SGS Thomson Microelectronics M68Z128 Datasheet

M68Z128
5V, 1 Mbit (128Kb x8) Low Power SRAM with Output Enable
ULTRA LOW DATA RETENTION CURRENT
–10nA (typical) – 2.0µA (max)
OPERATION VOLTAGE: 5V ±10%
128Kb x 8 VERY FAST SRAM with OUTPUT
EQUAL CYCLE and ACC ESS TIMES: 55ns
LOW V
TRI-STATE COMMON I/O
LOW ACTIVE and STAN DB Y POWER
AUTOMATIC POWER-DOWN WHEN
DESELECTED
INTENDED FOR USE WITH ST
ZEROPOWER
CONTROLLERS
DATA RETENTION: 2V
CC
®
AND TIMEKEEPER®
TSOP32 (N)
8 x 20mm
Figure 1. Logic Diagram
DESCRIPTION
The M68Z128 is a 1 Mbit (1,048,576 bit) CMOS SRAM, organized as 131,072 words by 8 bits. The device features fully static operat ion requiring no external clocks or timing strobes, with equal ad­dress access and cycle times. It requires a single
5V ±10% supply, and all inputs and outputs are TTL compatible.
Table 1. Signal Names
A0-A16 Address Inputs
DQ0-DQ7 Data Input/Output E1
E2 Chip Enable 2
G W
V
CC
V
SS
Chip Enable 1
Output Enable Write Enable
Supply Voltage
Ground
A0-A16
W
E1
E2
V
CC
17
M68Z128
G
V
SS
8
DQ0-DQ7
AI00647
NC Not Connected Internally
1/12March 2000
M68Z128
Table 2. Absolute Maximum Ratings
Symbol Parameter Value Unit
T
A
T
STG
(2)
V
IO
V
CC
(3)
I
O
P
D
Note: 1. Except for the ratin g " Operating Temperature Range", stresses abo ve those listed in the T able "Abs ol ute Maximum Ratings" may
cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indi cated in the Operating sections of this s pecification is not impli ed. Exposure to Absolute M aximum Rating condi­tions for extended per iods may aff ect device reliabilit y. Refer also to the STMicroel ectronics SURE Program an d other relevan t qual ­ity docum en ts .
2. Up to a m aximum op erating V
3. One out put at a time, not to exceed 1 s econd durat i on.
Ambient Operating Temperature
Storage Temperature –65 to 150 °C Input or Output Voltage Supply Voltage –0.3 to 7.0 V Output Current 20 mA Power Dissipation 1 W
of 5.5V only.
CC
Figure 2. TSOP Connection s
(1)
READ MODE
0 to 70 °C
–0.3 to V
CC
+ 0.3
V
The M68Z128 is in the Read mode whenever Write Ena ble (W Low, and both Chip Enables (E1
) is High with Output Enable (G)
and E2) are as­serted. This provides acc ess to dat a fr om eight of the 1,048,576 locations in the static memory array,
A11 G
1
32 A9 A8
A13
W
E2
A15
V
CC NC
8 9
M68Z128
25
24
A16 A14 A12
A7 A6 A5 A4 A3
16 17
AI00657
A10 E1 DQ7 DQ6 DQ5 DQ4 DQ3
V
SS
DQ2 DQ1
DQ0
A0
A1
A2
specified by the 17 address inputs. Val id dat a wi ll be available at the eight output pins within t
AVQV
after the last stable address, providing G is Low, E1
is Low and E2 is High. If Chip Enable or Output Enable access times are not met, data access will be measured from the limiting parameter (t
E2HQV
, or t
t may be indeterminate at t
) rather than the address. Data out
GLQV
E1LQX
, t
E2HQX
but data lines will always be valid at t
and t
AVQV
E1LQV
GLQX
.
WRITE MODE
The M68Z128 is in the Write mode whenever the
and E1 pins are Low, with E2 High. Either the
W Chip Enable input s (E1 able input (W
) must be de-asserted during Ad-
and E2) or the Write En-
dress transitions for subsequent write cycles. Write begins with the concurrence of both Chip Enables being active with W
low. Therefore, ad­dress setup time is r eferenced to Write Enable and both Chip Enables as t
AVWL
, t
AVE1L
and t
AVE2H
re­spectively, and is determined by the latter occur­ring edge.
