®
STPS10L60CF/CFP
POWER SCHOTTKY RECTIFIER
MAIN PRODUCT CHARACTERISTICS
I
F(AV)
V
RRM
2x5A
60 V
Tj (max) 150 °C
V
(max) 0.52 V
F
FEATURES AND BENEFITS
LOW FORWARD VOLTAGE DROP
■
NEGLIGIBLE SWITCHING LOSSES
■
INSULATED PACKAGE:
■
Insulating voltage = 2000V DC
Capacitance = 12pF
AVALANCHE CAPABILITY SPECIFIED
■
DESCRIPTION
Dual center tap Schottky rectifiers suited for
Switched Mode Power Supplies and high
frequency DC to DC converters.
Packaged in ISOWATT220AB, TO-220FPAB this
device is intended for use in high frequency
inverters.
A1
A2
A1
ISOWATT220AB
STPS10L60CF
K
A1
A2
K
A2
K
TO-220FPAB
STPS10L60CFP
ABSOLUTE RATINGS (limiting values, per diode)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
Repetitive peak reverse voltage
RMS forward current
Average
forward current
I
FSM
I
RRM
P
ARM
T
stg
Tj
dV/dt
dPtot
*:
Surge non repetitive forward current tp = 10 ms Sinusoidal
Repetitive peak reverse current tp=2µssquare F = 1kHz
Repetitive peak avalanche power tp = 1µs Tj = 25°C
Storage temperature range
Maximum operating junction temperature *
Critical rate of rise reverse voltage
<
dTj Rth j a
July 2003 - Ed: 3C
ISOWATT220AB
TO220FPAB
Tc =130°C
δ = 0.5
Per diode
Per device
thermal runaway condition for a diode on its own heatsink
−1()
60 V
30 A
5
10
180 A
1A
4000 W
- 65 to + 175 °C
150 °C
10000 V/µs
A
1/5
STPS10L60CF/CFP
THERMAL RESISTANCE
Symbol Parameter Value Unit
R
th (j-c)
R
th (c)
Junction to case ISOWATT220AB TO-220FPAB
When the diodes 1 and 2 are used simultaneously :
∆ Tj(diode 1) = P(diode1) x R
(Per diode) + P(diode 2) x R
th(j-c)
STATIC ELECTRICAL CHARACTERISTICS (per diode)
Symbol Parameter Tests conditions Min. Typ. Max. Unit
Per Diode
Total
4.5
3.5
Coupling 2.5 °C/W
th(c)
°C/W
*
I
R
Reverse leakage current Tj = 25°C V
R=VRRM
Tj = 125°C
V
*
F
Forward voltage drop Tj = 25°CI
Tj = 125°C I
Tj=25°CI
Tj = 125°C I
=5A
F
=5A
F
=10A
F
=10A
F
Pulse test : * tp = 380 µs, δ <2%
To evaluate the conduction losses use the following equation :
P = 0.4x I
Fig. 1: Average forward power dissipation versus
average forward current (per diode).
PF(av)(W)
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
F(AV)
+ 0.024 I
δ = 0.05
F2(RMS)
δ = 0.1
IF(av) (A)
δ = 0.2
δ = 0.5
δ
=tp/T
δ = 1
T
Fig. 2: Average current versus ambient
temperature (δ=0.5) (per diode).
IF(av)(A)
6
5
4
3
2
1
tp
=tp/T
δ
0
0 25 50 75 100 125 150
220 µA
45 60 mA
0.55 V
0.43 0.52
0.67
0.55 0.64
Rth(j-a)=Rth(j-c)
Rth(j-a)=15°C/W
T
tp
Tamb(°C)
2/5