SGS Thomson Microelectronics ST72T512R4, ST72T532R4, ST72T511R9, ST72T511R7, ST72T311R9 Datasheet

...
Rev. 2.1
February 2000 1/164
ST72311R, ST72511R,
ST72512R, ST72532R
8-BIT MCU WITH NESTED INTERRUPTS, EEPROM, ADC,
16-BIT TIMERS, 8-BIT PWM ART, SPI, SCI, CAN INTERFACES
DATASHEET
– 16K to 60K bytes Program memory
(ROM,OTP and EPROM) with read-out protection
– 256 bytes E2PROM Data memory
(only on ST72532R4)
– 1024 to 2048 bytes RAM
Clock, Reset and Supply Management
– Enhanced reset system – Low voltage supply supervisor – Clock sources: crystal/ceramic resonator os-
cillator or external clock – Beep and Clock-out capability – 4 Power Saving Modes: Halt, Active-Halt,
Wait and Slow
Interrupt Management
– Nested interrupt controller – 13 interrupt vectors plus TRAP and RESET – 15 external interrupt lines (on 4 vectors) – TLI dedicated top level interrupt pin
48 I/O Ports
– 48 multifunctional bidirectional I/O lines – 32 alternate function lines – 12 high sink outputs
5 Timers
– Configurable watchdog timer – Real time clock timer – One 8-bit auto-reload timer with 4 independ-
ent PWM output channels, 2 input captures,
output compares and external clock with
event detector (except on ST725x2R4) – Two 16-bittimerswith:2 input captures, 2out-
put compares,external clock input on one tim-
er, PWM and Pulse generator modes
3 Communications Interfaces
– SPI synchronous serial interface – SCI asynchronous serial interface – CAN interface (except on ST72311Rx)
1 Analog peripheral
– 8-bit ADC with 8 input channels
Instruction Set
– 8-bit data manipulation – 63 basic instructions – 17 main addressing modes – 8 x 8 unsigned multiply instruction – True bit manipulation
Development Tools
– Full hardware/software development package
Device Summary
Note 1. See Section 12.3.1 on page 133 for more information on VDDversus f
OSC
.
TQFP64
14 x 14
Features ST72511R9 ST72511R7 ST72511R6 ST72311R9 ST72311R7 ST72311R6 ST72512R4 ST72532R4
Program memory -bytes 60K 48K 32K 60K 48K 32K 16K 16K RAM (stack) - bytes 2048 (256) 1536 (256) 1024 (256) 2048 (256) 1536 (256) 1024 (256) 1024 (256) 1024 (256) EEPROM - bytes - - - ----256
Peripherals
watchdog, two 16-bit timers, 8-bit PWM
ART, SPI,SCI, CAN, ADC
watchdog, two 16-bit timers, 8-bit PWM
ART, SPI, SCI, ADC
watchdog, two 16-bit timers,
SPI, SCI, CAN, ADC
Operating Supply 3.0V to 5.5V 3.0 to 5.5V
1)
CPU Frequency 2 to 8 MHz (with 4 to 16 MHz oscillator) 2 to 4 MHz
1)
Operating Temperature -40°C to +85°C (-40°C to +105/125°C optional) Packages TQFP64
1
Table of Contents
164
2/164
2
1 GENERAL DESCRIPTION . . . . . . ................................................ 6
1.1 INTRODUCTION . ....................................................... 6
1.2 PIN DESCRIPTION . . . . . . ................................................ 7
1.3 REGISTER & MEMORY MAP . . . . . . . . . . . . . . . .............................. 11
2 EPROM PROGRAM MEMORY . . . . . . . ........................................... 15
3 DATA EEPROM . . . . . . . . . .................................................... 16
3.1 INTRODUCTION . ...................................................... 16
3.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................... 16
3.3 MEMORY ACCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ 17
3.4 POWER SAVING MODES . . . . . . ......................................... 18
3.5 ACCESS ERROR HANDLING . . . . . . . . . . . ................................. 18
3.6 REGISTER DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ 19
4 CENTRAL PROCESSING UNIT . . ............................................... 20
4.1 INTRODUCTION . ...................................................... 20
4.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................... 20
4.3 CPU REGISTERS . . . . . . . . . . . . . . . . . . . . . ................................. 20
5 SUPPLY, RESET AND CLOCK MANAGEMENT . . . . ................................23
5.1 LOW VOLTAGE DETECTOR (LVD) . . . . . . . . ................................24
5.2 RESET SEQUENCE MANAGER (RSM) . . . . . ................................25
5.2.1 Introduction . . . . . . . . . . . . ...........................................25
5.2.2 Asynchronous External RESET pin . . . .................................26
5.2.3 Internal Low Voltage Detection RESET . . . . . . . . . . . . . . . . . . . . . . ........... 26
5.2.4 Internal Watchdog RESET . . . ........................................ 26
5.3 LOW CONSUMPTION OSCILLATOR . . . . . .................................. 27
6 INTERRUPTS .. ............................................................. 28
6.1 INTRODUCTION . ...................................................... 28
6.2 MASKING AND PROCESSING FLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3 INTERRUPTS AND LOW POWER MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4 CONCURRENT & NESTED MANAGEMENT . . . . . . . . . . . . . .................... 30
6.5 INTERRUPT REGISTER DESCRIPTION . . . ................................. 31
7 POWER SAVING MODES . . . . . . . . . . ........................................... 34
7.1 INTRODUCTION . ...................................................... 34
7.2 SLOW MODE . . . . . . . . . . . . . . ...........................................34
7.3 WAIT MODE . . . . . . . . . . . ............................................... 35
7.4 ACTIVE-HALT AND HALT MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.4.1 ACTIVE-HALT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.4.2 HALT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8 I/O PORTS . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................ 38
8.1 INTRODUCTION . ...................................................... 38
8.2 FUNCTIONAL DESCRIPTION . . . . ........................................38
8.2.1 Input Modes . . .................................................... 38
8.2.2 Output Modes . . . . . . . . . . . . . ........................................38
8.2.3 Alternate Functions . . . . . . ...........................................38
Table of Contents
3/164
3
8.3 I/O PORT IMPLEMENTATION . . . . ........................................41
8.4 LOW POWER MODES . . . . . . . . . . . . . . . . . ................................. 42
8.5 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . ................................. 42
8.5.1 Register Description . . . . . ........................................... 43
9 MISCELLANEOUS REGISTERS . . . . . . . . . . . . . . .................................. 45
9.1 I/O PORT INTERRUPT SENSITIVITY .. . . . . ................................45
9.2 I/O PORT ALTERNATE FUNCTIONS . . . . . ..................................45
9.3 MISCELLANEOUS REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10 ON-CHIPPERIPHERALS . . . . . . ............................................... 49
10.1 WATCHDOG TIMER (WDG) . . . . . . . . . . . . . . . . . . . ........................... 49
10.1.1 Introduction . . . . . . . . . . . . . . . ........................................ 49
10.1.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ 49
10.1.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.1.4 Hardware Watchdog Option . . ........................................50
10.1.5 Low Power Modes .. ............................................... 50
10.1.6 Interrupts . . ....................................................... 50
10.1.7 Register Description . ............................................... 50
10.2 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK TIMER (MCC/RTC) . . . . . . . 52
10.2.1 Programmable CPU Clock Prescaler . . . . . . . . . . . . . . . . . . . . ............... 52
10.2.2 Clock-out Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.2.3 Real Time Clock Timer (RTC) ........................................ 52
10.2.4 Register Description . ............................................... 53
10.2.5 Low Power Modes . . . . . . . . . ........................................53
10.2.6 Interrupts . . ....................................................... 53
10.3 PWM AUTO-RELOAD TIMER (ART) . . . . . . . ................................54
10.3.1 Introduction . . . . . . . . . . . . . . . ........................................ 54
10.3.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.3.3 Register Description . ............................................... 58
10.4 16-BIT TIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ 61
10.4.1 Introduction . . . . . . . . . . . . . . . ........................................ 61
10.4.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ 61
10.4.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
10.4.4 Low Power Modes . . . . . . . . . ........................................73
10.4.5 Interrupts . . . . . . . . . . . . . ...........................................73
