SGS Thomson Microelectronics ST72F324K6T6, ST72F324K6, ST72F324K2, ST72F324J6T6, ST72F324J6 Datasheet

...
Rev. 1.9
August 2003 1/161
ST72324
8-BIT MCU WITH NESTED INTERRUPTS, FLASH, 10-BIT ADC ,
4 TIMERS, SPI, SCI INTERFACE
Memories
Flash) or ROM with read-out protection capa­bility. In-Application Programming and In-
Circuit Programming for HDFlash devices – 384 to 1K bytes RAM – HDFlash endurance: 100 cycles, data reten-
tion: 20 years at 55°C
Clock , Res et And Supply Manag e m ent
– Enhanced low voltage supervisor (LVD) for
main supply with 3 programmable reset
thresholds and auxiliary voltage detector
(AVD) with interrupt capability – Clock sources: crystal/ceramic res onator os-
cillators , internal RC osci llator, clock secu rity
system and bypass for external clock – PLL for 2x frequency multiplication – Four Power Saving Modes: Halt, Active-Halt,
Wait and Slow
Interrupt Management
– Nested interrupt controller – 10 interrupt vectors plus TRAP and RESET – 9/6 external interrupt lines (on 4 vectors)
Up to 32 I/O Ports
– 32/24 multifunctional bidirectional I/O lines – 22/17 alternate function lines – 12/10 high sink outputs
4 Timers
– Main Clock Controller with: Real time base,
Beep and Clock-out capab ilities – Configurable watchdog timer – 16-bit Timer A w ith: 1 input capt ure, 1 output
compare, external clock input, PWM and
pulse generator modes – 16-bit Timer B with: 2 input captures, 2 output
compares, PWM and pulse generator modes
2 Communication Interfaces
– SPI synchronous serial interface – SCI asynchronous serial interface (LIN com-
patible)
1 Analog Peripheral
– 10-bit ADC with up to 12 input pins
Instruction Set
– 8-bit Data Manipulation – 63 Basic Instructions – 17 main Addressing Modes – 8 x 8 Unsigned Multiply Instruction
Development Tools
– Full hardware/software development package – In-Circuit Testing capability
Device Summary
TQFP44
10 x 10
SDIP42 600 mil
SDIP32 400 mil
TQFP32
7 x 7
Features ST72324(J/K)6 ST72324(J/K)4 ST72324(J/K)2
Program memory - bytes 32K 16K 8K RAM (stack) - byte s 1024 (256) 512 (256) 384 (256) Operat i ng V ol tage 3.8V to 5.5V (l ow volta ge Flash version planned with 3.0 to 3.6V range) Temp. Range (ROM) up to -40°C to +125°C Temp. Range (Fla sh) up to -40 °C to +125°C -40°C t o +85 °C Packages SDIP42 ( JxB), TQF P 44 10x10 (J xT),SDI P 32 (K xB), TQ FP32 7x7 (Kx T )
1
Table of Cont ents
161
2/161
1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 REGISTER & MEMORY MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4 FLASH PROGRAM MEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.1 Read-out Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 ICC INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 ICP (IN-CIRCUIT PROGRAMMING) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6 IAP (IN-APPLICATION PROGRAMMING) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.7 RELATED DOCUMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.7.1 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 CENTRAL PROCESSING UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 CPU REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6 SUPPLY, RESET AND CLOCK MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.1 PHASE LOCKED LOOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 MULTI-OSCILLATOR (MO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3 RESET SEQUENCE MANAGER (RSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3.2 As ynchronous External RES ET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3.3 External Power-On RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3.4 Internal Low Voltage Detector (LVD) RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3.5 Inte rnal Watchdog RE SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.4 SYSTEM INTEGRITY MANAGEMENT (SI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.4.1 Low Voltage Detector (LVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.4.2 Aux iliary Voltage Detector (AVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.4.3 Clock Security System (CSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4.5 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 MASKING AND PROCESSING FLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.3 INTERRUPTS AND LOW POWER MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.4 CONCURRENT & NESTED MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.5 INTERRUPT REGISTER DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.6 EXTERNAL INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.6.1 I/O Port Interrupt Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.7 EXTERNAL INTERRUPT CONTROL REGISTER (EICR) . . . . . . . . . . . . . . . . . . . . . . . 38
8 POWER SAVING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.2 SLOW MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2
Table of Cont ents
3/161
8.3 WAIT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1
8.4 ACTIVE-HALT AND HALT MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.4.1 ACTIVE-HALT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.4.2 HALT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9 I/O PORTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.2 FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.2.1 I nput Mode s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.2.2 Output Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.2.3 Alternate Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.3 I/O PORT IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.4 LOW POWER MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.5 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.5.1 I/O Port Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10 ON-CHIP PERIPHERALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.1 WATCHDOG TIMER (WDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.1.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.1.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.1.4 How to Program the Watchdog Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.1.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.1.6 Hardware Watchdog Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.1.7 Using Halt Mode with the WDG (WDGHALT option) . . . . . . . . . . . . . . . . . . . . . . . 54
10.1.8 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.1.9 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.2 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK AND BEEPER (MCC/RTC) . 56
10.2.1 Programmable CPU Clock Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.2.2 Clock-out Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.2.3 Real Time Clock Timer (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.2.4 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.2.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.2.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.2.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.3 16-BIT TIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.3.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.3.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
10.3.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
10.3.6 Summary of Timer modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
10.3.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
10.4 SERIAL PERIPHERAL INTERFACE (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.4.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.4.3 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.4.4 Clock Phase and Clock Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.4.5 Error Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
1
Table of Cont ents
161
4/161
10.4.6 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.4.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.4.8 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
10.5 SERIAL COMMUNICATIONS INTERFACE (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.5.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.5.3 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.5.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
10.5.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
10.5.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
10.5.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
10.6 10-BIT A/D CONVERTER (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10.6.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10.6.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.6.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.6.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.6.6 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
11 INSTRUCTION SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
11.1 CPU ADDRESSING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
11.1.1 Inherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.1.2 Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.1.3 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.1.4 Indexed (No Offset, Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.1.5 Indirect (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.1.6 Indirect Indexed (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11.1.7 Relative mode (Direct, Indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11.2 INSTRUCTION GROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
12 ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
12.1 PARAMETER CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
12.1.1 Minimum and Maximum v alues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
12.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
12.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
12.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
12.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
12.2 ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
12.2.1 Voltage Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
12.2.2 Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
12.2.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
12.3 OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
12.3.1 General Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
12.3.2 General Operating Conditions for low voltage Flash devices (planned) . . . . . . . . 116
12.3.3 Operating Conditions with Low Voltage Detector (LVD) . . . . . . . . . . . . . . . . . . . . 117
12.3.4 Auxiliary Voltage Detector (AVD) Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
12.4 SUPPLY CURRENT CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
12.4.1 RUN and SLOW Modes (Flash devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
12.4.2 WAIT and SLOW WAIT Modes (Flash devices) . . . . . . . . . . . . . . . . . . . . . . . . . . 120
1
Table of Cont ents
5/161
12.4.3 RUN and SLOW Modes (ROM devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
12.4.4 WAIT and SLOW WAIT Modes (ROM devices) . . . . . . . . . . . . . . . . . . . . . . . . . . 121
12.4.5 HALT and ACTIVE-HALT Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
12.4.6 Supply and Clock Managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
12.4.7 On-Chip Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
12.5 CLOCK AND TIMING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
12.5.1 General Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
12.5.2 External Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
12.5.3 Crystal and Ceramic Resonat or Os cillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
12.5.4 RC Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
12.5.5 Clock Security System (CSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
12.5.6 PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
12.6 MEMORY CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
12.6.1 RAM and Hardware Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
12.6.2 FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
12.7 EMC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
12.7.1 Functional EMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
12.7.2 Electro Magnetic Interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
12.7.3 Absolute Electrical Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
12.7.4 ESD Pin Protection Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
12.8 I/O PORT PIN CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
12.8.1 General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
12.8.2 Output Driving Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
12.9 CONTROL PIN CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
12.9.1 Asynchronous RESET Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
12.9.2 ICCSEL/VPP Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
12.10 TIMER PERIPHERAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
12.10.116-Bit Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
12.11 COMMUNICATION INTERFACE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . 140
12.11.1SPI - Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
12.12 10-BIT ADC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
12.12.1Analog Power Supply and Reference Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
12.12.2General PCB Design Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
12.12.3ADC Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
13 PACKAGE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
13.1 PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
13.2 THERMAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
13.3 SOLDERING AND GLUEABILITY INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
14 ST72324 DEVICE CONFIGURATION AND ORDERING INFORMATION . . . . . . . . . . . . . . . 149
14.1 FLASH OPTION BYTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
14.2 DEVICE ORDERING INFORMATION AND TRANSFER OF CUSTOMER CODE . . . . 151
14.2.1 Version-Specific Sales Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
14.3 DEVELOPMENT TOOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
14.3.1 Socket and Emulator Adapter Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
14.4 ST7 APPLICATION NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
15 IMPORTANT NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
1
Table of Cont ents
6/161
15.1 SILICON IDENTIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
15.2 ALL FLASH AND ROM DEVICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
15.2.1 External RC option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
15.2.2 CSS Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
15.2.3 Safe Connection of OSC1/OSC2 P ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
15.2.4 Unexpected Reset Fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
15.2.5 Internal RC Oscillator with LVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
15.2.6 16-bit Timer PWM Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
15.3 FLASH REV “X” AND ALL ROM DEVICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
15.3.1 Read-out protection with LVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
15.3.2 External clock source with PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
15.3.3 I/O Port A and F Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
15.3.4 LVD Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
15.4 ALL ROM DEVICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
15.4.1 AVD not supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
15.4.2 Internal RC oscillator operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
16 SUMMARY OF CHANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
1
To obtain the most recent version of this datasheet,
please check at www.st.com>products>technical literature>datasheet. Please also pay special attention to the Section “IMPORTANT NOTES” on page 157
ST72324
7/161
1 INTRODUCTION
The ST72324K and ST 72324J devices are mem­bers of the ST7 microcontroller family. They can be grouped as follows:
– The 32-pin ST72324K devices are designed for
mid-range applications
– The 42/44-pin ST723 24J devices target the
same range of applications requiring more than 24 I/O ports.
