®
STPS20150CT/CG/CR/CFP
HIGH VOLTAGE POWER SCHOTTKY RECTIFIER
MAIN PRODUCT CHARACTERISTICS
I
F(AV)
V
RRM
T
j
V
(max) 0.75 V
F
2x10A
150 V
175°C
FEATURES AND BENEFITS
HIGH JUNCTION TEMPERATURE CAPABILITY
■
GOOD TRADE OFF BETWEEN LEAKAGE
■
CURRENT AND FORWARD VOLTAGE DROP
LOW LEAKAGE CURRENT
■
■ AVALANCHE CAPABILITY SPECIFIED
DESCRIPTION
Dual center tap schottky rectifier designed for
high frequency Switched Mode Power
Supplies.
A1
A2
K
A2
A1
D2PAK
STPS20150CG
A1
TO-220AB
STPS20150CT
K
K
A2
K
A1
I2PAK
STPS20150CR
A1
A2
K
A2
K
TO-220FPAB
STPS20150CFP
ABSOLUTE RATINGS (limiting values, per diode)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
Repetitive peak reverse voltage 150 V
RMS forward current 30 A
Average forward current
δ = 0.5
TO-220AB
D2PAK/I2PAK
Tc = 155°C Per diode 10 A
TO-220FPAB Tc = 135°C Per device 20
P
I
FSM
ARM
T
T
Surge non repetitive forward current tp = 10 ms sinusoidal 180 A
Repetitive peak avalanche power tp = 1µs Tj = 25°C 6700 W
Storage temperature range - 65 to + 175 °C
stg
Maximum operating junction temperature 175 °C
j
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
July 2003 - Ed: 6D
1/7
STPS20150CT/CG/CR/CFP
THERMAL RESISTANCES
Symbol Parameter Value Unit
R
th(j-c)
R
th(c)
When the diodes 1 and 2 are used simultaneously :
∆ Tj(diode 1) = P(diode1) x R
STATIC ELECTRICAL CHARACTERISTICS (per diode)
Symbol Parameter Tests conditions Min. Typ. Max. Unit
I
R
V
F
Pulse test : * tp=5ms,δ<2%
To evaluate the conduction losses use the following equation:
P=0.64xI
Junction to case TO-220AB / D2PAK/I2PAK Per diode 2.2 °C/W
TO-220FPAB 4.5
TO-220AB / D
2
PAK/I2PAK Total 1.3
TO-220FPAB 3.5
TO-220AB / D2PAK/I2PAK Coupling 0.3
TO-220FPAB 2.5
(Per diode) + P(diode 2) x R
th(j-c)
* Reverse leakage current Tj = 25°C VR=V
th(c)
RRM
5.0 µA
Tj = 125°C 5.0 mA
** Forwardvoltage drop Tj = 25°CI
Tj = 125°C I
Tj=25°CI
Tj = 125°C I
** tp = 380 µs, δ <2%
+ 0.011 I
F(AV)
F2(RMS)
= 10 A 0.92 V
F
= 10 A 0.69 0.75
F
=20A 1
F
= 20 A 0.79 0.86
F
2/7
STPS20150CT/CG/CR/CFP
Fig. 1: Average forward power dissipation versus
average forward current (per diode).
P (W)
F(AV)
10
9
8
7
6
5
4
3
2
1
0
0123456789101112
δ = 0.05
δ = 0.1
I (A)
F(AV)
δ = 0.2
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Fig. 3: Normalized avalanche power derating versus pulse duration.
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Fig. 2: Average forward current versus ambient
temperature (δ = 0.5, per diode).
I (A)
F(AV)
12
11
10
9
8
7
6
5
4
3
2
1
0
0 25 50 75 100 125 150 175
δ
T
=tp/T
R =15°C/W
th(j-a)
tp
R =R (TO-220AB, I PAK and D PAK)
th(j-a) th(j-c)
R =R (TO-220FPAB)
th(j-a) th(j-c)
T (°C)
amb
22
Fig. 4: Normalized avalanche power derating
versus junction temperature.
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
0 25 50 75 100 125 150
T (°C)
j
Fig. 5-1: Non repetitive surge peak forward cur-
rent versus overload duration (maximumvalues,
per diode). TO-220AB, I²PAK and D²PAK
I (A)
M
150
125
100
75
50
IM
25
0
1.E-03 1.E-02 1.E-01 1.E+00
δ=0.5
t
t(s)
22
TO-220AB, I PAK and D PAK
T =50°C
C
T =75°C
C
T =125°C
C
Fig. 5-2: Non repetitive surge peak forward current versus overload duration (maximumvalues,
per diode). TO-220FPAB
I (A)
M
100
90
80
70
60
50
40
30
IM
20
10
0
1.E-03 1.E-02 1.E-01 1.E+00
δ=0.5
t
t(s)
TO-220FPAB
T =50°C
C
T =75°C
C
T =125°C
C
3/7