10.4.6 Summary of Timer modes . . . . . . . . . . .................................73
10.4.7 Register Description . ............................................... 74
10.5 SERIAL PERIPHERAL INTERFACE (SPI) . .................................. 79
10.5.1 Introduction . . . . . . . . . . . . . . . ........................................ 79
10.5.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ 79
10.5.3 Generaldescription . . . . . . . . . ........................................ 79
10.5.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.5.5 Low Power Modes .. ............................................... 88
10.5.6 Interrupts . . . . . . . . . . . . . ...........................................88
10.5.7 Register Description . ............................................... 89
ST72311R, ST72511R, ST72512R, ST72532R
4/164
10.6 SERIAL COMMUNICATIONS INTERFACE (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.6.1 Introduction . . . . . . . . . . . . . . . ........................................ 92
10.6.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ 92
10.6.3 GeneralDescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................... 92
10.6.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
10.6.5 Low Power Modes .. ............................................... 99
10.6.6 Interrupts . . ....................................................... 99
10.6.7 Register Description . ..............................................100
10.7 CONTROLLER AREA NETWORK (CAN) . . . ................................ 104
10.7.1 Introduction . . . . . . . . . . . . . . . ....................................... 104
10.7.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... 105
10.7.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.7.4 Register Description . ..............................................111
10.8 8-BIT A/D CONVERTER (ADC) .......................................... 121
10.8.1 Introduction . . . . . . . . . . . . . . . ....................................... 121
10.8.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... 121
10.8.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
10.8.4 Low Power Modes . . . . . . . . . .......................................122
10.8.5 Interrupts . . ...................................................... 122
10.8.6 Register Description . ..............................................123
11 INSTRUCTION SET . . . . . . . . . . . . . . . . . . . . . . . . ................................ 125
11.1 ST7 ADDRESSING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
11.1.1 Inherent.........................................................126
11.1.2 Immediate . . ..................................................... 126
11.1.3 Direct . . . . . . . . . . . . . . . . .......................................... 126
11.1.4 Indexed(No Offset, Short, Long) . . . . . . ............................... 126
11.1.5 Indirect (Short, Long) . . . . . . . . . . . . . . . . . . . . .......................... 126
11.1.6 Indirect Indexed (Short, Long) .......................................127
11.1.7 Relative mode (Direct, Indirect) . . . . . . ................................ 127
11.2 INSTRUCTION GROUPS . . . . . . . . . . . . . . . . . . ............................. 128
12 ELECTRICAL CHARACTERISTICS . . . . ........................................ 131
12.1 PARAMETER CONDITIONS . . . . . . . . . . . . . . . . .............................131
12.1.1 Minimum and Maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
12.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . ...............................131
12.1.3 Typical curves . . . . . . . . . . . . . ....................................... 131
12.1.4 Loading capacitor . . . . . . . . . . .......................................131
12.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
12.2 ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
12.2.1 Voltage Characteristics . . . . . . . . . . . . ................................ 132
12.2.2 Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
12.2.3 Thermal Characteristics . . . . . . . . . . . . . . . ............................. 132
12.3 OPERATING CONDITIONS . . . . . . . . . . ................................... 133
12.3.1 GeneralOperating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... 133
12.3.2 OperatingConditions with Low Voltage Detector (LVD) . . . . . . . . . . . . . ....... 134
12.4 SUPPLY CURRENT CHARACTERISTICS . . . ...............................135
12.4.1 RUN and SLOW Modes . . . . . . . . . . . . . . . . . . . . . . . . . ................... 135
12.4.2 WAIT and SLOW WAIT Modes .. . . . ................................. 136
ST72311R, ST72511R, ST72512R, ST72532R
5/164
12.4.3 HALT and ACTIVE-HALT Modes . . . . . ...............................137
12.4.4 Supply and Clock Managers . . . . . . ................................... 137
12.4.5 On-ChipPeripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
12.5 CLOCK AND TIMING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . ..........138
12.5.1 GeneralTimings . . . .............................................. 138
12.5.2 External Clock Source .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
12.5.3 Crystal and Ceramic Resonator Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
12.6 MEMORY CHARACTERISTICS . . . .......................................139
12.6.1 RAM and Hardware Registers . . . . . . . ................................ 139
12.6.2 EEPROM Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
12.6.3 EPROM Program Memory . . . .......................................139
12.7 EMC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
12.7.1 Functional EMS . . . . . . . . . . . . . . . . . . ................................ 140
12.7.2 Absolute Electrical Sensitivity . .......................................141
12.7.3 ESD Pin Protection Strategy . . . . . . . . . ................................ 143
12.8 I/O PORT PIN CHARACTERISTICS .......................................145
12.8.1 GeneralCharacteristics .. . . . .......................................145
12.8.2 OutputDriving Current . . . . . . .......................................146
12.9 CONTROL PIN CHARACTERISTICS . . . . . ................................. 147
12.9.1 Asynchronous RESET Pin .......................................... 147
12.9.2 VPP Pin . . . . . . . . . . . . . . . . . . . . . . . . . ...............................147
12.10 TIMER PERIPHERAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . ....... 148
12.10.1Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... 148
12.10.28-Bit PWM-ART Auto-Reload Timer . ................................. 148
12.10.316-Bit Timer . . . . . . . . . . . . . . . . . . . . . ................................ 148
12.11 COMMUNICATIONS INTERFACE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . 149
12.11.1SPI - Serial Peripheral Interface . . . . . . . . . . . . .......................... 149
12.11.2SCI - Serial Communications Interface . . . . . . . . . . . . . . . . . . . . . . ..........151
12.11.3CAN - Controller Area Network Interface . . . . . . . . . . . . ................... 151
12.12 8-BIT ADC CHARACTERISTICS .. . . . . . . ................................. 152
13 PACKAGE CHARACTERISTICS . . . . . . ........................................ 154
13.1 PACKAGE MECHANICAL DATA . . . . . . . . . . . . ............................. 154
13.2 THERMAL CHARACTERISTICS . . . . . . . . . . . ...............................155
13.3 SOLDERING AND GLUEABILITY INFORMATION . . . . . . . . . . . . . . . . . . . . . ....... 156
13.4 PACKAGE/SOCKET FOOTPRINT PROPOSAL . . . . . . . . . . . ................... 157
14 DEVICE CONFIGURATION AND ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . 158
14.1 OPTION BYTES . . . ...................................................158
14.2 DEVICE ORDERING INFORMATION AND TRANSFER OF CUSTOMER CODE . . . . 159
14.3 DEVELOPMENT TOOLS . . . . . . . . . . . . . . . . . . . . . .......................... 161
15 ST7 GENERIC APPLICATION NOTE . . . ....................................... 162
16 SUMMARY OF CHANGES . ..................................................163
ST72311R, ST72511R, ST72512R, ST72532R
6/164
1 GENERAL DESCRIPTION
1.1 INTRODUCTION
The ST72311R, ST72511R, ST72512R and ST72532R devices are members of the ST7 mi­crocontroller family. They can be grouped as fol­lows:
– ST725xxR devices are designed for mid-range
applications witha CAN bus interface(Controller Area Network)
– ST72311R devices target the same range of ap-
plications but without CAN interface.
All devices are based on a common industry­standard 8-bit core, featuringan enhancedinstruc­tion set.
Under software control, all devices can be placed in WAIT, SLOW, ACTIVE-HALT or HALT mode, reducing power consumption when the application is in idle or standby state.
