®
STPS20L40CF/CW/CT/CFP
LOW DROP POWER SCHOTTKY RECTIFIER
MAJOR PRODUCTS CHARACTERISTICS
I
F(AV)
V
RRM
2x10A
40 V
Tj (max) 150°C
V
(max) 0.5 V
F
FEATURES AND BENEFITS
LOW FORWARD VOLTAGE DROP MEANING
■
VERY SMALL CONDUCTION LOSSES
LOW DYNAMIC LOSSES AS A RESULT OF
■
THE SCHOTTKY BARRIER
INSULATED PACKAGE: ISOWATT220AB,
■
TO-220FPAB
Insulating voltage = 200V DC
Capacitance = 12pF
■ AVALANCHE CAPABILITY SPECIFIED
DESCRIPTION
Dual center tap Schottky rectifiers designed for
highfrequencyswitchedmodepowersuppliesand
DC to DC converters.
These devices are intendedfor usein low voltage,
high frequency inverters, free-wheeling and
polarity protection applications.
ABSOLUTE RATINGS (limiting values, per diode)
A1
A2
K
A1
TO-220FPAB
STPS20L40CFP
K
A1
ISOWATT220AB
STPS20L40CF
K
A2
K
A2
A1
TO-220AB
STPS20L40CT
A2
A1
A2
K
TO-247
STPS20L40CW
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
Repetitive peak reverse voltage
RMS forward current
Average forward
current
I
FSM
I
RRM
I
RSM
P
ARM
T
Tj
dV/dt
dPtot
*:
Surge non repetitive forward current tp = 10 ms Sinusoidal
Peak repetitive reverse current tp=2µssquare F=1kHz
Non repetitive peak reverse current tp = 100 µs square
Repetitive peak avalanche power tp = 1µs Tj = 25°C
stg
Storage temperature range
Maximum operating junction temperature *
Critical rate of rise of reverse voltage
<
dTj Rth j a
July 2003 - Ed: 4B
TO-220AB
TO-247
ISOWATT220AB
TO-220FPAB
Tc = 135°C
δ = 0.5
Tc = 115°C
δ = 0.5
Per diode
Per device
Per diode
Per device
thermal runaway condition for a diode on its own heatsink
−1()
40 V
30 A
10
20
10
20
180 A
1A
2A
4000 W
- 65 to + 150 °C
150 °C
10000 V/µs
A
A
1/8
STPS20L40CF/CW/CT/CFP
THERMAL RESISTANCES
Symbol Parameter Value Unit
R
th(j-c)
Junction to case ISOWATT220AB
TO-220FPAB
R
R
th(j-c)
th(j-c)
Junction to case TO-247
Junction to case TO-220AB
When the diodes 1 and 2 are used simultaneously :
∆ Tj(diode 1) = P(diode1) x R
(Per diode) + P(diode2) x R
th(j-c)
STATIC ELECTRICAL CHARACTERISTICS (per diode)
Symbol Parameter Tests Conditions Min. Typ. Max. Unit
Per diode
Total
Coupling
Per diode
Total
Coupling
Per diode
Total
Coupling
th(c)
4.5
3.5
2.5
2.2
1.20
0.3
2.2
1.3
0.3
°C/W
°C/W
°C/W
*
I
R
V
F
Reverse leakage
current
*
Forward voltage drop Tj = 25°CI
Tj = 25°C VR=V
Tj = 100°C
Tj = 125°C I
Tj=25°CI
Tj = 125°C I
=10A
F
=10A
F
=20A
F
=20A
F
Pulse test : * tp = 380 µs, δ <2%
To evaluate the conduction losses use the following equation :
P=0.28xI
Fig. 1: Average forward power dissipation versus
average forward current (per diode).
PF(av)(W)
8
7
6
5
4
3
2
1
0
02468101214
δ = 0.05
F(AV)
+ 0.022 I
δ = 0.1
δ = 0.2
IF(av) (A)
F2(RMS)
δ = 0.5
δ
δ = 1
=tp/T
Fig. 2: Average forward current versus ambient
temperature(δ = 0.5, per diode).
IF(av)(A)
12
11
10
9
8
7
6
5
T
tp
4
3
2
1
δ
0
0 25 50 75 100 125 150
RRM
=tp/T
0.7 mA
15 35 mA
0.55 V
0.44 0.5
0.73
0.62 0.72
Rth(j-a)=Rth(j-c)
ISOWATT220AB
Rth(j-a)=15°C/W
T
tp
Tamb(°C)
TO-220AB/TO-247
2/8
STPS20L40CF/CW/CT/CFP
Fig. 3: Normalized avalanche power derating
versus pulse duration.
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Fig. 5-1: Non repetitive surge peak forward
current versus overload duration (maximum
values, per diode, TO-220AB / TO-247).
IM(A)
140
120
100
80
60
40
IM
20
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
Tc=25°C
Tc=75°C
Tc=125°C
Fig. 4: Normalized avalanche power derating
versus junction temperature.
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
0 25 50 75 100 125 150
T (°C)
j
Fig. 5-2: Non repetitive surge peak forward
current versus overload duration (maximum
values, per diode, ISOWATT220AB,
TO-220FPAB).
IM(A)
100
90
80
70
60
50
40
30
IM
20
10
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
Tc=25°C
Tc=50°C
Tc=100°C
Fig. 6-1: Relative variation of thermal impedance
junction to case versus pulse duration (TO-220AB
/ TO-247).
Zth(j-c)/Rth(j-c)
1.0
0.8
δ = 0.5
0.6
δ = 0.2
0.4
δ = 0.1
0.2
Single pulse
0.0
1E-3 1E-2 1E-1 1E+0
tp(s)
δ
=tp/T
T
tp
Fig. 6-2: Relative variation of thermal impedance
junction to case versus pulse duration
(ISOWATT220AB, TO-220FPAB).
Zth(j-c)/Rth(j-c)
1.0
0.8
δ = 0.5
0.6
0.4
δ = 0.2
δ = 0.1
0.2
Single pulse
0.0
1E-3 1E-2 1E-1 1E+0 1E+1
tp(s)
δ
=tp/T
T
tp
3/8