®
LOW DROP POWER SCHOTTKY RECTIFIER
MAIN PRODUCT CHARACTERISTICS
STPS1L30A/U
I
F(AV)
V
RRM
1 A
30 V
Tj (max) 150 °C
(max) 0.3 V
V
F
FEATURES AND BENE FITS
VERY LOW FORWARD VOLTAGE DROP FO R
LESS POWER DISSIPATION
OPTIMIZED CONDUCTION/REVERSE LOSSES
TRADE-OFF WHICH MEANS THE HIGHEST
YIELD IN THE APPLICATIONS
SURFACE MOUNT MINIATURE PA CKAG E
DESCRIPTION
Single Schottky rectifier suited to Switched Mode
Power Supplies and high frequency DC to DC converters, freewheel diode and integrated circuit
latch up protection.
Packaged in SMA and SMB, this device is especially intended for use in parallel with MOSFETs in
synchronous rectification.
SMA
STPS1L30A
JEDEC DO-214AC
SMB
STPS1L30U
JEDEC DO-214AA
ABSOLUTE RATINGS
(limiting values)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
I
RSM
T
stg
Tj Maximum operating junction temperature * 150
Repetitive peak reverse voltage 30 V
RMS forward current 10 A
Average forward current TL = 135°C
δ
= 0.5 1 A
Surge non repetitive forward current tp = 10 ms Sinusoidal 75 A
Repetitive peak reverse current tp = 2 µs F = 1kHz square 1 A
Non repetitive peak reverse current tp = 100 µs square 1 A
Storage temperature range - 65 to + 150
°
°
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
dPtot
* :
August 1999 - Ed: 4A
dTj
<
1
Rth(j−a
thermal runaway condition for a diode on its own heatsink
)
C
C
1/5
STPS1L30A/U
THERMAL RESISTANCES
Symbol Parameter Value Unit
R
th (j-l)
Junction to lead SMA 30
SMB 25
STATIC ELECTRICAL CHARACTERISTICS
Symbol Parameters Tests Conditions Min. Typ. Max. Unit
* Reverse leakage Current Tj = 25°CV
I
R
= V
R
RRM
200
Tj = 100°C615mA
* Forward Voltage drop Tj = 25°CI
V
F
= 1 A 0.395 V
F
Tj = 125°C0.260.3
Tj = 25°CI
= 2 A 0.445
F
Tj = 125°C 0.325 0.375
Pulse test : * tp = 380 µs, δ < 2%
To evaluate the maximum conduction losses use the following equation :
P = 0.225 x I
F(AV)
+ 0.075 I
F2(RMS )
°
C/W
µ
A
Fig. 1:
Average forward power dissipation versus
average forward current.
PF(av)(W)
0.50
δ = 0.2
0.45
0.40
δ = 0.05
δ = 0.1
δ = 0.5
0.35
0.30
0.25
δ = 1
0.20
0.15
T
0.10
0.05
0.00
0.0 0.2 0.4 0.6 0.8 1.0 1.2
Fig. 3-1:
Non repetitive surge peak forward cur-
IF(av) (A)
δ
=tp/T
tp
rent versus overload duration (maximum values)
(SMA).
IM(A)
10
8
6
4
I
M
2
0
1E-3 1E-2 1E-1 1E+0
t
δ
=0.5
t(s)
Ta=25°C
Ta=50°C
Ta=100°C
Fig. 2:
Average forward current versus ambient
temperature (δ=0.5).
IF(av)(A)
1.2
Rth(j-a)=Rth(j-l)
1.0
0.8
0.6
0.4
T
0.2
tp
=tp/T
δ
0.0
0 25 50 75 100 125 150
Fig. 3-2:
Non repetitive surge peak forward cur-
Rth(j-a)=120°C/W
Rth(j-a)=100°C/W
Tamb(°C)
rent versus overload duration (maximum values)
(SMB).
IM(A)
10
8
6
4
I
M
2
0
1E-3 1E-2 1E-1 1E+0
t
δ
=0.5
t(s)
Ta=25°C
Ta=50°C
Ta=100°C
2/5