The enhanced instruction set and addressing modes of the ST7 offer both power and flexibility to software developers, enabling the design of highly efficient and compact application code. In addition to standard 8-bit data management, allST7 micro­controllers feature true bit manipulation, 8x8 un­signed multiplication and indirect addressing modes.
Figure 1. Device Block Diagram
8-BIT CORE
ALU
ADDRESS AND DATA BUS
OSC1
V
PP
CONTROL
PROGRAM
(16K - 60K Bytes)
V
SS
RESET
PORT F
PF7:0
(8-BIT)
TIMER A
BEEP
PORT A
RAM
(1024, 2048 Bytes)
PORT C
8-BIT ADC
V
DDA
V
SSA
PORT B
PB7:0
(8-BIT)
PWM ART
PORT E
CAN
PE7:0
(8-BIT)
SCI
TIMER B
PA7:0
(8-BIT)
PORT D
PD7:0
(8-BIT)
SPI
PC7:0
(8-BIT)
V
DD
EEPROM
(256 Bytes)
WATCHDOG
TLI
OSC
LVD
OSC2
MEMORY
MCC/RTC
4
ST72311R, ST72511R, ST72512R, ST72532R
7/164
1.2 PIN DESCRIPTION Figure 2. 64-Pin TQFP Package Pinout
V
DDA
V
SSA
V
DD_3
V
SS_3
MCO / PF0
BEEP / PF1
PF2
OCMP2_A / PF3
OCMP1_A / PF4
ICAP2_A / PF5
ICAP1_A / (HS) PF6
EXTCLK_A / (HS) PF7
AIN4 / PD4
AIN5 / PD5
AIN6 / PD6
AIN7 / PD7
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ei2
ei3
ei0
ei1
PWM3 / PB0 PWM2 / PB1 PWM1 / PB2 PWM0 / PB3
ARTCLK / PB4
PB5 PB6 PB7
AIN0 / PD0 AIN1 / PD1
AIN2 / PD2 AIN3 / PD3
(HS) PE4 (HS) PE5 (HS) PE6 (HS) PE7
PA1 PA0 PC7 / SS PC6 / SCK PC5 / MOSI PC4 / MISO PC3 (HS) / ICAP1_B PC2 (HS) / ICAP2_B PC1 / OCMP1_B
PC0 / OCMP2_B V
SS_0
V
DD_0
V
SS_1
V
DD_1
PA3 PA2
V
DD
_2
OSC1
OSC2
V
SS
_2
TLIncRESET
V
PP
PA7 (HS)
PA6 (HS)
PA5 (HS)
PA4 (HS)
PE3 / CANRX
PE2 / CANTX
PE1 / RDI
PE0 / TDO
(HS) 20mA high sink capability eix associated external interrupt vector
5
ST72311R, ST72511R, ST72512R, ST72532R
8/164
PIN DESCRIPTION (Cont’d) For external pin connection guidelines, refer to Section 12 ”ELECTRICAL CHARACTERISTICS” on page
131. Legend / Abbreviations for Table 1: Type: I = input, O = output, S = supply Input level: A = Dedicated analog input In/Output level: C = CMOS 0.3VDD/0.7VDD,
CT= CMOS 0.3VDD/0.7VDDwith input trigger Output level: HS = 20mA high sink (on N-buffer only) Port and control configuration:
– Input: float = floating, wpu = weak pull-up, int = interrupt1), ana = analog
– Output: OD = open drain2), PP = push-pull Refer to Section 8 ”I/O PORTS” onpage 38 for more details on the software configuration of the I/O ports. The RESET configuration of each pin is shown in bold. This configuration is valid as long as the device is
in reset state.
Table 1. Device Pin Description
Pin n°
Pin Name
Type
Level Port
Main
function
(after
reset)
Alternate function
TQFP64
Input
Output
Input Output
float
wpu
int
ana
OD
PP
1 PE4 (HS) I/O CTHS X X X X Port E4 2 PE5 (HS) I/O C
T
HS X X X X Port E5
3 PE6 (HS) I/O C
T
HS X X X X Port E6
4 PE7 (HS) I/O C
T
HS X X X X Port E7
5 PB0/PWM3 I/O C
T
X ei2 X X Port B0 PWM Output 3
6 PB1/PWM2 I/O C
T
X ei2 X X Port B1 PWM Output 2
7 PB2/PWM1 I/O C
T
X ei2 X X Port B2 PWM Output 1
8 PB3/PWM0 I/O C
T
X ei2 X X Port B3 PWM Output 0
9 PB4/ARTCLK I/O C
T
X ei3 X X Port B4 PWM-ART External Clock
10 PB5 I/O C
T
X ei3 X X Port B5
11 PB6 I/O C
T
X ei3 X X Port B6
12 PB7 I/O C
T
X ei3 X X Port B7
13 PD0/AIN0 I/O C
T
X X X X X Port D0 ADC Analog Input 0
14 PD1/AIN1 I/O C
T
X X X X X Port D1 ADC Analog Input 1
15 PD2/AIN2 I/O C
T
X X X X X Port D2 ADC Analog Input 2
16 PD3/AIN3 I/O C
T
X X X X X Port D3 ADC Analog Input 3
17 PD4/AIN4 I/O C
T
X X X X X Port D4 ADC Analog Input 4
18 PD5/AIN5 I/O C
T
X X X X X Port D5 ADC Analog Input 5
19 PD6/AIN6 I/O C
T
X X X X X Port D6 ADC Analog Input 6
20 PD7/AIN7 I/O C
T
X X X X X Port D7 ADC Analog Input 7
21 V
DDA
S Analog Power Supply Voltage
22 V
SSA
S Analog Ground Voltage
23 V
DD_3
S Digital Main Supply Voltage
6
ST72311R, ST72511R, ST72512R, ST72532R
9/164
24 V
SS_3
S Digital Ground Voltage
25 PF0/MCO I/O C
T
X ei1 X X Port F0 Main clock output (f
OSC
/2)
26 PF1/BEEP I/O C
T
X ei1 X X Port F1 Beep signal output
27 PF2 I/O C
T
X ei1 X X Port F2
28 PF3/OCMP2_A I/O C
T
X X X X Port F3 Timer A Output Compare 2
29 PF4/OCMP1_A I/O C
T
X X X X Port F4 Timer A Output Compare 1
30 PF5/ICAP2_A I/O C
T
X X X X Port F5 Timer A Input Capture 2
31 PF6 (HS)/ICAP1_A I/O C
T
HS X X X X Port F6 Timer A Input Capture 1
32 PF7 (HS)/EXTCLK_A I/O C
T
HS X X X X Port F7 Timer A External Clock Source
33 V
DD_0
S Digital Main Supply Voltage
34 V
SS_0
S Digital Ground Voltage
35 PC0/OCMP2_B I/O C
T
X X X X Port C0 Timer B Output Compare 2
36 PC1/OCMP1_B I/O C
T
X X X X Port C1 Timer B Output Compare 1
37 PC2 (HS)/ICAP2_B I/O C
T
HS X X X X Port C2 Timer B Input Capture 2
38 PC3 (HS)/ICAP1_B I/O C
T
HS X X X X Port C3 Timer B Input Capture 1
39 PC4/MISO I/O C
T
X X X X Port C4 SPI Master In / Slave Out Data
40 PC5/MOSI I/O C
T
X X X X Port C5 SPI Master Out / Slave In Data
41 PC6/SCK I/O C
T
X X X X Port C6 SPI Serial Clock
42 PC7/SS I/O C
T
X X X X Port C7 SPI Slave Select (active low)
43 PA0 I/O C
T
X ei0 X X Port A0
44 PA1 I/O C
T
X ei0 X X Port A1
45 PA2 I/O C
T
X ei0 X X Port A2
46 PA3 I/O C
T
X ei0 X X Port A3
47 V
DD_1
S Digital Main Supply Voltage
48 V
SS_1
S Digital Ground Voltage
49 PA4 (HS) I/O C
T
HS X X X X Port A4
50 PA5 (HS) I/O C
T
HS X X X X Port A5
51 PA6 (HS) I/O C
T
HS X T Port A6
52 PA7 (HS) I/O C
T
HS X T Port A7
53 V
PP
I
Must betied low in user mode. In programming mode when available, this pin acts as the pro­gramming voltage input V
PP
. 54 RESET I/O C X X Top priority nonmaskable interrupt (active low) 55 NC Not Connected 56 NMI I C
T
X Non maskable interrupt input pin
57 V
SS_3
S Digital Ground Voltage
58 OSC2
3)
I/O
External clock mode input pull-up orcrystal/ce­ramic resonator oscillator inverter output
59 OSC1
3)
I
External clock input or crystal/ceramic resona­tor oscillator inverter input
60 V
DD_3
S Digital Main Supply Voltage
Pin n°
Pin Name
Type
Level Port
Main
function
(after
reset)
Alternate function
TQFP64
Input
Output
Input Output
float
wpu
int
ana
OD
PP
ST72311R, ST72511R, ST72512R, ST72532R
10/164
Notes:
1. In the interrupt input column, “eiX” defines the associated external interrupt vector. If the weak pull-up column (wpu) is merged with the interrupt column (int), then the I/O configuration is pull-up interrupt input, else the configuration is floating interrupt input.