All devices are based on a common industry­standard 8-bit core, featuring an enhanced instruc-
tion set and are available with FLASH or ROM pro­gram memory.
Under software control, all devices c an be p laced in WAIT, SLOW, ACTIVE-HALT or HALT mode, reducing power consumption when the application is in idle or stand-by state.
The enhanced instruction set and addressing modes of the ST7 offer both power and flexibility to software developers, enabling the design of highly efficient and compact application code. In addition to standard 8-bit data management, all ST7 micro­controllers feature true bit manipulation, 8x8 un­signed multiplication and indirect addressing modes.
Figure 1. Device Block Diagram
8-BI T CO RE
ALU
ADDRESS AND DATA BUS
OSC1
V
PP
CONTROL
PROGRAM
(8K - 60K Bytes)
V
DD
RESET
PORT F
PF7:6,4, 2: 0
TIM E R A
BEEP
PORT A
RAM
(384 - 2048 Bytes)
PORT C
10-BIT ADC
V
AREF
V
SSA
PORT B
PB4:0
PORT E
PE1:0 (2 bits)
SCI
TIMER B
PA7:3 (5 bits on J devices)
PORT D
PD5:0
SPI
PC7:0
(8 bits)
V
SS
WATCHDOG
OSC
LVD
OSC2
MEMORY
MCC/RTC/BEEP
(4 bits on K devices)
(5 bits on J devices) (3 bits on K devices)
(6 bits on J devices) (2 bits on K devices)
(6 bits on J dev i ces) (5 bits on K devices)
3
ST72324
8/161
2 PIN DESCRIPTION
Figure 2. 42-Pin SDIP and 44-Pin TQFP Package Pinouts
MCO / AIN8 / PF0
BEEP / (HS) PF1
(HS) PF2
OCMP1_A / AIN10 / PF4
ICAP1_A / (HS) PF6
EXTCLK_A / (HS) PF7
V
DD_0
V
SS_0
AIN5 / PD5
V
AREF
V
SSA
44 43 42 41 40 39 38 37 36 35 34
33 32 31 30 29 28 27 26 25 24 23
12 13 14 15 16 17 18 19 20 21 22
1 2 3 4 5 6 7 8 9 10 11
ei2
ei3
ei0
ei1
PB3
(HS) PB4 AIN0 / PD0 AIN1 / PD1 AIN2 / PD2 AIN3 / PD3 AIN4 / PD4
RDI / PE1
PB0
PB1
PB2
PC6 / SCK / ICCCLK PC5 / MOSI / AIN14 PC4 / MISO / ICCDATA PC3 (HS) / ICAP1_B PC2 (HS) / ICAP2_B PC1 / OCMP1_B / AIN13 PC0 / OCMP2_B / AIN12
V
SS_1
V
DD_1
PA3 (HS) PC7 / SS
/ AIN15
V
SS
_2
RESET
V
PP
/ ICCSEL
PA7 (HS)
PA6 (HS)
PA5 (HS)
PA4 (HS)
PE0 / TDO
V
DD
_2
OSC1
OSC2
38 37 36 35 34 33 32 31 30 29 28 27
16
15
1 2 3 4 5 6 7 8 9 10 11 12 13 14
39
40
41
42
(HS) PB4
AIN0 / PD0
AIN12 / OCMP 2_B / PC0
EXTCLK_A / (HS) PF7
ICAP1_A / (HS) PF6
AIN10 / OCMP1_A / PF4
(HS) PF2
BEEP / (HS) PF1
MCO / AIN8 / PF0
AIN5 / PD5
AIN4 / PD4
AIN3 / PD3
AIN2 / PD2
AIN1 / PD1
V
SSA
V
AREF
PB3 PB2
PA4 (HS)
PA5 (HS)
PA6 (HS)
PA7 (HS)
V
PP
/ ICC SEL
RESET
VSS_2
V
DD
_2
PE0 / TDO
PE1 / RDI
PB0
PB1
OSC1 OSC2
ei3
ei0
ei2
ei1
21
20
17 18 19
AIN14 / MOSI / PC5
ICCDATA / MISO / PC4
ICAP1_B / (HS) PC3
ICAP2_B/ (HS) PC2
AIN13 / OCMP1_B / PC1
26 25 24 23 22
PC6 / SCK / ICCCLK
PC7 / SS
/ AIN15
PA3 (HS)
V
DD_1
V
SS_1
eix associated external interrupt vector
(HS) 20mA high sink capability
ST72324
9/161
PIN DESCRIPTION (Cont’d) Figure 3. 32-Pin SDIP Package Pinout
Figure 4. 32-Pin TQFP 7x7 Package Pinout
28 27 26 25 24 23 22 21 20 19 18 17
16
15
1 2 3 4 5 6 7 8 9 10 11 12 13 14
29
30
31
32
(HS) PB4
AIN0 / PD0
AIN14 / MOSI / PC5
ICCDATA/ MISO / PC4
ICAP1_B / (HS) PC3
ICAP2_B / (HS) PC2
AIN13 / OCMP1_B / PC1
AIN12 / OCMP2_B / PC0
EXTCLK_A / (HS) PF7
BEEP / (HS) PF1
MCO / AIN8 / PF0
V
SSA
V
AREF
AIN1 / PD1
ICAP1_A / (HS) PF6
OCMP1_ A / AIN10 / PF4
PB3
PB0
PC6 / SCK / ICCCLK
PC7 / SS
/ AIN15
PA3 (HS)
PA4 (HS)
PA6 (HS)
PA7 (HS)
V
PP
/ ICCSEL
OSC2
OSC1
V
DD
_2
PE0 / TDO
PE1 / RDI
V
SS
_2
RESET
ei0
ei3
ei2
ei1
eix associated external interrupt vector
(HS) 20mA high sink capability
ICCDATA / MISO / PC4
AIN14 / MOSI / PC5
ICCCLK / SCK / PC6
AIN15 / SS
/ PC7
(HS) PA3
AIN13 / OC M P1_B / PC1
ICAP2_B / (HS) PC2
ICAP1_B / (HS) PC3
32 31 30 29 28 27 26 25
24 23 22 21 20 19 18 17
9 10111213141516
1 2 3 4 5 6 7 8
ei1
ei3
ei0
OCMP1_A / AIN10 / PF4
ICAP1_A / (HS) PF6
EXTCLK_A / (HS) PF7
AIN12 / OCMP2_B / PC0
V
AREF
V
SSA
MCO / AIN8 / PF0
BEEP / (HS) PF1
V
PP
/ ICCSEL PA7 (HS) PA6 (HS) PA4 (HS)
OSC1 OSC2 V
SS
_2
RESET
PB0
PE1 / RDI
PE0 / TDO
V
DD
_2
PD1 / AIN1
PD0 / AIN0
PB4 (HS)
PB3
ei2
eix associated external interrupt vector
(HS) 20mA high sink capability
ST72324
10/161
PIN DESCRIPTION (Cont’d) For external pin connection guidelines, refer to See “ELECTRICAL CHARACTERISTICS” on page 113.
