®
MAIN PRODUCT CHARACTERISTICS
STPS1045B/H
POWER SCHOTTKY RECTIFIER
I
F(AV)
V
RRM
V
(max) 0.57 V
F
10 A
45 V
FEATURES AND BENEFITS
NEGLIGIBLE SWITCHING LOSSES
n
LOW FORWARD DROP VOLTAGE
n
LOW CAPACITANCE
n
HIGH REVERSE AVALANCHE SURGE
n
CAPABILITY
DESCRIPTION
High voltage Schottky rectifier suited for Switch
Mode Power Supplies and other Power
Converters.
Packaged in DPAK and IPAK, these devices are
intended for use in high frequency circuitries
where low switching losses are required.
ABSOLUTE MAXIMUM RATINGS
K
A
DPAK
STPS1045B
K
A
K
A
K
A
IPAK
STPS1045H
Symbol Parameter Value Unit
V
I
F(RMS)
I
RRM
/ pin RMS forward current / pin 7 A
F(AV)
Repetitive peak reverse voltage 45 V
Average forward current Tc = 150°C
10 A
d = 0.5
I
FSM
Surge non repetitive forward current tp = 10 ms
75 A
Sinusoidal
I
RRM
Repetitive peak reverse current tp = 2 µs
1A
F = 1KHz
T
stg
Storage temperature range - 65 to + 175 °C
Tj Maximum junction temperature 175 °C
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
May 2000 - Ed: 2B
1/5
STPS1045B/H
THERMAL RESISTANCES
Symbol Parameter Value Unit
R
th (j-c)
STATIC ELECTRICAL CHARACTERISTICS
Symbol Parameter Tests Conditions Min. Typ. Max. Unit
I
R
V
F
Pulse test : * tp = 380 µs, δ <2%
To evaluate the maximum conduction losses use the following equation :
P=0.42xI
Fig. 1: Averageforward power dissipation versus
average forward current.
Junction to case 3 °C/W
* Reverse leakage current Tj = 25°C VR=45V 100 µA
Tj = 125°C 7 15 mA
** Forward voltage drop Tj = 25°C IF= 10 A 0.63 V
**tp = 5 ms, δ <2%
+ 0.015 I
F(AV)
F2(RMS)
Tj = 125°C I
Tj = 25°C I
Tj = 125°C I
= 10 A 0.5 0.57
F
= 20 A 0.84
F
= 20 A 0.65 0.72
F
Fig. 2: Average forward current versus ambient
temperature (δ=0.5).
PF(av)(W)
8
7
δ = 0.05
δ = 0.1
δ = 0.2
δ = 0.5
6
5
δ = 1
4
3
δ
=tp/T
T
tp
2
1
0
0123456789101112
IF(av) (A)
Fig. 3: Non repetitive surge peak forward current
versus overload duration (maximum values).
IM(A)
120
100
80
60
40
IM
20
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
Tc=50°C
Tc=100°C
Tc=150°C
IF(av)(A)
12
10
Rth(j-a)=Rth(j-c)
8
6
4
T
Rth(j-a)=15°C/W
Rth(j-a)=70°C/W
2
tp
=tp/T
δ
0
0 25 50 75 100 125 150 175
Tamb(°C)
Fig. 4: Relative variation of thermal impedance
junction to case versus pulse duration.
Zth(j-c)/Rth(j-c)
1.0
0.8
δ = 0.5
0.6
0.4
δ = 0.2
δ = 0.1
0.2
0.0
Single pulse
1E-4 1E-3 1E-2 1E-1 1E+0
tp(s)
δ
=tp/T
T
tp
2/5