The Write cycle can be terminated by the earlier
, W, or the falling edge of E2.
= Low, E2 = High and
of its falling edge. Care must
WLQZ
DVWH
or for t
DVE2L
DVE1H
before the
before
be-
This device has an automatic power-down feature, reducing the power consumption by over 99% when deselected.
The M68Z128 is available in TSOP32 (8 x 20mm) package.
rising edge of E1 If the Output is enabled (E1
= Low), then W will return the outputs to high im-
G pedance within t be taken to avoid bus contention in this type of op­eration. Data input must be valid for t the rising edge of Write E nable, o r for t fore the rising edge of E1
, ,
2/12
Table 3. Operating Modes
Operation E1 E2 W G DQ0-DQ7 Power
Read Read Write Deselect Deselect X
Note: 1. X = VIH or VIL.
V
IL
V
IL
V
IL
V
IH
V
IH
V
IH
V
IH
V
IH
V
IH
V
IL
XX
V
IL
X
V
IH
V
IL
X
Data Output
Data Input Active X X
Hi-Z Active
Hi-Z Standby Hi-Z Standby
M68Z128
Active
Table 4. AC Measurement Conditions
Figure 3. AC Testing Load Circuit
Input Rise and Fall Times 15ns Input Pulse Voltages 0 to 3V
5.0V
Input and Output Timing Ref. Voltages 1.5V
Note: O ut put H i-Z is defin ed as t he poi nt w here da ta is no lo nger
driven.
falling edge of E2, whi chever occurs f irst, and re­main v a lid for t
WHDX
, t
E1HDX
or t
E2LDX
.
OPERATIONAL MODE
The M68Z128 has a Chip Enable power down fea-
DEVICE UNDER
TEST
990
1800
CL = 50pF or 5pF
ture which invokes an automatic standby mode whenever either Chip Enable is de-asserted (E1 High or E2 = Low). An Output Enable (G provides a high speed tri-state control, allowing fast read/write cycles to be achieved with the com-
=
) signal
CL includes JIG capacitance
mon I/O data bu s. Operational mo des are deter­mined by device control inputs W
, E1, and E2 as
summarized in the Operating Modes table.
Table 5. Capacitance
Symbol Parameter Test Condition Min Max Unit
C
IN
(2)
C
OUT
Note: 1. Sampled only, not 100% tested.
2. Outputs desele cted.
(1)
(TA = 25 °C, f = 1 MHz)
Input Capacitance on all pins (except DQ) Output Capacitance
V
V
OUT
= 0V
IN
= 0V
9pF 9pF
OUT
AI00658B
3/12
M68Z128
Figure 4. Block Diagram
A
A
CHIP ENABLE.
(9)
ROW
DECODER
MEMORY
ARRAY
V
CC
V
SS
E1 E2
DQ
(8)
DQ
CHIP
ENABLE
W
G
INPUT
DATA CTRL
CHIP ENABLE.
I/O CIRCUITS
COLUMN
DECODER
(8)
A A
AI00665
Table 6. DC Characteristics
(T
= 0 to 70°C; VCC = 5V ±10%)
A
Symbol Parameter Test Condition Min Typ Max Unit
I
Input Leakage Current
LI
I
I
CC1
I
CC2
I
CC3
V
V V V
Note: 1. Average AC current, Ou t puts open, cycling at t
Output Leakage Current
LO
(1)
Supply Current
(2)
Supply Current (Standby) TTL
(3)
Supply Current (Standby) CMOS
Input Low Voltage –0.3 0.8 V
IL
Input High Voltage 2.2
IH
Output Low Voltage
OL
Output High Voltage
OH
2. All other Inputs at V
3. All other Inputs at V
0.8V or VIH 2.2V.
IL
0.3V or VIH VCC –0.3V.
IL
0V V
0V
V
V
CC
V
= 5.5V , E1 V
CC
or E2 0.3V, f = 0
minimum.
AVAV
V
IN
CC
V
≤ V
OUT
CC
= 5.5V, (-55)
CC
= 5.5V, E1 = VIH or E2 = V
I I
= 2.1mA
OL
= –1mA
OH
IL
, f =0
CC
– 0.3V
±1 µA ±1 µA
30 70 mA
0.1 2 mA
0.4 20 µA
V
+ 0.3
CC
0.4 V
2.4 V
V
4/12
Loading...
+ 8 hidden pages