2. In the open drain output column, “T” defines a true open drain I/O (P-Buffer and protection diode to V
DD
are not implemented). See Section 8 ”I/O PORTS” on page 38 and Section 12.8 ”I/O PORT PIN CHAR­ACTERISTICS” on page 145 for more details.
3. OSC1and OSC2 pins connect acrystal/ceramic resonatoror an external sourceto theon-chip oscillator see Section 1.2 ”PIN DESCRIPTION” on page 7 and Section 12.5 ”CLOCK AND TIMING CHARACTER­ISTICS” on page 138 for more details.
61 PE0/TDO I/O C
T
X X X X Port E0 SCI Transmit Data Out
62 PE1/RDI I/O C
T
X X X X Port E1 SCI Receive Data In
63 PE2/CANTX I/O C
T
X Port E2 CAN Transmit Data Output
64 PE3/CANRX I/O C
T
X X X X Port E3 CAN Receive Data Input
Pin n°
Pin Name
Type
Level Port
Main
function
(after
reset)
Alternate function
TQFP64
Input
Output
Input Output
float
wpu
int
ana
OD
PP
ST72311R, ST72511R, ST72512R, ST72532R
11/164
1.3 REGISTER & MEMORY MAP
As shown in the Figure 3, the MCU is capable of addressing 64K bytes of memories and I/O regis­ters.
The available memory locations consist of 128 bytes of register location, up to 2Kbytes of RAM, up to 256 bytes of data EEPROM and up to
60Kbytes of user program memory. The RAM space includes up to 256 bytes for the stack from 0100h to 01FFh.
The highest address bytes contain the user reset and interrupt vectors.
Figure 3. Memory Map
0000h
1024 Bytes RAM
Program Memory
(60K, 48K, 32K, 16K Bytes)
Interrupt & Reset Vectors
HW Registers
0BFFh
0080h
007Fh
0D00h
0FFFh
Reserved
2048 Bytes RAM
(see Table 2)
1000h
FFDFh FFE0h
FFFFh
(see Table 7 on page 32)
0C00h
0CFFh
Optional EEPROM
(256 Bytes)
0880h
Reserved
087Fh
Short Addressing RAM (zero page)
Stack
(256 Bytes)
16-bit Addressing
RAM
0100h
01FFh
047Fh
0080h
0200h
00FFh
or 067Fh or 087Fh
1536 Bytes RAM
16 KBytes
4000h
1000h
48 KBytes
C000h
8000h
32 KBytes
60 KBytes
FFFFh
ST72311R, ST72511R, ST72512R, ST72532R
12/164
Table 2. Hardware Register Map
Address Block
Register
Label
Register Name
Reset
Status
Remarks
0000h 0001h 0002h
Port A
PADR PADDR PAOR
Port A Data Register Port A Data Direction Register Port A Option Register
00h
1)
00h 00h
R/W R/W R/W
2)
0003h Reserved Area (1 Byte) 0004h
0005h 0006h
Port C
PCDR PCDDR PCOR
Port C Data Register Port C Data Direction Register Port C Option Register
00h
1)
00h 00h
R/W R/W R/W
0007h Reserved Area (1 Byte)
0008h 0009h 000Ah
Port B
PBDR PBDDR PBOR
Port B Data Register Port B Data Direction Register Port B Option Register
00h
1)
00h 00h
R/W R/W R/W
000Bh Reserved Area (1 Byte)
000Ch 000Dh 000Eh
Port E
PEDR PEDDR PEOR
Port E Data Register Port E Data Direction Register Port E Option Register
00h
1)
00h 00h
R/W R/W
2)
R/W
2)
000Fh Reserved Area (1 Byte) 0010h
0011h 0012h
Port D
PDDR PDDDR PDOR
Port D Data Register Port D Data Direction Register Port D Option Register
00h
1)
00h 00h
R/W R/W R/W
0013h Reserved Area (1 Byte)
0014h 0015h 0016h
Port F
PFDR PFDDR PFOR
Port F Data Register Port F Data Direction Register Port F Option Register
00h
1)
00h 00h
R/W R/W R/W
0017h
to
001Fh
Reserved Area (9 Bytes)
0020h MISCR1 Miscellaneous Register 1 00h R/W
0021h 0022h 0023h
SPI
SPIDR SPICR SPISR
SPI Data I/O Register SPI Control Register SPI Status Register
xxh 0xh 00h
R/W R/W Read Only
0024h 0025h 0026h 0027h
ITC
ISPR0 ISPR1 ISPR2 ISPR3
Interrupt Software Priority Register 0 Interrupt Software Priority Register 1 Interrupt Software Priority Register 2 Interrupt Software Priority Register 3
FFh FFh FFh FFh
R/W R/W R/W R/W
0028h Reserved Area (1 Byte)
0029h MCC MCCSR Main Clock Control / Status Register 01h R/W
ST72311R, ST72511R, ST72512R, ST72532R
13/164
002Ah 002Bh
WATCHDOG
WDGCR WDGSR
Watchdog Control Register Watchdog Status Register
7Fh
000x 000x
R/W
R/W 002Ch EEPROM EECSR Data EEPROM Control/Status Register 00h R/W
002Dh
to
0030h
Reserved Area (4 Bytes)
0031h 0032h 0033h 0034h 0035h 0036h 0037h 0038h 0039h 003Ah 003Bh 003Ch 003Dh 003Eh 003Fh
TIMER A
TACR2 TACR1 TASR TAIC1HR TAIC1LR TAOC1HR TAOC1LR TACHR TACLR TAACHR TAACLR TAIC2HR TAIC2LR TAOC2HR TAOC2LR
Timer A Control Register 2 Timer A Control Register 1 Timer A Status Register Timer A Input Capture 1 High Register Timer A Input Capture 1 Low Register Timer A Output Compare 1 High Register Timer A Output Compare 1 Low Register Timer A Counter High Register Timer A Counter Low Register Timer A Alternate Counter High Register Timer A Alternate Counter Low Register Timer A Input Capture 2 High Register Timer A Input Capture 2 Low Register Timer A Output Compare 2 High Register Timer A Output Compare 2 Low Register
00h 00h
xxh xxh
xxh 80h 00h
FFh FCh FFh FCh
xxh
xxh 80h 00h
R/W R/W Read Only Read Only Read Only R/W R/W Read Only Read Only Read Only Read Only Read Only Read Only R/W
R/W 0040h MISCR2 Miscellaneous Register 2 00h R/W
0041h 0042h 0043h 0044h 0045h 0046h 0047h 0048h 0049h 004Ah 004Bh 004Ch 004Dh 004Eh 004Fh
TIMER B
TBCR2 TBCR1 TBSR TBIC1HR TBIC1LR TBOC1HR TBOC1LR TBCHR TBCLR TBACHR TBACLR TBIC2HR TBIC2LR TBOC2HR TBOC2LR
Timer B Control Register 2 Timer B Control Register 1 Timer B Status Register Timer B Input Capture 1 High Register Timer B Input Capture 1 Low Register Timer B Output Compare 1 High Register Timer B Output Compare 1 Low Register Timer B Counter High Register Timer B Counter Low Register Timer B Alternate Counter High Register Timer B Alternate Counter Low Register Timer B Input Capture 2 High Register Timer B Input Capture 2 Low Register Timer B Output Compare 2 High Register Timer B Output Compare 2 Low Register
00h 00h
xxh xxh
xxh 80h 00h
FFh FCh FFh FCh
xxh
xxh 80h 00h
R/W R/W Read Only Read Only Read Only R/W R/W Read Only Read Only Read Only Read Only Read Only Read Only R/W R/W
0050h 0051h 0052h 0053h 0054h 0055h 0056h 0057h
SCI
SCISR SCIDR SCIBRR SCICR1 SCICR2 SCIERPR
SCIETPR
SCI Status Register SCI Data Register SCI Baud Rate Register SCI Control Register 1 SCI Control Register 2 SCI Extended Receive Prescaler Register Reserved area SCI Extended Transmit Prescaler Register
C0h
xxh
00xx xxxx
xxh 00h 00h
00h
Read Only R/W R/W R/W R/W R/W
R/W
Address Block
Register
Label
Register Name
Reset
Status
Remarks
ST72311R, ST72511R, ST72512R, ST72532R
14/164
Legend: x=undefined, R/W=read/write Notes:
1. The contents of the I/O port DR registers are readable only in output configuration. In input configura­tion, the values of the I/O pins are returned instead of the DR register contents.