Legend / Abbreviations for Table 1 :
Type: I = input, O = output, S = supply Input level: A = Dedicated analog input In/Output level: C = CMOS 0.3V
DD
/0.7V
DD
CT= CMOS 0.3VDD/0.7VDD with input trigger
Output level: HS = 20mA high sink (on N-buffer only) Port and control configuration:
– Input: float = floating, wpu = weak pull-up, int = interrupt
1)
, ana = analog
– Output: OD = open drain
2)
, PP = push-pull Refer to “I/O PORTS” on page 45 for more details on the software configuration of the I/O ports. The RESET con fi g ur at i on of each pin i s sh o wn in bo ld. This config u ra tion is valid as long as the devi ce is
in reset state.
Table 1. Device Pin Description
Pin n°
Pin Name
Type
Level Port
Main
function
(after
reset)
Alternate Function
TQFP44
SDIP42
TQFP32
SDIP32
Input
Output
Input Output
float
wpu
int
ana
OD
PP
6 1 30 1 PB4 (HS)
5)
I/O CTHS X ei3 X X Port B4
7 2 31 2 PD0/AIN0 I/O C
T
X X X X X Port D0 ADC Analog Input 0
8 3 32 3 PD1/AIN1 I/O C
T
X X X X X Port D1 ADC Analog Input 1
9 4 PD2/AIN2 I/O C
T
X X X X X Port D2 ADC Analog Input 2
10 5 PD3/AIN3 I/O C
T
X X X X X Port D3 ADC Analog Input 3
11 6 PD4/AIN4 I/O C
T
X X X X X Port D4 ADC Analog Input 4
12 7 PD5/AIN5 I/O C
T
X X X X X Port D5 ADC Analog Input 5
13 8 1 4 V
AREF
S Analog Reference Voltage for ADC
14 9 2 5 V
SSA
S Analog Ground Voltage
15 10 3 6 PF0/MCO/AIN8 I/O C
T
X ei1 X X X Port F0
Main clock out (f
OSC
/2)
ADC Analog Input 8
16 11 4 7 PF1 (HS)/BEEP I/O C
T
HS X ei1 X X Port F1 Beep signal output
17 12 PF2 (HS) I/O C
T
HS X ei1 X X Port F2
18 13 5 8
PF4/OCMP1_A/ AIN10
I/O C
T
X X X X X Port F4
Timer A Out­put Com­pare 1
ADC Analog Input 10
19 14 6 9 PF6 (HS)/ICAP1_A I/O C
T
HS X X X X Port F6 Timer A Input Capture 1
20 15 7 10
PF7 (HS)/ EXTCLK_A
I/O C
T
HS X X X X Port F7
Timer A External Clock Source
21 V
DD_0
S Digital Main Supply Voltage
22 V
SS_0
S Digital Ground Voltage
23 16 8 11
PC0/OCMP2_B/ AIN12
I/O C
T
X X X X X Port C0
Timer B Out­put Com­pare 2
ADC Analog Input 12
ST72324
11/161
Notes:
1. In the interrupt input column, “eiX” def ine s the associate d external in terrupt vecto r. If the weak pul l-up
24 17 9 12
PC1/OCMP1_B/ AIN13
I/O C
T
X X X X X Port C1
Timer B Out­put Com­pare 1
ADC Analog Input 13
25 18 10 13 PC2 (HS)/ICAP2_B I/O C
T
HS X X X X Port C2 Timer B Input Capture 2
26 19 11 14 PC3 (HS)/ICAP1_B I/O C
T
HS X X X X Port C3 Timer B Input Capture 1
27 20 12 15
PC4/MISO/ICCDA­TA
I/O C
T
X X X X Port C4
SPI Master In / Slave Out Data
ICC Data In­put
28 21 13 16 PC5/MOSI/AIN14 I/O C
T
X X X X X Port C5
SPI Master Out / Slave In Data
ADC Analog Input 14
29 22 14 17 PC6/SCK/ICCCLK I/O C
T
X X X X Port C6
SPI Serial Clock
ICC Clock Output
30 23 15 18 PC7/SS
/AIN15 I/O C
T
X X X X X Port C7
SPI Slave Select (ac­tive low)
ADC Analog Input 15
31 24 16 19 PA3 (HS) I/O C
T
HS X ei0 X X Port A3
32 25 V
DD_1
S Digital Main Supply Voltage
33 26 V
SS_1
S Digital Ground Voltage
34 27 17 20 PA4 (HS) I/O C
T
HS X X X X Port A4
35 28 PA5 (HS) I/O C
T
HS X X X X Port A5
36 29 18 21 PA6 (HS) I/O C
T
HS X T Port A6
1)
37 30 19 22 PA7 (HS) I/O CTHS X T Port A7
1)
38 31 20 23 V
PP
/ICCSEL I
Must be tied low. In the flash pro­gramming mode, this pin acts as the programming voltage input V
PP
. See
Section 12.9.2 for more details. High
voltage must not be applied to ROM devices.
39 32 21 24 RESET
I/O C
T
Top priority non maskable interrupt.
40 33 22 25 V
SS_2
S Digital Ground Voltage
41 34 23 26 OSC2 O Resonator oscillator inverter output 42 35 24 27 OSC1 I
External clock input or Resonator os­cillator inverter input
43 36 25 28 V
DD_2
S Digital Main Supply Voltage
44 37 26 29 PE0/TDO I/O C
T
X X X X Port E0 SCI Transmit Data Out
1 38 27 30 PE1/RDI I/O C
T
X X X X Port E1 SCI Receive Data In
2 39 28 31 PB0 I/O C
T
X ei2 X X Port B0
3 40 PB1 I/O C
T
X ei2 X X Port B1
4 41 PB2 I/O C
T
X ei2 X X Port B2
5 42 29 32 PB3 I/O C
T
X ei2 X X Port B3
Pin n°
Pin Name
Type
Level Port
Main
function
(after
reset)
Alternate Function
TQFP44
SDIP42
TQFP32
SDIP32
Input
Output
Input Output
float
wpu
int
ana
OD
PP
ST72324
12/161
column (wpu) is merged with the interrupt column (int), then the I/O configuration is pull-up interrupt input, else the configuration is floating interrupt input.
2. In the open drain output column, “T” defines a true open drain I/O (P-Buffer and protection diode to V
DD
are not implemented). See See “I/O PORTS” on page 45. and Section 12.8 I/O PORT PIN CHARACTER-
ISTICS for more details.
3. OSC1 and OSC2 pins connect a crys tal/ceram ic resonator, or an external source t o t he on-chi p os cil­lator; see Section 1 INTRODUCTION and Section 12.5 CLOCK AND TIMING CHARACTERISTICS for more details.
4. On the chip, each I/O port has 8 pads. Pads that are not bonded to external pins are in input pull-up con­figuration after reset. The c onfiguration of these pad s mu st b e k ept at res et s tat e t o avoi d added current consumption.
