®
STPS10L45CT/CG/CF/CFP
LOW DROP POWER SCHOTTKY RECTIFIER
MAIN PRODUCTS CHARACTERISTICS
I
F(AV)
V
RRM
2x5 A
45 V
Tj (max) 150°C
V
(max) 0.46 V
F
FEATURES AND BENEFITS
LOW FORWARD VOLTAGE DROP MEANING
■
VERY SMALL CONDUCTION LOSSES
LOW SWITCHING LOSSES ALLOWING HIGH
■
FREQUENCY OPERATION
INSULATED PACKAGE: ISOWATT220AB,
■
TO-220FPAB
Insulating voltage = 2000V DC
TO-220FPAB
STPS10L45CFP
Capacitance = 12pF
AVALANCHE CAPABILITY SPECIFIED
■
DESCRIPTION
Dual center tap Schottky rectifiers suited for
Switched Mode Power Supplies and high
frequency DC to DC converters.
Packaged in TO-220AB, ISOWATT220AB,
TO-220FPAB and D
2
PAK, these devices are
intended for use in low voltage, high frequency
TO-220AB
STPS10L45CT
inverters, free-wheeling and polarity protection
applications.
ABSOLUTE RATINGS (limiting values, per diode)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
I
RSM
P
ARM
T
stg
Tj
dV/dt
dPtot
*:
dTj Rth j a
July 2003 - Ed: 3B
Repetitive peak reverse voltage
RMS forward current
Average
forward current
TO-220AB
D2PAK
ISOWATT220AB
TO-220FPAB
Tc =135°C
δ = 0.5
Tc =115°C
δ = 0.5
Surge non repetitive forward current tp = 10 ms Sinusoidal
Repetitive peak reverse current tp=2µssquare F=1kHz
Non repetitive peak reverse current tp = 100 µs square
Repetitive peak avalanche power tp = 1µs Tj = 25°C
Storage temperature range
Maximum operating junction temperature *
Critical rate of rise of reverse voltage
<
thermal runaway condition for a diode on its own heatsink
−1()
A1
A2
A2
K
A1
A2
K
A1
Per diode
Per device
Per diode
Per device
K
K
A2
A1
2
PAK
D
STPS10L45CG
A1
ISOWATT220AB
STPS10L45CF
45 V
20 A
5
10
5
10
150 A
1A
2A
2700 W
- 65 to + 150 °C
150 °C
10000 V/µs
A2
K
A
A
1/7
STPS10L45CT/CG/CF/CFP
THERMAL RESISTANCES
Symbol Parameter Value Unit
R
R
R
R
th (j-c)
th (c)
th (j-c)
th (c)
Junction to case TO-220AB
D2PAK
Junction to case
ISOWATT220AB
TO-220FPAB
Per diode
Total
3
1.7
Coupling 0.35
Per diode
Total
5
3.8
Coupling 2.5
When the diodes 1 and 2 are used simultaneously :
∆ Tj(diode 1) = P(diode1) x R
(Per diode) + P(diode 2) x R
th(j-c)
th(c)
STATIC ELECTRICAL CHARACTERISTICS (per diode)
Symbol Parameter Tests Conditions Min. Typ. Max. Unit
*
I
R
V
F
Reverse leakage
current
*
Forward voltage drop Tj = 25°CI
Tj = 25°C V
Tj = 125°C
Tj = 125°C I
Tj=25°CI
Tj = 125°C I
R=VRRM
=5A
F
=5A
F
=10A
F
=10A
F
45 90 mA
0.36 0.46
0.49 0.59
0.15 mA
0.53 V
0.67
°C/W
°C/W
Pulse test : * tp = 380 µs, δ <2%
To evaluate the conduction losses use the following equation :
P=0.33xI
Fig. 1: Average forward power dissipation versus
average forward current (per diode).
PF(av)(W)
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
F(AV)
δ = 0.05
+ 0.026 I
δ = 0.1
IF(av) (A)
F2(RMS)
δ = 0.2
δ = 0.5
δ
=tp/T
δ = 1
T
Fig. 2: Average forward current versus ambient
temperature (δ=0.5, per diode).
IF(av)(A)
6
5
4
3
2
tp
1
=tp/T
δ
0
0 25 50 75 100 125 150
Rth(j-a)=Rth(j-c)
TO-220AB/D²PAK
TO-220FPAB
ISOWATT220AB
T
tp
Tamb(°C)
Rth(j-a)=15°C/W
2/7
STPS10L45CT/CG/CF/CFP
Fig. 3: Normalized avalanche power derating
versus pulse duration.
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Fig. 5-1: Non repetitive surge peak forward
current versus overload duration (maximum
values, per diode) (TO-220AB and D
IM(A)
100
90
80
70
60
50
40
30
IM
20
10
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
2
PAK).
Tc=25°C
Tc=75°C
Tc=125°C
Fig. 4: Normalized avalanche power derating
versus junction temperature.
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
0 25 50 75 100 125 150
T (°C)
j
Fig. 5-2: Non repetitive surge peak forward
current versus overload duration (maximum
values, per diode) (ISOWATT220AB,
TO-220FPAB).
IM(A)
80
70
60
50
40
30
20
IM
10
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
Tc=25°C
Tc=75°C
Tc=125°C
Fig. 6-1: Relative variation of thermal impedance
junction to case versus pulse duration.
(TO-220AB and D
Zth(j-c)/Rth(j-c)
1.0
0.8
δ = 0.5
0.6
δ = 0.2
0.4
δ = 0.1
0.2
0.0
1E-3 1E-2 1E-1 1E+0
Single pulse
2
PAK).
tp(s)
δ
=tp/T
T
tp
Fig. 6-2: Relative variation of thermal impedance
junction to case versus pulse duration.
(ISOWATT220AB, TO-220FPAB).
Zth(j-c)/Rth(j-c)
1.0
0.8
δ = 0.5
0.6
0.4
δ = 0.2
δ = 0.1
0.2
0.0
1E-3 1E-2 1E-1 1E+0 1E+1
Single pulse
tp(s)
δ
=tp/T
T
tp
3/7