2. The bits associated with unavailable pins must always keep their reset value.
0058h 0059h
Reserved Area (2 Bytes)
005Ah 005Bh 005Ch 005Dh 005Eh 005Fh 0060h
to
006Fh
CAN
CANISR CANICR CANCSR CANBRPR CANBTR CANPSR
CAN Interrupt Status Register CAN Interrupt Control Register CAN Control / Status Register CAN Baud Rate Prescaler Register CAN Bit Timing Register CAN Page Selection Register First address to Last address of CAN page X
00h 00h 00h 00h 23h 00h
R/W R/W R/W R/W R/W R/W See CAN Description
0070h 0071h
ADC
ADCDR ADCCSR
Data Register Control/Status Register
xxh 00h
Read Only R/W
0072h 0073h 0074h 0075h 0076h
0077h 0078h 0079h
PWM ART
PWMDCR3 PWMDCR2 PWMDCR1 PWMDCR0 PWMCR
ARTCSR ARTCAR ARTARR
PWM AR Timer Duty Cycle Register 3 PWM AR Timer Duty Cycle Register 2 PWM AR Timer Duty Cycle Register 1 PWM AR Timer Duty Cycle Register 0 PWM AR Timer Control Register
Auto-Reload Timer Control/Status Register Auto-Reload Timer Counter Access Register Auto-Reload Timer Auto-Reload Register
00h 00h 00h 00h 00h
00h 00h 00h
R/W R/W R/W R/W R/W
R/W R/W R/W
007Ah
to
007Fh
Reserved Area (6 Bytes)
Address Block
Register
Label
Register Name
Reset
Status
Remarks
ST72311R, ST72511R, ST72512R, ST72532R
15/164
2 EPROM PROGRAM MEMORY
The program memory of the OTP and EPROM de­vices can be programmed with EPROM program­ming tools available from STMicroelectronics
EPROM Erasure
EPROM devices are erased by exposure to high intensity UV light admitted through the transparent window. This exposure discharges the floating gate to its initial state through induced photo cur­rent.
It is recommended that the EPROM devices be kept out of direct sunlight, since the UV content of
sunlight can be sufficient to cause functional fail­ure. Extended exposure to room level fluorescent lighting may also cause erasure.
An opaque coating (paint, tape, label, etc...) should be placed over the package window if the product is to be operated under these lighting con­ditions. Covering the window also reduces IDDin power-saving modes due to photo-diode leakage currents.
ST72311R, ST72511R, ST72512R, ST72532R
16/164
3 DATA EEPROM
3.1 INTRODUCTION
The Electrically Erasable Programmable Read Only Memory can be used as a non volatile back­up for storing data. Using theEEPROM requires a basic access protocol described in this chapter.
3.2 MAIN FEATURES
Up to 16 Bytes programmed in the same cycle
EEPROM mono-voltage (charge pump)
Chained erase and programming cycles
Internal control of the global programming cycle
duration
End of programming cycle interrupt flag
WAIT mode management
Figure 4. EEPROM Block Diagram
EECSR
EEPROM INTERRUPT
FALLING
EDGE
HIGH VOLTAGE
PUMP
IE LAT00000 PGM
EEPROMRESERVED
DETECTOR
EEPROM
MEMORY MATRIX
(1 ROW = 16 x 8 BITS)
ADDRESS
DECODER
DATA
MULTIPLEXER
16 x 8 BITS
DATA LATCHES
ROW
DECODER
DATA BUS
4
4
4
128128
ADDRESS BUS
ST72311R, ST72511R, ST72512R, ST72532R
17/164
DATA EEPROM (Cont’d)
3.3 MEMORY ACCESS
The Data EEPROM memory read/write access modes are controlled by the LAT bit of the EEP­ROM Control/Status register (EECSR). The flow­chart in Figure 5 describes these different memory access modes.
Read Operation (LAT=0)
The EEPROM can be read asa normal ROM loca­tion when the LAT bit of the EECSR register is cleared. In a read cycle, the byte to be accessed is put on the data bus in less than 1 CPU clock cycle. This means that reading data from EEPROM takes the same time as reading data from EPROM, but this memory cannot be used to exe­cute machine code.
Write Operation (LAT=1)
To access the write mode, the LAT bit has to be set by software (the PGM bit remains cleared). When a write access to the EEPROM area occurs, the value is latched inside the 16 data latches ac­cording to its address.
When PGM bit is set by the software, all the previ­ous bytes written in the data latches (up to 16) are programmed in the EEPROM cells. The effective high address (row) is determined by the last EEP­ROM write sequence. To avoid wrong program­ming, the user must take care that all the bytes written between two programming sequences have the same high address: only the four Least Significant Bits of the address can change.
At the end of the programming cycle, the PGM and LAT bits are cleared simultaneously, and an inter­rupt is generated if the IE bitis set. The Data EEP­ROM interrupt request is cleared by hardware when the Data EEPROM interrupt vector is fetched.
Note: Care should be taken during the program­ming cycle. Writing to the same memory location will over-program the memory (logical AND be­tween the two write access data result) because the data latches are only cleared at the end of the programming cycle and by the falling edge of LAT bit. It is not possible to read the latched data. This note is ilustrated by the Figure 6.