5. In ROM devices, there is no weak pull-up on PB4.
ST72324
13/161
3 REGISTER & MEMORY MAP
As sho wn i n Figure 5, the MCU is capable of ad- dressing 64K bytes of memories and I/O registers.
The available memory locations consist of 128 bytes of register locations, up to 1024 bytes of RAM and up to 32 Kbytes of user program memo­ry. The RAM space in cludes up to 256 byt es for the stack from 0100h to 01FFh.
The highest address bytes contain the user re set and interrupt vectors.
IMPORTANT: Memory locations marked as “Re­served” must ne ver be accessed. Ac cessing a re­seved area can have u npredict able effects on t he device.
Figure 5. Me m ory M a p
0000h
RAM
Program Memory (32K, 16K or 8K)
Interrupt & Reset Vectors
HW Registers
0080h
007Fh
0FFFh
(see Table 2)
1000h
FFDFh FFE0h
FFFFh
(see Table 7)
0880h
Reserved
087Fh
Short Addressing RAM (zero page)
256 Bytes Stack
16-bit Addressing
RAM
0100h
01FFh
027Fh
0080h
0200h
00FFh
32 KBytes
8000h
FFFFh
(1024,
or 047Fh
16 KBytes
C000h
512 or 384 Bytes)
8 Kbytes
E000h
ST72324
14/161
Table 2. Hardware Register Map
Address Block
Register
Label
Register Name
Reset
Status
Remarks
0000h 0001h 0002h
Port A
2)
PADR PADDR PAOR
Port A Data Register Port A Data Direction Register Port A Option Register
00h
1)
00h 00h
R/W R/W R/W
0003h 0004h 0005h
Port B
PBDR PBDDR PBOR
Port B Data Register Port B Data Direction Register Port B Option Register
00h
1)
00h 00h
R/W R/W R/W
0006h 0007h 0008h
Port C
PCDR PCDDR PCOR
Port C Data Register Port C Data Direction Register Port C Option Register
00h
1)
00h 00h
R/W R/W R/W
0009h 000Ah 000Bh
Port D
2)
PDDR PDDDR PDOR
Port D Data Register Port D Data Direction Register Port D Option Register
00h
1)
00h 00h
R/W R/W R/W
000Ch 000Dh 000Eh
Port E
2)
PEDR PEDDR PEOR
Port E Data Register Port E Data Direction Register Port E Option Register
00h
1)
00h 00h
R/W R/W
2)
R/W
2)
000Fh 0010h 0011h
Port F
2)
PFDR PFDDR PFOR
Port F Data Register Port F Data Direction Register Port F Option Register
00h
1)
00h 00h
R/W R/W R/W
0012h
to
0020h
Reserved Area (15 Bytes)
0021h 0022h 0023h
SPI
SPIDR SPICR SPICSR
SPI Data I/O Register SPI Control Register SPI Control/Status Register
xxh 0xh 00h
R/W R/W R/W
0024h 0025h 0026h 0027h
ITC
ISPR0 ISPR1 ISPR2 ISPR3
Interrupt Software Priority Register 0 Interrupt Software Priority Register 1 Interrupt Software Priority Register 2 Interrupt Software Priority Register 3
FFh FFh FFh FFh
R/W R/W R/W R/W
0028h EICR External Interrupt Control Register 00h R/W
0029h FLASH FCSR Flash Control/Status Register 00h R/W 002Ah WATCHDOG WDGCR Watchdog Control Register 7Fh R/W
002Bh SICSR System Integrity Control/Status Register 000x 000x b R/W 002Ch
002Dh
MCC
MCCSR MCCBCR
Main Clock Control / Status Register Main Clock Controller: Beep Control Register
00h 00h
R/W R/W
002Eh
to
0030h
Reserved Area (3 Bytes)
ST72324
15/161
Legend: x=undefined, R/W=read/write
0031h 0032h 0033h 0034h 0035h 0036h 0037h 0038h 0039h 003Ah 003Bh 003Ch 003Dh 003Eh 003Fh
TIMER A
TACR2 TACR1 TACSR TAIC1HR TAIC1LR TAOC1HR TAOC1LR TACHR TACLR TAACHR TAACLR TAIC2HR TAIC2LR TAOC2HR TAOC2LR
Timer A Control Register 2 Timer A Control Register 1 Timer A Control/Status Register
5
Timer A Input Capture 1 High Register Timer A Input Capture 1 Low Register Timer A Output Compare 1 High Register Timer A Output Compare 1 Low Register Timer A Counter High Register Timer A Counter Low Register Timer A Alternate Counter High Register Timer A Alternate Counter Low Register Reserved
3
Reserved
3
Timer A Output Compare 2 High Register Timer A Output Compare 2 Low Register
00h 00h
xxx0 x0xx b
xxh
xxh 80h 00h FFh FCh FFh FCh
80h 00h
R/W R/W R/W Read Only Read Only R/W R/W Read Only Read Only Read Only Read Only
Write Only
4
Write Only
4
0040h Reserved Area (1 Byte)
0041h 0042h 0043h 0044h 0045h 0046h 0047h 0048h 0049h 004Ah 004Bh 004Ch 004Dh 004Eh 004Fh
TIMER B
TBCR2 TBCR1 TBCSR TBIC1HR TBIC1LR TBOC1HR TBOC1LR TBCHR TBCLR TBACHR TBACLR TBIC2HR TBIC2LR TBOC2HR TBOC2LR
Timer B Control Register 2 Timer B Control Register 1 Timer B Control/Status Register Timer B Input Capture 1 High Register Timer B Input Capture 1 Low Register Timer B Output Compare 1 High Register Timer B Output Compare 1 Low Register Timer B Counter High Register Timer B Counter Low Register Timer B Alternate Counter High Register Timer B Alternate Counter Low Register Timer B Input Capture 2 High Register Timer B Input Capture 2 Low Register Timer B Output Compare 2 High Register Timer B Output Compare 2 Low Register
00h 00h
xxxx x0xx b
xxh
xxh 80h 00h FFh FCh FFh FCh
xxh
xxh 80h 00h
R/W R/W R/W Read Only Read Only R/W R/W Read Only Read Only Read Only Read Only Read Only Read Only R/W R/W
0050h 0051h 0052h 0053h 0054h 0055h 0056h 0057h
SCI
SCISR SCIDR SCIBRR SCICR1 SCICR2 SCIERPR
SCIETPR
SCI Status Register SCI Data Register SCI Baud Rate Register SCI Control Register 1 SCI Control Register 2 SCI Extended Receive Prescaler Register Reserved area SCI Extended Transmit Prescaler Register
C0h
xxh 00h
x000 0000b
00h 00h
---
00h
Read Only R/W R/W R/W R/W R/W
R/W
0070h 0071h 0072h
ADC
ADCCSR ADCDRH ADCDRL
Control/Status Register Data High Register Data Low Register
00h 00h 00h
R/W Read Only Read Only
0073h 007Fh
Reserved Area (13 Bytes)
Address Block
Register
Label
Register Name
Reset
Status
Remarks
ST72324
16/161
Notes:
1. The contents of the I/O port DR regist ers are readable only in out put c onf iguration. I n i nput c onf igura­tion, the values of the I/O pins are returned instead of the DR register contents.
2. The bits associated with unavailable pins must always keep their reset value.
3. These registers and the ICF2 and OCF2 flags are not present in the ST72324 but are present in the emulator. For compatibility with the e mulator, it is recommended to p erform a dummy access (read or write) to the TAIC2LR and TAOC2LR registers to clear the interrupt flags.
4. The registers can be written, but reading them will return undefined values.
5. Bits 2 and 4 of this register (ICF2 and OCF 2) are forced by hardware to 0. Consequent ly, the corre­sponding interrupts cannot be used.
ST72324
17/161
4 FLASH PROGRAM ME MORY
4.1 Introduction
The ST7 dual voltage High Density Flash (HDFlash) is a non-volatile memory that can be electrically erased as a single block or by individu­al sectors and programmed on a Byte-by-Byte ba­sis using an external V
PP
supply.
