critical rate of rise of reverse voltage
<
dTj Rth j a
July 2003 - Ed: 4B
TO-220AB TO-247
ISOWATT220AB TO-220FPAB
Tc = 135°C δ = 0.5
Tc = 115°C δ = 0.5
Per diode Per device
Per diode Per device
thermal runaway condition for a diode on its own heatsink
−1()
40 V 30 A 10
20 10
20
180 A
1A 2A
4000 W
- 65 to + 150 °C 150 °C
10000 V/µs
A
A
1/8
STPS20L40CF/CW/CT/CFP
THERMAL RESISTANCES
Symbol Parameter Value Unit
R
th(j-c)
Junction to case ISOWATT220AB
TO-220FPAB
R
R
th(j-c)
th(j-c)
Junction to case TO-247
Junction to case TO-220AB
When the diodes 1 and 2 are used simultaneously :
Tj(diode 1) = P(diode1) x R
(Per diode) + P(diode2) x R
th(j-c)
STATIC ELECTRICAL CHARACTERISTICS (per diode)
Symbol Parameter Tests Conditions Min. Typ. Max. Unit
Per diode
Total
Coupling
Per diode
Total
Coupling
Per diode
Total
Coupling
th(c)
4.5
3.5
2.5
2.2
1.20
0.3
2.2
1.3
0.3
°C/W
°C/W
°C/W
*
I
R
V
F
Reverse leakage current
*
Forward voltage drop Tj = 25°CI
Tj = 25°C VR=V Tj = 100°C
Tj = 125°C I Tj=25°CI Tj = 125°C I
=10A
F
=10A
F
=20A
F
=20A
F
Pulse test : * tp = 380 µs, δ <2%
To evaluate the conduction losses use the following equation : P=0.28xI
Fig. 1: Average forward power dissipation versus average forward current (per diode).
PF(av)(W)
8 7 6 5 4 3 2 1 0
02468101214
δ = 0.05
F(AV)
+ 0.022 I
δ = 0.1
δ = 0.2
IF(av) (A)
F2(RMS)
δ = 0.5
δ
δ = 1
=tp/T
Fig. 2: Average forward current versus ambient temperature(δ = 0.5, per diode).
IF(av)(A)
12 11 10
9 8 7 6 5
T
tp
4 3 2 1
δ
0
0 25 50 75 100 125 150
RRM
=tp/T
0.7 mA
15 35 mA
0.55 V
0.44 0.5
0.73
0.62 0.72
Rth(j-a)=Rth(j-c)
ISOWATT220AB
Rth(j-a)=15°C/W
T
tp
Tamb(°C)
TO-220AB/TO-247
2/8
STPS20L40CF/CW/CT/CFP
Fig. 3: Normalized avalanche power derating
versus pulse duration.
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Fig. 5-1: Non repetitive surge peak forward current versus overload duration (maximum values, per diode, TO-220AB / TO-247).
IM(A)
140 120 100
80 60 40
IM
20
0 1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
Tc=25°C
Tc=75°C
Tc=125°C
Fig. 4: Normalized avalanche power derating versus junction temperature.
P(t)
ARM p
P (25°C)
ARM
1.2 1
0.8
0.6
0.4
0.2 0
0 25 50 75 100 125 150
T (°C)
j
Fig. 5-2: Non repetitive surge peak forward
current versus overload duration (maximum values, per diode, ISOWATT220AB, TO-220FPAB).
IM(A)
100
90 80 70 60 50 40 30
IM
20 10
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
Tc=25°C
Tc=50°C
Tc=100°C
Zth(j-c)/Rth(j-c)
1.0
0.8
δ = 0.5
0.6
δ = 0.2
0.4
δ = 0.1
0.2
Single pulse
0.0 1E-3 1E-2 1E-1 1E+0
tp(s)
δ
=tp/T
T
tp
Zth(j-c)/Rth(j-c)
1.0
0.8
δ = 0.5
0.6
0.4
δ = 0.2
δ = 0.1
0.2
Single pulse
0.0 1E-3 1E-2 1E-1 1E+0 1E+1
tp(s)
δ
=tp/T
T
tp
3/8
Loading...
+ 5 hidden pages