Figure 5. Data EEPROM Programming Flowchart
READ MODE
LAT=0
PGM=0
WRITE MODE
LAT=1
PGM=0
READ BYTES
IN EEPROM AREA
WRITE UP TO 16 BYTES
IN EEPROM AREA
(with the same 12 MSB of the address)
START PROGRAMMING CYCLE
LAT=1
PGM=1 (set by software)
LAT
INTERRUPT GENERATION
IF IE=1 0 1
CLEARED BY HARDWARE
ST72311R, ST72511R, ST72512R, ST72532R
18/164
DATA EEPROM (Cont’d)
3.4 POWER SAVING MODES Wait mode
The DATA EEPROM can enter WAIT mode on ex­ecution of the WFI instruction of the microcontrol­ler. The DATA EEPROM will immediately enter this mode if there is no programming in progress, otherwise the DATA EEPROM will finish the cycle and then enter WAIT mode.
Halt mode
The DATA EEPROM immediatly enters HALT mode if themicrocontroller executes the HALT in­struction. Therefore the EEPROM will stop the function in progress, and data may be corrupted.
3.5 ACCESS ERROR HANDLING
If a readaccess occurs while LAT=1, thenthe data bus will not be driven.
If a write access occurs while LAT=0, then the data on the bus will not be latched.
If a programming cycle is interrupted(by software/ RESET action), the memory data will not be guar­anteed.
Figure 6. Data EEPROM Programming Cycle
LAT
ERASE CYCLE WRITE CYCLE
PGM
t
PROG
READ OPERATION NOT POSSIBLE
WRITE OF
DATA LATCHES
READ OPERATION POSSIBLE
INTERNAL PROGRAMMING VOLTAGE
EEPROM INTERRUPT
ST72311R, ST72511R, ST72512R, ST72532R
19/164
DATA EEPROM (Cont’d)
3.6 REGISTER DESCRIPTION CONTROL/STATUS REGISTER (CSR)
Read/Write Reset Value: 0000 0000 (00h)
Bit 7:3 = Reserved, forced by hardware to 0.
Bit 2 = IE
Interrupt enable
Thisbitisset andclearedby software. Itenablesthe Data EEPROM interrupt capability when the PGM bit is cleared byhardware. The interrupt request is automatically cleared when thesoftware enters the interrupt routine. 0: Interrupt disabled 1: Interrupt enabled
Bit 1 = LAT
Latch Access Transfer
This bit is set by software. It is cleared by hard­ware at the end of the programming cycle. It can only be cleared by software if PGM bit is cleared. 0: Read mode 1: Write mode
Bit 0 = PGM
Programming control and status
Thisbitis set bysoftwaretobegin theprogramming cycle. At the end of the programming cycle, this bit isclearedbyhardwareandaninterruptisgenerated if the ITE bit is set. 0: Programming finished or not yet started 1: Programming cycle is in progress
Note: if the PGM bit is cleared during the program­ming cycle, the memory data is not guaranteed
Table 3. DATA EEPROM Register Map and Reset Values
70
00000IELATPGM
Address
(Hex.)
Register
Label
76543210
002Ch
EECSR
Reset Value
00000IE0
RWM
0
PGM
0
ST72311R, ST72511R, ST72512R, ST72532R
20/164
4 CENTRAL PROCESSING UNIT
4.1 INTRODUCTION
This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-bit data manipulation.
4.2 MAIN FEATURES
Enable executing 63 basic instructions
Fast 8-bit by 8-bit multiply
17 main addressing modes (with indirect
addressing mode)
Two 8-bit index registers
16-bit stack pointer
Low power HALT and WAIT modes
Priority maskable hardware interrupts
Non-maskable software/hardware interrupts
4.3 CPU REGISTERS
The 6 CPU registers shown in Figure 7 are not present in the memory mapping andare accessed by specific instructions.
Accumulator (A)
The Accumulator is an 8-bit general purpose reg­ister used to hold operands and the results of the arithmetic and logic calculations and to manipulate data.
Index Registers (X and Y)
These 8-bit registers are used to create effective addresses or as temporary storage areas for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to indicate that the fol­lowing instruction refers to the Y register.)
The Y register is not affected by theinterrupt auto­matic procedures.
Program Counter (PC)
The programcounter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program CounterLow which is the LSB) and PCH (Program Counter High which is the MSB).
Figure 7. CPU Registers
ACCUMULATOR
X INDEX REGISTER
Y INDEX REGISTER
STACK POINTER
CONDITION CODE REGISTER
PROGRAM COUNTER
70
1C1I1HI0NZ
RESET VALUE = RESET VECTOR @ FFFEh-FFFFh
70
70
70
0
715 8
PCH
PCL
15
87 0
RESET VALUE = STACKHIGHER ADDRESS
RESET VALUE =
1X11X1XX
RESET VALUE = XXh
RESET VALUE = XXh
RESET VALUE= XXh
X = Undefined Value
ST72311R, ST72511R, ST72512R, ST72532R
21/164
CENTRAL PROCESSING UNIT (Cont’d) Condition Code Register (CC)
Read/Write Reset Value: 111x1xxx
The 8-bit Condition Code register contains the in­terrupt masks and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP in­structions.
These bits can be individually tested and/or con­trolled by specific instructions.
Arithmetic management bits
Bit 4 = H
Half carry
.
This bit is set by hardware whena carry occurs be­tween bits 3 and 4 of the ALU during an ADD or ADC instructions. It is reset by hardware during the same instructions.
0: No half carry has occurred. 1: An half carry has occurred.
This bit is tested using the JRH or JRNH instruc­tion. The H bit is useful in BCD arithmetic subrou­tines.
Bit 2 = N
Negative
.
This bit is set and cleared by hardware. It is repre­sentative of the result sign of the last arithmetic, logical or data manipulation. It’s a copy of the re­sult 7thbit. 0: Theresult of the last operation ispositive or null. 1: The result of the last operation is negative
(i.e. the most significant bit is a logic 1).
This bit is accessed by the JRMI and JRPLinstruc­tions.
Bit 1 = Z
Zero
.
This bit is set and cleared by hardware. This bit in­dicates that the result of the last arithmetic, logical or data manipulation is zero. 0: The result of the last operation is different from
zero.
1: The result of the last operation is zero. This bit is accessed by the JREQ and JRNE test
instructions. Bit 0 = C
Carry/borrow.
This bit is set and cleared by hardware and soft­ware. It indicates an overflow or an underflow has occurred during the last arithmetic operation. 0: No overflow or underflow has occurred. 1: An overflow or underflow has occurred.
This bit is driven by the SCF and RCF instructions and tested by theJRC and JRNC instructions. It is also affected by the “bit test and branch”, shift and rotate instructions.
Interrupt management bits
Bit 5,3 = I1, I0
Interrupt.
The combination of the Iand I0 bits gives the cur­rent interrupt software priority.
These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software pri­ority registers (IxSPR). They can be also set/ cleared by software with the RIM, SIM, IRET, HALT, WFI and PUSH/POP instructions.
See the interrupt management chapter for more details.
70
11I1HI0NZ
C
Interrupt SoftwarePriority I1 I0
Level 0 (main) 1 0 Level 1 0 1 Level 2 0 0 Level 3 (= interrupt disable) 1 1
ST72311R, ST72511R, ST72512R, ST72532R
22/164
CENTRAL PROCESSING UNIT (Cont’d) Stack Pointer (SP)
Read/Write Reset Value: 01 FFh
The Stack Pointer is a 16-bit register which is al­ways pointing to the next free location in the stack. It is then decremented after data has been pushed onto the stack and incremented before data is popped from the stack (see Figure 8).
Since the stack is 256 bytes deep, the 8 most sig­nificant bits are forced by hardware. Following an MCU Reset, or after a Reset Stack Pointer instruc­tion (RSP), the Stack Pointer contains its reset val­ue (the SP7 to SP0 bits are set) which is the stack higher address.
The least significant byte of the Stack Pointer (called S) can be directly accessed by a LD in­struction.
Note: When the lower limit is exceeded, the Stack Pointer wraps around to the stackupper limit, with­out indicating the stack overflow. The previously stored information is then overwritten and there­fore lost.The stack also wraps in caseof anunder­flow.