The HDFlash devices can be programmed and erased off-board (plugge d in a programm ing tool) or on-board using ICP (In-Circuit Programming) or IAP (In-Application Programming).
The array matrix organ isation allows each sector to be erased and reprogramm ed without affecting other sectors.
4.2 Main Features
Three Flash programming modes :
– Insertion in a programming tool. In this m ode,
all sectors including option bytes can be pro­grammed or erased.
– ICP (In-Circuit Programming). In this mode, all
sectors including option bytes can be pro­grammed or erased without removing the de­vice from the application board.
– IAP (In-Application Programming) In this
mode, all sectors except Sector 0, can be pro­grammed or erased without removing the de­vice from the application board a nd wh ile the application is running.
ICT (In-Circuit Testing) for downloading and
executing user application test patterns in RAM
Read-out protection against piracy
Register Access Security System (RASS) to
prevent accidental programming or erasing
4. 3 S tructure
The Flash memory is organised in sectors and can be used for both code and data storage.
Depending on the overall Flash memory size in the microcontroller device, there are up to three user sectors (see Table 3). Each of these sectors can be erased independently to avoid unnecessary erasing of the whole Flas h memory when only a partial erasing is required.
The first two sectors have a fixed siz e of 4 Kby tes (see Figure 6). They are mapped in the upper part of the ST7 addressing space so t he reset and in­terrupt vectors are located in Sector 0 (F000h­FFFFh).
Table 3. Sectors available in Flash devices
4.3.1 Read-out Protection
Read-out protection, when s elected, makes it im­possible to extract the memory content from the microcontroller, thus preventing piracy. Even ST cannot access the user code.
In flash devices, this protection is removed by re­programming the option. In this case, the entire program memory is first automatically erased and the device can be reprogrammed.
Read-out protection selection depend s on the de­vice type:
– In Flash devices it is enabled and removed
through the FMP_R bit in the option byte.
– In ROM devices it is enabled by mask option
specified in the Option List.
Figure 6. Me m ory M a p and Sector A dd re ss
Flash Size (bytes) Available Sectors
4K Sector 0 8K Sectors 0,1
> 8K Sectors 0,1, 2
4 Kbytes
4 Kbytes
2Kbytes
SECTOR 1 SECTOR 0
16 Kbytes
SECTOR 2
8K 16K 32K 6 0K
FLASH
FFFFh
EFFFh
DFFFh
3FFFh 7FFFh
1000h
24 Kbytes
MEMORY SIZE
8Kbytes 40 Kbytes
52 Kby tes
9FFFh BFFFh D7FFh
4K 10K 24K 48K
ST72324
18/161
FLASH PROGRAM MEMORY (Cont’d)
4.4 ICC Interface
ICC needs a m inimum of 4 and up to 6 pins to b e connected to the programming tool (see Figure 7). These pins are:
– RESET
: device reset
–V
SS
: device power supply ground
– ICCCLK: ICC output serial clock pin – ICCDATA: ICC input/output serial data pin – ICCSEL/V
PP
: programming voltage
– OSC1(or OSCIN): main clock input for exter-
nal source (optional)
–V
DD
: application board power su pply (option-
al, see Figure 7, Note 3)
Figure 7. Typical ICC Interface
Notes:
1. If the ICCCLK or ICCDATA pins are only u sed as outputs in t he ap plication, n o s ign al iso lation is necessary. As soon as the Programming Tool is plugged to the board, even if an ICC session is not in progress, the ICCCLK and ICCDATA pins are not available for the application. If they are used as inputs by the application, isolation such as a serial resistor has to implemented in case another de­vice forces the signal. Refer to the Programming Tool documentation for recommended resistor val­ues.
2. During the ICC session, the programming tool must control the RESET
pin. This can lead to con­flicts between the programming tool and the appli­cation reset circuit if it drives more than 5mA at high level (push pull output or pull-up resistor<1K). A schottky diode can be us ed to iso late the appli­cation RESET circuit in this case. When using a classical RC network with R>1K or a reset man-
agement IC with open drain ou tput and pu ll-up re­sistor>1K, no additional com ponents are needed. In all cases the user must ensure that no external reset is generated by the application during the ICC session.
3. The use of Pin 7 of the ICC con nector de pends on the Programming Tool architecture. This pin must be connected when using most ST Program­ming Tools (it is used to monitor the application power supply). Please refer to the Programming Tool manual.
4. Pin 9 has to be co nnected to the OS C1 or OS­CIN pin of the ST7 when the clock is not available in the application or if the sel ected clock opt ion is not programmed in t he option byte. ST7 devices with multi-oscillator capability need to have OSC2 grounded in this case.
ICC CONNECTOR
ICCDATA
ICCCLK
RESET
V
DD
HE10 CONNECTOR TYPE
APPLICATION POWER SUPPLY
1
246810
975 3
PROGRAMMING TOOL
ICC CONNECTOR
APPLICATION BOARD
ICC Cab le
OPTIONAL (See No te 3)
10k
V
SS
ICCSEL/VPP
ST7
C
L2
C
L1
OSC1
OSC2
OPTIONAL
See Note 1
See Note 2
APPLICATION RESET SOURCE
APPLICATI ON
I/O
(See No te 4)
ST72324
19/161
FLASH PROGRAM MEMORY (Cont’d)
4.5 ICP (In-Circuit Programming)
To perform ICP the microcontroller must be switched to ICC (In-Circuit Communication) mode by an external controller or programming tool.
Depending on the ICP code dow nloaded in RAM, Flash memory programming can be fully custom­ized (number of bytes to prog ram, program loca­tions, or selection serial communication interface for downloading).
When using an STMicroelectronics or third-party programming tool that supp orts ICP and the spe­cific microcontroller device, the user needs only to implement the ICP hardware interface on the ap­plication board (see Figure 7). For more details on the pin locations, refer to the device pinout de­scription.
4.6 IA P ( I n-Ap plication Pr ogram m ing)
This mode uses a BootLoader program previously stored in Sector 0 by the us er (in ICP mode or by plugging the device in a programming tool).
This mode is fully controlled by user software. This allows it to be adapted to the user application, (us­er-defined strategy for entering programming mode, choice of comm unications protocol used to fetch the data to be stored, etc.). For example, it is possible to download code from the SPI, SCI, USB
or CAN interface and program it in the Flash. IAP mode can be used to program any of the Flash sectors except Sector 0, whi ch is write/erase pro­tected to allow recovery in case errors occur dur­ing the programming operation.
4.7 Related Documentation
For details on Flash program ming and ICC proto­col, refer to the ST7 Flash Programming Refer­ence Manual and to the ST7 ICC Protocol Re fer­ence Manual
.
4.7.1 Register Description FLASH CONTROL/STATUS REGISTER (FCSR)
Read/Write Reset Value: 0000 0000 (00h)
This register is reserved for use by Programming Tool software. It controls the Flash programming and erasing operations. Flash Control/Status Reg­ister Address and Reset Value
70
00000000
Address
(Hex.)
Register
Label
76543210
0029h
FCSR
Reset Value00000000
ST72324
20/161
5 CENTRAL PRO CESSING UNIT
5.1 INTRODUCTION
This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-bit data manipulation.
5.2 MAIN FEATURES
Enable executing 63 basic instructions
Fast 8-bit by 8-bit multiply
17 main addressing modes (with indirect
addressing mode)
Two 8-bit index registers
16-bit stack pointer
Low power HALT and WAIT modes
Priority maskable hardware interrupts
Non-maskable software/hardware interrupts
5.3 CPU REGISTERS
The 6 CPU registers shown in Figure 8 are not present in the memory mapping and are accessed by spec ifi c ins t ru c tio n s .
Accumulator (A)
The Accumulator is an 8-bit general purpose reg­ister used to hold operands and the res ults of the arithmetic and logic calculations and to manipulate data.
Index Registers (X and Y)
These 8-bit registers are used to create effective addresses or as tempo rary storage areas f or data manipulation. (The Cross -Assembler generates a precede instruction (PRE) to indicate that the fol­lowing instruction refers to the Y register.)
The Y register is not affected by the interrupt auto­matic procedures.
Program Counter (PC)
The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is the LSB) and PCH (Program Counter High which is the MSB).
Figure 8. CPU Registers
ACCUMULA TOR
X INDEX REGISTER
Y INDEX REGISTER
STACK POINTER
CONDITION CODE REGISTER
PROGRAM COUNTER
70
1C1I1HI0NZ
RESET VALUE = RESET VECTOR @ FFFEh-FFFFh
70
70
70
0
7
15 8
PCH
PCL
15
8
70
RESET VALUE = STACK HIGHER ADDRESS
RESET VALUE =
1X11X1XX
RESET VALUE = XXh
RESET VALUE = XXh
RESET VALUE = XXh
X = Undefined Value
ST72324
21/161
CENTRAL PROC ESSING UNIT (Cont’d) Condition Code Register (CC)
Read/Write Reset Value: 111x1xxx
The 8-bit Condition Code regist er contains the i n­terrupt masks and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP in­structions.
These bits can be individually tested and/or con­trolled by specific instructions.
Arithmetic Management Bits
Bit 4 = H
Half carry
.
This bit is set by hardware when a carry occurs be­tween bits 3 and 4 of t he ALU during an ADD or ADC instructions. It is reset by hardware during the same instructio n s.
0: No half carry has occurred. 1: A half carry has occurred.
This bit is tested using the JRH or JRNH instruc­tion. The H bit is useful in BCD arithmetic subrou­tine s .
Bit 2 = N
Negative
.
This bit is set and cleared by hardware. It is repre­sentative of the result sign of the last arithmetic, logical or data manipulation. I t’s a copy of the re­sult 7
th
bit. 0: The result of the last operation is positive or null. 1: The result of the last operation is negative
(i.e. the most significant bit is a logic 1).
This bit is accesse d by the JRMI and JRPL instruc­tions.
Bit 1 = Z
Zero
.
This bit is set and cleared by hardware. This bit in­dicates that the result of the last arithmetic, logical or data manipulation is zero. 0: The result of the last operation is different from
zero.
1: The result of the last operation is zero. This bit is accessed by the JREQ and JRNE test
instructions. Bit 0 = C
Carry/borrow.
This bit is set and cleared b y hardware and soft­ware. It indicates an overflow or an un derflow has occurred during the last arithmetic operation. 0: No overflow or underflow has occurred. 1: An overflow or underflow has occurred.
This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It i s also affected by the “bit test and branch”, shift and rotate instructions.
Interrupt Managem ent B i ts
Bit 5,3 = I1, I0
Interrupt
The combination of the I1 and I0 bits gives the cur­rent interrupt software priority.
These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software pri­ority registers (IxSPR). They can be also set/ cleared by software with the RIM, SIM, IRET, HALT, WFI and PUSH/POP instructions.
See the interrupt management chapter for more details.
70
11I1HI0NZ
C
Interrupt Software Priorit y I1 I0
Level 0 (main) 1 0 Level 1 0 1 Level 2 0 0 Level 3 (= interrupt disable) 1 1
ST72324
22/161
CENTRAL PROC ESSING UNIT (Cont’d) Stack Poi nter (SP)
Read/Write Reset Value: 01 FFh
The Stack Pointer is a 16-bit register which is al­ways pointing to the next free location in the stack. It is then decremented after data has been pushed onto the stack and incremented before data is popped from the stack (see Figure 9).
Since the stack is 256 bytes deep, the 8 most sig­nificant bits are forced by hard ware. Following a n MCU Reset, or after a Reset Stack Pointer instruc­tion (RSP), the Stack Pointer contains its reset val­ue (the SP7 to SP0 bits are set) which is the stack higher address.
The least significant byte of the Stack Pointer (called S) can be directly accessed by a LD in­struction.
Note: When the lower limit is exceeded, the Stack Pointer wraps around to the stack upper limit, with­out indicating the stack overflow. The previously stored information is then o verwritten and there­fore lost. The stack also wraps in case of an under­flow.
The stack is used to sav e the return address dur­ing a subroutine call and the CPU context during an interrupt. The user may also directly manipulate the stack by means of the PUSH and POP instruc­tions. In the case of an interrupt, the PCL is stored at the first location po inted t o by t he SP. Th en t he other registers are stored in the next locations as shown in Figure 9.
– When an interrupt is received, the SP is decre-
mented and the context is pushed on the stack.
– On return from interrupt, the SP is incremented
and the context is popped from the stack.
A subroutine call occupies two locations and an in­terrupt five locat ion s i n the stack ar ea.
Figure 9. Stack Manipulation Example
15 8
00000001
70
SP7 SP6 SP5 SP4 SP3 SP2 SP1
SP0
PCH PCL
SP
PCH
PCL
SP
PCL
PCH
X
A
CC
PCH PCL
SP
PCL
PCH
X
A
CC
PCH PCL
SP
PCL
PCH
X
A
CC
PCH
PCL
SP
SP
Y
CALL
Subroutine
Interrupt
Event
PUSH Y POP Y IRET
RET
or RSP
@ 01FFh
@ 0100h
Stack Higher Address = 01FFh Stack Lower Address =
0100h
ST72324
23/161
6 SUPPLY, RESET AND CLO CK MANAGEMENT
The device includes a range of utility features for securing the application in critical situations (for example in case of a power brown-out), and re­ducing the number of external components. An overview is shown in Figure 11.
For more details, refer to dedicated parametric section.
Main features
Optional PLL for multiplyi ng the frequency by 2
(not to be used with internal RC oscillator)
Reset Sequence Manager (RSM)
Multi-Oscillator Clock Management (MO)
– 5 Crysta l/ C er amic resonator osc illa t or s – 1 Interna l RC o s c illat o r
System Integrity Management (SI)
– Main supply Low voltage detection (LVD) – Auxiliary Voltage detector (AVD) with interrupt
capability for monitoring the main supply
– Clock Security System (CSS) with Cl ock Filte r
and Backup Safe Oscillator (enabled by op­tion byte)
6.1 PHASE LOCKED LOOP
If the clock frequency input to the PLL is in the range 2 to 4 MHz, the PLL can be used to multiply the frequency by two to obtain an f
OSC 2
of 4 to 8 MHz. The PLL is enabled by option byte. If the PLL is disabled, then f
OSC2 = fOSC
/2.
Caution: T he PLL is not rec ommended for ap pli­cations where timing accuracy is required. See “PLL Characteristics” on page 128.
Figure 10. PLL Block Diagram
Figure 11. Clock, Reset and Supply Block Diagram
0
1
PLL OPTION BIT
PLL x 2
f
OSC2
/ 2
f
OSC
LOW VOLTAG E
DETECTOR
(LVD)
f
OSC2
AUXILIARY VOLTAGE
DETECTOR
(AVD)
MULTI-
OSCILLATOR
(MO)
OSC1
RESET
V
SS
V
DD
RESET SEQUENCE
MANAGER
(RSM)
CLOCK FILTER
SAFE
OSC
CLOCK SECURITYSYSTEM
(CSS)
OSC2
MAIN CLOCK
CSS Interrupt Request
AVD Interrupt Request
CONTR O LLER
PLL
SYSTEM INTEGRITY MANAGEMENT
WATCHDOG
SICSR
TIMER (W DG )
WITH REALTIME
CLOCK (MCC/RTC)
AVD AVD
LVD
RF
CSS
IE
IE
CSSDWDG
RF
f
OSC
f
OSC2
(option)
0
0
F
f
CPU
ST72324
24/161
6.2 MULTI-OSCILLATOR (MO)
The main clock of the ST7 can be generated by three different source types coming from the multi­oscillator block:
an external source
4 crystal or ceramic resonator oscillators
an internal high frequency RC oscillator
Each oscillator is optimized for a given freq uency range in terms of consumption and is selectable through the option byte. The assoc iated hardware configurations are shown in Table 4. Refer to the electrical characteristics section for more details.