The stack is used to save the return address dur­ing a subroutine call and the CPU context during an interrupt. The user may also directly manipulate the stack by means of the PUSH and POP instruc­tions. In the case of an interrupt, the PCL is stored at the first location pointed to by the SP. Then the other registers are stored in the next locations as shown in Figure 8
– When an interrupt is received, the SP is decre-
mented and the context is pushed on the stack.
– On return frominterrupt, the SP is incremented
and the context is popped from the stack.
A subroutine call occupies twolocations and an in­terrupt five locations in the stack area.
Figure 8. Stack Manipulation Example
15 8
00000001
70
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0
PCH
PCL
SP
PCH PCL
SP
PCL
PCH
X
A
CC
PCH
PCL
SP
PCL
PCH
X
A
CC
PCH
PCL
SP
PCL
PCH
X
A
CC
PCH PCL
SP
SP
Y
CALL
Subroutine
Interrupt
Event
PUSH Y POP Y IRET
RET
or RSP
@ 01FFh
@ 0100h
Stack Higher Address = 01FFh Stack Lower Address =
0100h
ST72311R, ST72511R, ST72512R, ST72532R
23/164
5 SUPPLY, RESET AND CLOCK MANAGEMENT
The ST72311R, ST72511R, ST72512R and ST72532R microcontrollers include a range of util­ity features for securing the application in critical situations (for example in case of a power brown­out), and reducing the number of external compo­nents. An overview is shown in Figure 9.
Main features
Main supply low voltage detection (LVD)
RESET Manager (RSM)
Low consumption resonator oscillator
Figure 9. Clock, RESET, Option and Supply Management Overview
f
OSC
LOW VOLTAGE
DETECTOR
(LVD)
FROM
WATCHDOG
PERIPHERAL
OSC2
OSC1
RESET
V
DD
V
SS
OSCILLATOR
RESET
TO
MAIN CLOCK
CONTROLLER
ST72311R, ST72511R, ST72512R, ST72532R
24/164
5.1 LOW VOLTAGE DETECTOR (LVD)
To allow the integration of power management features in theapplication, the Low Voltage Detec­tor function (LVD) generates a static reset when the VDDsupply voltage is below a V
IT-
reference value. This means that it secures the power-up as well as the power-down keeping the ST7 in reset.
The V
IT-
referencevalue for a voltage drop is lower
than the V
IT+
referencevalue for power-on in order to avoida parasitic reset when theMCU starts run­ning and sinks current on the supply (hysteresis).
The LVD Reset circuitry generates a reset when VDDis below:
–V
IT+
when VDDis rising
–V
IT-
when VDDis falling
The LVD function is illustrated in Figure 10. Provided the minimum VDDvalue (guaranteed for
the oscillator frequency) is below V
IT-
, the MCU
can onlybe in two modes:
– under full software control – in static safe reset
In these conditions, secure operation is always en­sured for the application without the need for ex­ternal reset hardware.
During a Low Voltage Detector Reset, the RESET pin is held low, thus permitting the MCU to reset other devices.
Notes: The LVD allows the device to be used without any
external RESET circuitry. The LVD is an optional function which can be se-
lected whenordering the device (ordering informa­tion).
Figure 10. Low Voltage Detector vs Reset
V
DD
V
IT+
RESET
V
IT-
V
hys
ST72311R, ST72511R, ST72512R, ST72532R
25/164
5.2 RESET SEQUENCE MANAGER (RSM)
5.2.1 Introduction
The reset sequence manager includes three RE­SET sources as shown in Figure 12:
External RESET source pulse
Internal LVD RESET (Low Voltage Detection)
Internal WATCHDOG RESET
These sources act on the RESET pin and it is al­ways kept low during the delay phase.
The RESET service routine vector is fixed at ad­dresses FFFEh-FFFFh in the ST7 memory map.
The basic RESET sequence consists of 3 phases as shown in Figure11:
Delay depending on the RESET source
4096 CPU clock cycle delay
RESET vector fetch
The 4096 CPU clock cycle delay allows the oscil­lator to stabilise and ensures that recovery has taken place from the Reset state.
The RESET vector fetch phase duration is 2 clock cycles.
Figure 11. RESET Sequence Phases
Figure 12. Reset Block Diagram
RESET
DELAY
INTERNAL RESET
4096 CLOCKCYCLES
FETCH
VECTOR
f
CPU
COUNTER
RESET
R
ON
V
DD
WATCHDOG RESET
LVD RESET
INTERNAL RESET
ST72311R, ST72511R, ST72512R, ST72532R
26/164
RESET SEQUENCE MANAGER (Cont’d)
5.2.2 Asynchronous External RESET pin
The RESET pin is both an input andan open-drain output with integrated RONweak pull-up resistor. This pull-up has no fixed value but varies in ac­cordance with the input voltage. It can be pulled low by external circuitry to reset the device. See electrical characteristics section for more details.
A RESET signal originating from an external source must have a duration of atleast t
h(RSTL)in
in order to berecognized as shown in Figure 13. This detection is asynchronous and therefore the MCU can enterreset state even in HALT mode.
The RESET pin is an asynchronous signal which plays a major role in EMS performance. In a noisy environment, it is recommended to follow the guidelines mentioned in the electrical characteris­tics section.
5.2.3 Internal Low Voltage Detection RESET
Two different RESET sequences caused by the in­ternal LVD circuitry can be distinguished:
Power-On RESET
Voltage Drop RESET
The device RESET pin acts as an output that is pulled low when VDD<V
IT+
(rising edge) or
VDD<V
IT-
(falling edge)as shown in Figure 13.
The LVD filters spikes on VDDlarger than t
g(VDD)
to
avoid parasitic resets.
5.2.4 Internal WatchdogRESET
The RESET sequence generated by a internal Watchdog counter overflow is shown in Figure 13.
Starting fromthe Watchdog counter underflow, the device RESET pin acts as an output that is pulled low during t
w(RSTL)out
.
CAUTION: this output signal as not enought ener­gy to be used to drive external devices.
Figure 13. RESET Sequences
V
DD
RUN
RESET PIN
EXTERNAL
WATCHDOG
DELAY
V
IT+
V
IT-
t
h(RSTL)in
RUN
DELAY
WATCHDOG UNDERFLOW
t
w(RSTL)out
RUN
DELAY
RUN
RESET
RESET SOURCE
SHORT EXT.
RESET
LVD
RESET
WATCHDOG
RESET
INTERNAL RESET (4096T
CPU
)
FETCH VECTOR
ST72311R, ST72511R, ST72512R, ST72532R
27/164
5.3 LOW CONSUMPTION OSCILLATOR
The f
OSC
main clock of the ST7 can be generated
by two different source types:
an external source
a crystal or ceramic resonator oscillators
The associated hardware configuration are shown in Table 4. Refer to the electrical characteristics section for more details.
External Clock Source
In this external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC1pin while the OSC2 pinis tied to ground.
Crystal/Ceramic Oscillator
This oscillator (based on constant current source) is optimized in terms of consumption and has the advantage of producing a very accurate rate on the main clock of the ST7. When using this oscillator, the resonator and the load capacitances have to be connected as shown in Table 4 and have to be mounted as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time.
This oscillator is not stopped during the RESET phase to avoid losing time in the oscillator start-up phase.
These oscillators are not stopped during the RESET phase to avoid losing time in the oscillator start-up phase.