Caution: T he OSC1 and/or OSC2 pins must not be left unconnected. F or the purposes o f Failure Mode and Effect Analysis, it should be noted that if the OSC1 and/or OSC2 pins are left unconnected, the ST7 main osc illator m ay sta rt an d, in this con­figuration, could generate an f
OSC
clock frequency in excess of the allowed maximum (>16MHz.), putting the ST7 in an unsafe/undefined state. The product behaviour must therefore be considered undefined when the OSC pins are le ft unconnect­ed.
External Clock Source
In this external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC1 pin while the OSC2 pin is tied to ground.
Note: External clo ck source is not suppo rted with the PLL enabled.
Crystal/Ceramic Oscillators
This family of oscillators has the advantage of pro­ducing a very accurate rate on the main clock of the ST7. The s election within a list of 4 os cillators with different frequency ran ges has to be done by option byte in order to redu ce consumption (refer to Se ction 14.1 on p age 149 for more details on the frequency ranges). In this mode o f the multi­oscillator, the resonator and the load capacitors have to be placed as close as possible to the oscil­lator pins in order to minimize output distortion and start-up stabilization time. The loading capaci­tance values must be adjusted according to the selected osci lla tor .
These oscillators are not stopped during the RESET phase to avoid losing time in the oscillator start-up phase.
Internal RC Oscillator
This oscillator allows a low cost solution for the main clock of the ST7 using only an internal resis­tor and capac it or. Int ernal RC oscillator mode has the drawback of a lower frequency accuracy and should not be used in applications that require ac­curate timin g .
In this mode, the two oscillator pins have to be tied to ground.
Table 4. ST7 Clock Sources
Hardware Configuration
External ClockCrystal/Ceramic ResonatorsInternal RC Oscillator
OSC1 OSC2
EXTERNAL
ST7
SOURCE
OSC1 OSC2
LOAD
CAPACITORS
ST7
C
L2
C
L1
OSC1 OSC2
ST7
ST72324
25/161
6.3 RESET SEQUENCE MANAGER (RSM)
6.3.1 Introd uc tion
The reset sequence manager in cludes three RE­SET sources as shown in F igure 13:
External RESET source pulse
Internal LVD RESET (Low Voltage Detection)
Internal WATCHDOG RESET
These sources act on the RESET
pin and it is al-
ways kept low during the delay phase. The RESET service routine vector is fixed at ad-
dresses FFFEh-FFFFh in the ST7 memory map. The basic RE SET sequence consists of 3 phases
as shown in F igure 12:
Active Phase depending on the RESET source
256 or 4096 CPU clock cycle delay (selected by
opt ion byte)
RESET vector fetch
The 256 or 4096 CPU clock cycle delay allows the oscillator to stabilise and ensures that recovery has taken place from t he Reset st ate. T he short er or longer clock cycle delay should be selected by option byte to correspond to the stabilization t ime of the external oscillator used in the application (see Section 14.1 on page 149).
The RESET vector fetch phase duration is 2 clock cycles.
Figure 12. RESET Sequence Phases
6.3.2 Async hr onous Extern a l RESET
pin
The RESET
pin is both an input and an open-drain
output with integrated R
ON
weak pull-up resistor. This pull-up has no fixed value but varies in ac­cordance with the input voltage. It
can be pulled low by external circuitry to reset the device. See
“CONTROL PIN CHARACTERISTICS” on page 138 for more details.
A RESET signal originating from an external source must have a duration of at least t
h(RSTL)in
in order to be recognized (see Figure 14). This de­tection is asynchronous and therefore the MCU can enter reset state even in HALT mode.
Figure 13. Reset Block Diagram
RESET
Active Phase
INTERNAL RESET
256 or 4096 CLOCK CYCLES
FETCH
VECTOR
RESET
R
ON
V
DD
WATCHDOG RESET LVD RESET
INTERNAL RESET
PULSE
GENERATOR
Filter
ST72324
26/161
RESET SEQUENCE MANAGER (Cont’d) The RESET
pin is an asynchronous signal which plays a major role in EMS performance. In a noisy environment, it is recommended to follow the guidelines mentioned in the elect rical characteris­tics section.
If the external RESET
pulse is shorter than
t
w(RSTL)out
(see short ext. Reset in Figure 14), the
signal on the RESET
pin may be stretched. Other­wise the delay will not be applied (see long ext. Reset in Figure 14). Starting from the external RE­SET pulse recognition, the device RESET
pin acts as an output that is pulled low during at least t
w(RSTL)out
.
6.3.3 External Power-On RESET
If the LVD is disabled by option byte, to start up the microcontroller correctly, the user must ensure by means of an external reset circuit that the reset signal is held low until V
DD
is over the minimum
level specified for the selected f
OSC
frequency.
(see “OPERATING COND ITIO NS” on page 115)
A proper reset signal for a sl ow rising V
DD
supply can generally be p rovided by an e xternal RC ne t­work connected to the RESET
pin.
6.3.4 Internal Low Voltage Detector (LVD) RESET
Two differe nt RESET sequences caused by the in­ternal LVD circuitry can be distinguished:
Power-On RESET
Voltage Drop RESET
The device RESET
pin acts as an output that is
pulled low when V
DD<VIT+
(rising edge) or
V
DD<VIT-
(falling edge) as shown in Figure 14 .
The LVD filters spikes on V
DD
larger than t
g(VDD)
to
avoid parasitic resets.
6.3.5 Internal Watchdog RESET
The RESET sequence generated by a internal Watchdog counter overflow is shown in Figure 14.
Starting from the Watchdog counter underflow, the device RESET
pin acts as an output that is pulled
low during at least t
w(RSTL)out
.
Figure 14. RESET Sequences
V
DD
RUN
RESET PIN
EXTERNAL
WATCHDOG
ACTIVE PHASE
V
IT+(LVD)
V
IT-(LVD)
t
h(RSTL)in
t
w(RSTL)out
RUN
t
h(RSTL)in
ACTIVE
WATCHDOG UNDERFLOW
t
w(RSTL)out
RUN RUN RUN
RESET
RESET SOURCE
SHORT EXT.
RESET
LVD
RESET
LONG EXT.
RESET
WATCHDOG
RESET
INTE RNAL RESET ( 256 or 4096 T
CPU
)
VECTOR FETCH
t
w(RSTL)out
PHASE
ACTIVE
PHASE
ACTIVE
PHASE
DELAY
ST72324
27/161
6.4 SYSTEM INTEGRITY MANAGEMENT (SI)
The System Integrity Mana gement block co ntains the Low Voltage Detector (LVD), Auxiliary Voltage Detector (AVD) functions and Clo ck Security Sys­tem (CSS). It is managed by the SICSR register.
6.4.1 Low Voltage Detector (LVD)
The Low Voltage Dete ctor function (LVD) gener­ates a static reset when the V
DD
supply voltage is
below a V
IT-
reference value. This means that it secures the power-up as well as the power-dow n keeping the ST7 in reset.
The V
IT-
reference value for a voltage drop is lower
than the V
IT+
reference value for power-on in order to avoid a parasitic reset when the MCU starts run­ning and sinks current on the supply (hysteresis).
The LVD Reset circuitry generat es a reset when V
DD
is below:
–V
IT+
when VDD is rising
–V
IT-
when VDD is falling
The LVD func t io n is illustrat ed in F igure 15. The voltage threshold can be configured by option
byte to be low, medium or high.
Provided the minimum V
DD
value (guaranteed for
the oscillator frequency) is above V
IT-
, the MCU
can only be in two modes:
– under full software control – in static safe reset
In these conditions, secure operation is always en­sured for the application without the need for ex­ternal reset hardware.
During a Low Voltage Detector Reset, the RESET pin is held low, thus p ermitting the MCU to reset other devices.
Notes: The LVD allows the device to be used without any
external RESET circuitry. If the medium or low thresholds are selected, the
detection may occur outside the specified operat­ing voltage range. Below 3.8V, device operation is not guaranteed.
The LVD is an optional func tion which can be se­lected by option byte.
Figure 15. Low Voltage Detector vs Reset
V
DD
V
IT+
RESET
V
IT-
V
hys
ST72324
28/161
SYSTEM INTEGRITY MANAGEMENT (Cont’d)
6.4.2 Auxiliary Voltage Detector (AVD)
The Voltage Detector function (AVD) is based on an analog comparison between a V
IT-(AVD)
and
V
IT+(AVD)
reference value and the VDD main sup-
ply. The V
IT-
reference value f or falling voltage is
lower than the V
IT+
reference value for rising volt­age in order to avoid parasitic detection (hystere­sis).
The output of the AVD comparator is directly read­able by the application software through a real time status bit (AVDF) in t he S ICS R regi ster. This bit is read only.
Caution: The AVD function is active only if the LVD is enabled through the option byte.
6.4.2.1 Monitoring the V
DD
Main Sup ply
The AVD voltage threshold value is relative to the selected LVD threshold configured by option byt e (see Section 14.1 on page 149).
If the AVD interrupt is enabled, an interrupt is gen­erated when the voltage crosses the V
IT+(AVD )
or
V
IT-(AVD)
threshold (AVDF bit toggles).
In the case of a drop i n v oltage, t he A V D i nterrupt acts as an early warning, allowing software to shut down safely before the LV D resets the microcon­troller. See Figure 16.
The interrupt on the rising edge is used to info rm the application that the V
DD
warning state is over.
If the voltage rise time t
rv
is less than 256 or 4 096 CPU cycles (depending on the reset delay select­ed by option byte), no AVD interrupt will be gener­ated when V
IT+(AVD)
is reached.
If t
rv
is greater than 256 or 4096 cycles then:
– If the AVD interrupt is enabled before the
V
IT+(AVD)
threshold is reached, then 2 AVD inter­rupts will be received: the first when the AVDIE bit is set, and the second when the threshold is reached.
– If the AVD interrupt is enabled after the V
IT+(AVD)
threshold is reached then only one AVD interrupt will occur.
Figure 16. Using the AVD to Monitor V
DD
V
DD
V
IT+(AVD)
V
IT-(AVD)
AVDF bit 0 0RESET VALUE
IF AVDIE bit = 1
V
hyst
AVD INTERRUPT REQUEST
INTERRUPT PROCESS
INTERRUPT PROCESS
V
IT+(LVD)
V
IT-(LVD)
LVD RESET
Early Warning Interrup t
(Power has dropped, MCU not not yet in reset)
1
1
t
rv
VOLTAGE RISE TIME
ST72324
29/161
SYSTEM INTEGRITY MANAGEMENT (Cont’d)
6.4.3 Clock Security System (CSS)
The Clock Security System (CSS) protects the ST7 against breakdowns, spikes and overfrequen­cies occurring on the main clock sourc e (f
OSC
). It is based on a clock filter and a clock detection con­trol with an internal safe oscillator (f
SFOSC
).
Caution: The CSS function is not guaranteed. Re­fer to Section 15
6.4.3.1 Clock Filter Control
The PLL has an integrated glitch filtering capability making it possible to protect the internal clock from overfrequencies created by individual spikes. This feature is available only when t he PLL is enabled. If glitches occur on f
OSC
(for example, due to loose connection or noise), the CSS filters t hese auto­matically, so the internal CPU frequency (f
CPU
)
continues deliver a glitch-free signal (see Figure
17).
6.4.3.2 Clock detection Control
If the clock signal disappears (due to a broke n or disconnected resona tor...), the safe os cillator de­livers a low frequency clock signal (f
SFOSC
) whi c h allows the ST7 to perform some rescue opera­tions.
Automatically, the ST7 clock source switches back from the safe o scillator (f
SFOSC
) if the main clock
source (f
OSC
) recovers.
When the internal clock (f
CPU
) is driven by the safe
oscillator (f
SFOSC
), the application software is noti-
fied by hardware setting the CSSD bit in the SI C-
SR register. An interrupt can be generated if the CSSIE bit has been previously set. These two bits are described in the SICSR register description.
6.4.4 Low Power Mo des
6.4.4.1 Interrupts
The CSS or AVD interrupt events g enerate an in­terrupt if the corresponding Enable Control Bit (CSSIE or AVDIE) is set and the interrupt mask in the CC register is reset (RIM instruction).
Figure 17. Clock Filter Function
Mode Description
WAIT
No effect on SI. CSS and AVD interrupts cause the device to exit from Wait mode.
HALT
The CRSR register is frozen. The CSS (including the safe oscillator) is disabled until HALT mode is exited. The previous CSS configuration resumes when the MCU is woken up by an interrupt with “exit from HALT mode” capability or from the counter reset value when the MCU is woken up by a RESET.
Interrupt Event
Event
Flag
Enable
Control
Bit
Exit from Wait
Exit
from
Halt
CSS event detection (safe oscillator acti­vated as main clock)
CSSD CSSIE Yes No
AVD event AVDF AVDIE Yes No
f
OSC2
f
CPU
f
OSC2
f
CPU
f
SFOSC
PLL ON
Clock Filter Function
Clock Detection Function
ST72324
30/161
SYSTEM INTEGRITY MANAGEMENT (Cont’d)
6.4.5 Register Description SYSTEM INTE GRITY (SI) CONTRO L/ STATUS REGISTER (SIC SR )
Read/Write Reset Value: 000x 000x (00h)
Bit 6 = AVDIE
Voltage Detector interrupt enable
This bit is set and cleared by software. It enables an interrupt to be generated when the AVDF flag changes (toggles). The pending interrupt informa­tion is automatically cleared when software enters the AVD interrupt routine. 0: AVD interrupt disabled 1: AVD interrupt enabled
Bit 5 = AVDF
Voltage Detector flag
This read-only bit is set and cleared by hardware. If the AVDIE bit is set, an interrupt request is gen­erated when the AVDF bit changes value. Refer to
Figure 16 and to Section 6. 4.2.1 for additional de-
tails. 0: V
DD
over V
IT+(AVD)
threshold
1: V
DD
under V
IT-(AVD)
thres h old
Bit 4 = L VDRF
LVD reset flag
This bit indicates that the last Reset was generat­ed by the LVD block. It is set by hardware (LVD re­set) and cleared by software (writing zero). See WDGRF flag description for more details. When the LVD is disabled by OPTION BYTE, the LVDRF bit value is undefined.
Bits 3 = Reserved, must be kept cleared.
Bit 2 = CSSIE
Clock security syst. interrupt enable
This bit enables the interrupt when a disturbance is detected by the Clock Security System (CSSD bit set). It is set and cleared by software. 0: Clock security system interrupt disabled
1: Clock security system interrupt enabled When the CSS is disabled by OPTION BYTE, t he CSSIE bit has no effect.
Bit 1 = CSSD
Clock security system dete cti o n
This bit indicates that the safe oscillator of the Clock Security System block has been selected by hardware due to a disturbance on the ma in clock signal (f
OSC
). It is set by hardware a nd clea red by reading the SICSR register when the original oscil­lat o r recove rs . 0: Safe oscillator is not active 1: Safe oscillator has been activated When the CSS is disabled by OPTION BYTE, t he CSSD bit value is forced to 0.
Bit 0 = WDGRF
Watchdog reset flag
This bit indicates that the last Reset was generat­ed by the Watchdog p eripheral. It is set by hard­ware (watchdog reset) and cleared by software (writing zero) or an LVD Reset (to ensure a stable cleared state of the WDGRF flag when CPU starts). Combined with the LVDRF flag information, the flag description is given by the following table.
Applicat i on notes
The LVDRF flag i s not cleared when another RE ­SET type occurs (external or watchdog), the LVDRF flag remains set to ke ep trace of the origi­nal failure. In this case, a watchdog res et can be detected by software while an external reset can not.
CAUTION: When the LVD is not activated with the associated option byte, the WDGRF flag can not be used in the application.
70
AVD
IE
AVDFLVD
RF
0
CSSIECSSDWDG
RF
RESET Sources LVDRF WDGRF
External RESET pin 0 0
Watchdog 0 1
LVD 1 X
Loading...
+ 131 hidden pages