Table 4. ST7 Clock Sources
Hardware Configuration
External ClockCrystal/Ceramic Resonators
OSC1 OSC2
EXTERNAL
ST7
SOURCE
V
DD
R
OBP
OSC1 OSC2
LOAD
CAPACITORS
ST7
C
L2
C
L1
ST72311R, ST72511R, ST72512R, ST72532R
28/164
6 INTERRUPTS
6.1 INTRODUCTION
The ST7 enhanced interrupt management pro­vides the following features:
Hardware interrupts
Software interrupt (TRAP)
Nested or concurrent interrupt management
with flexible interrupt priority and level management:
– Up to 4 software programmable nesting levels – Up to 16 interrupt vectors fixed by hardware – 3 non maskable events: TLI, RESET, TRAP
This interrupt management is based on: – Bit 5 and bit 3 of the CPU CC register (I1:0), – Interrupt software priority registers (ISPRx), – Fixed interrupt vector addresses located at the
high addresses of the memory map (FFE0h to FFFFh) sorted by hardware priority order.
This enhanced interrupt controller guarantees full upward compatibility with the standard (not nest­ed) ST7 interrupt controller.
6.2 MASKING AND PROCESSING FLOW
The interrupt masking is managed by the I1and I0 bits of the CC register and the ISPRx registers which give the interrupt software priority level of each interrupt vector (see Table 5). The process­ing flow is shown in Figure 14
When an interrupt request has to be serviced: – Normal processing is suspended at the end of
the current instruction execution.
– The PC, X, A and CC registers are saved onto
the stack.
– I1 and I0 bits of CC register are set according to
the corresponding values in the ISPRx registers of the serviced interrupt vector.
– ThePC isthen loadedwith the interrupt vector of
the interrupt to service and the first instruction of the interrupt service routine is fetched (refer to “Interrupt Mapping” table for vector addresses).
The interrupt service routine should end with the IRET instruction which causes the contents of the saved registers to be recovered from the stack.
Note: As a consequence of the IRET instruction, the I1 and I0 bits will be restored from the stack and the program in the previous level will resume.
Table 5. Interrupt Software Priority Levels
Figure 14. Interrupt Processing Flowchart
Interrupt software priority Level I1 I0
Level 0 (main) Low
High
10 Level 1 0 1 Level 2 0 0 Level 3 (= interrupt disable) 1 1
“IRET”
RESTORE PC,X, A,CC
STACK PC, X, A, CC
LOAD I1:0 FROM INTERRUPT SW REG.
FETCH NEXT
RESET
TLI
PENDING
INSTRUCTION
I1:0
FROM STACK
LOAD PC FROM INTERRUPT VECTOR
Y
N
Y
N
Y
N
Interrupt has the same or a
lower software priority
THE INTERRUPT
STAYS PENDING
than current one
Interrupt has a higher
software priority
than current one
EXECUTE
INSTRUCTION
INTERRUPT
ST72311R, ST72511R, ST72512R, ST72532R
29/164
INTERRUPTS (Cont’d) Servicing Pending Interrupts
As several interrupts can be pending at the same time, theinterrupt to be taken into account is deter­mined by the following two-step process:
– the highestsoftware priority interrupt is serviced, – if several interrupts have the same software pri-
ority thenthe interrupt with the highest hardware priority is serviced first.
Figure 15 describes this decision process.
Figure 15. Priority Decision Process
When an interrupt request is not serviced immedi­ately, it is latched and then processed when its software priority combined with the hardware pri­ority becomes the highest one.
Note 1: The hardware priority is exclusive while the software one is not. This allows the previous process to succeed with only one interrupt. Note 2: RESET, TRAP and TLI are non maskable and they can be considered as having the highest software priority in the decision process.
Different Interrupt Vector Sources
Two interrupt source types are managed by the ST7 interrupt controller: the non-maskable type (RESET, TLI, TRAP) and the maskable type (ex­ternal or from internal peripherals).
Non-Maskable Sources
These sources are processed regardless of the state of the I1 and I0 bits of the CC register (see Figure 14). After stacking the PC, X, A and CC registers (except for RESET), the corresponding vector is loaded in the PC register and the I1 and
I0 bits of the CC are set to disable interrupts (level
3). These sources allow the processor to exit HALT mode.
TLI (Top Level Hardware Interrupt)
This hardware interrupt occurs when a specific edge is detected on the dedicated TLI pin. Its de­tailed specification is given in the Miscellaneous register chapter.
TRAP (Non Maskable Software Interrupt)
This software interrupt is serviced when the TRAP instruction is executed. It will be serviced accord­ing to the flowchart on Figure 14 as a TLI.
RESET
The RESET source has the highest priority in the ST7. This means that the first current routine has the highest software priority (level 3) and thehigh­est hardware priority. See the RESET chapter for more details.
Maskable Sources
Maskable interrupt vector sourcescan be serviced if the corresponding interrupt is enabled and if its own interrupt software priority (in ISPRx registers) is higher than the one currently being serviced (I1 and I0 in CC register). If any of these two condi­tions is false, the interrupt is latched and thus re­mains pending.
External Interrupts
External interrupts allow the processor to exit from HALT low power mode. External interrupt sensitivity is softwareselectable through the Miscellaneous registers (MISCRx). External interrupt triggeredon edge will be latched and the interrupt request automatically cleared upon entering the interrupt service routine. If several input pins of a group connected to the same interrupt line are selected simultaneously, these will be logically ORed.
Peripheral Interrupts
Usually the peripheral interrupts cause the MCU to exit from HALT mode except those mentioned in the “Interrupt Mapping” table. A peripheral interrupt occurs when a specific flag is set in the peripheral status registers and if the corresponding enable bit is set in the peripheral control register. The general sequence for clearing an interrupt is based on an access to the status register followed by a read or write to an associated register. Note: The clearing sequence resets the internal latch. A pending interrupt (i.e. waiting for being serviced) will therefore be lost if the clear se­quence is executed.
PENDING
SOFTWARE
Different
INTERRUPTS
Same
HIGHESTHARDWARE PRIORITY SERVICED
PRIORITY
HIGHEST SOFTWARE PRIORITY SERVICED
ST72311R, ST72511R, ST72512R, ST72532R
30/164
INTERRUPTS (Cont’d)
6.3 INTERRUPTS AND LOW POWER MODES
All interrupts allow the processor to exit the WAIT low power mode. On the contrary, only external and other specified interrupts allow the processor to exit the HALT modes (see column “Exit from HALT” in“Interrupt Mapping” table). When several pending interrupts are present while exiting HALT mode, the first one serviced can only be an inter­rupt with exit from HALT mode capability and it is selected through the same decision process shown in Figure 15
Note: If an interrupt, that is not able to Exit from HALT mode, is pending with the highest priority when exiting HALT mode, this interrupt is serviced after the first one serviced.
6.4 CONCURRENT & NESTED MANAGEMENT
The following Figure 16 and Figure 17 show two different interrupt management modes. The first is called concurrent mode and does not allow an in­terrupt to be interrupted, unlike the nested mode in Figure 17 The interrupt hardware priority is given in this order from the lowest to the highest: MAIN, IT4, IT3, IT2, IT1, IT0,TLI. The software priority is given for each interrupt.
Warning: A stack overflow may occur without no­tifying the software of the failure.
Figure 16. Concurrent interrupt management
Figure 17. Nested interrupt management
MAIN
IT4
IT2
IT1
TLI
IT1
MAIN
IT0
I1
HARDWARE PRIORITY
SOFTWARE
3 3 3 3 3 3/0
3
11 11 11 11 11
11 / 10
11
RIM
IT2
IT1
IT4
TLI
IT3
IT0
IT3
I0
10
PRIORITY LEVEL
USED STACK = 10 BYTES
MAIN
IT2
TLI
MAIN
IT0
IT2
IT1
IT4
TLI
IT3
IT0
HARDWARE PRIORITY
3 2 1 3 3 3/0
3
11 00 01 11 11
11
RIM
IT1
IT4 IT4
IT1
IT2
IT3
I1 I0
11 / 10 10
SOFTWARE PRIORITY LEVEL
USED STACK = 20 BYTES
Loading...
+ 134 hidden pages