SGS Thomson Microelectronics M58LW128B, M58LW128A Datasheet

128 Mbit (8Mb x16 or 4Mb x32, Uniform Block, Burst)

FEATURES SUMMARY

– M58LW128A: x16 – M58LW128B: x16/x32
SUPPLY VOLTAGE
–V
–V
SYNCHRONOUS/ASYNCHRONOUS READ
– Synchronous Burst read – Pipelined Synchronous Burst Read – Asynchronous Random Read – Asynchronous Address Latch Controlled
– Page Read
ACCESS TIME
– Synchronous Burst Read up to 66MHz – Asynchronous Page Mode Read 150/25ns – Random Read 150ns
PROGRAMMING TIME
– 16 Word or 8 Double-Word Write Buffer –12µs Word effective programming time
128 UNIFORM 64 KWord MEMORY BLOCKS
BLOCK PROTECTION/ UNPROTECTION
PROGRAM and ERASE SUSPEND
OTP SECURITY AREA
COMMON FLASH INTERFACE
100,000 PROGRAM/ERASE CYCLES per
BLOCK
ELECTRONIC SIGNATURE
– Manufacturer Code: 0020h – Device Code M58LW128A: 881 8h – Device Code M58LW128B: 8819h
= 2.7 to 3.6V core supply voltage for Pro-
DD
gram, Erase and Read operations
= 1.8 to VDD for I/O B u ffers
DDQ
Read
M58LW128A M58LW128B
3V Supply Flash Memories
PRELIMINARY DATA

Figure 1. Packages

TSOP56 (N)
14 x 20mm
TBGA
TBGA64 (ZA)
10 x 13mm
TBGA
TBGA80 (ZA)
10 x 13mm
February 2003
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
1/65
M58LW128A, M58LW128B

TABLE OF CONTENTS

SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. TSOP56 Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 4. TBGA64 Connections for M58LW1 28A (Top view through package) . . . . . . . . . . . . . . . 9
Figure 5. TBGA80 Connections for M58LW1 28B (Top view through package) . . . . . . . . . . . . . . 10
Figure 6. Block Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Address Inputs (A1-A23). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Data Inputs/Outputs (DQ0-DQ31 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Reset/Power-Down (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Latch Enable (L). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Clock (K).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Burst Address Advance (B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Valid Data Ready (R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Word Organization (WORD).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Ready/Busy (RB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Program/Erase Enable (V V
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
DD
Input/Output Supply Voltage (V Ground (V Ground (V
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
SS
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
SSQ
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
PP
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
DDQ
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Asynchronous Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Asynchronous Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Asynchronous Latch Controlled Bus Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Asynchronous Page Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Asynchronous Bus Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4
Asynchronous Latch Controlled Bus Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Power-Down.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 2. Asynchronous Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Synchronous Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Synchronous Burst Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Synchronous Pipelined Burst Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Synchronous Burst Read Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 3. Synchronous Burst Read Bus Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2/65
M58LW128A, M58LW128B
Table 4. Address Latch Cycle for Optimum Pipelined Synchronous Burst Read . . . . . . . . . . . . . 17
Figure 7. Synchronous Burst Read Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 8. Example Synchronous Pipelined Burst Read Operation . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 9. Example Burst Address Advance and Burst Abort operations. . . . . . . . . . . . . . . . . . . . 19
Burst Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Read Select Bit (M15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
X-Latency Bits (M14-M11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Y-Latency Bit (M9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Valid Data Ready Bit (M8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Burst Type Bit (M7).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Valid Clock Edge Bit (M6).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Latch Enable Bit (M3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Burst Length Bit (M2-M0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 5. Burst Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 6. Burst Type Definition (x16 Bus Width). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 7. Burst Type Definition (x32 Bus Width). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 8. Burst Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Read Memory Array Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Read Electronic Signature Comma nd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Read Query Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Read Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Clear Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Write to Buffer and Program Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Program/Erase Suspend Comm and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Set Burst Configuration Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Block Protect Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Blocks Unprotect Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 9. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 10. Read Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 11. Program, Erase Times and Program Erase Endurance Cycles . . . . . . . . . . . . . . . . . . 28
STATUS REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Erase Status (Bit 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Program Status (Bit 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
VPP Status (Bit 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Block Protection Status (Bit 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Reserved (Bit 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 12. Status Register Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3/65
M58LW128A, M58LW128B
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 13. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3
Table 14. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 10. AC Measurement Input Output Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 11. AC Measurement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 15. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 16. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 12. Asynchronous Bus Read AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 17. Asynchronous Bus Read AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 13. Asynchronous Latch Controlled Bus Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . 36
Table 18. Asynchronous Latch Controlled Bus Read AC Characteristics. . . . . . . . . . . . . . . . . . . 36
Figure 14. Asynchronous Page Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 19. Asynchronous Page Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 15. Asynchronous Write AC Waveform, Write Enable Controlled . . . . . . . . . . . . . . . . . . . 38
Figure 16. Asynchronous Latch Controlled Write AC Waveform, Write Enable Controlled. . . . . . 38
Table 20. Asynchronous Write and Latch Controlled Write AC Characteristics, Write Enable
Controlled.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 17. Asynchronous Write AC Waveforms, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . 40
Figure 18. Asynchronous Latch Controlled Write AC Waveforms, Chip Enable Controlled . . . . . 40
Table 21. Asynchronous Write and Latch Controlled Write AC Characteristics, Chip Enable
Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 19. Synchronous Burst Read AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 20. Synchronous Burst Read - Continuous - Valid Data Ready Output. . . . . . . . . . . . . . . 43
Table 22. Synchronous Burst Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 21. Reset, Power-Down and Power-Up AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 23. Reset, Power-Down and Power-Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 45
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 22. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Outline . . . . . . . 46
Table 24. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Mechanical Data 46
Figure 23. TBGA64 - 10x13mm - 8 x 8 ball array, 1mm pitch, Package Outline. . . . . . . . . . . . . . 47
Table 25. TBGA64 - 10x13mm - 8 x 8 ball array, 1 mm pitch, Package Mechanical Data . . . . . . 47
Figure 24. TBGA80 - 10x13mm - 8 x 10 ball array, 1mm pitch, Package Outline. . . . . . . . . . . . . 48
Table 26. TBGA80 - 10x13mm - 8 x 10 ball array, 1mm pitch, Package Mechanical Data. . . . . . 48
PART NUMBERING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 27. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
APPENDIX A. BLOCK ADDRESS TABLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 28. Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
APPENDIX B. COMMON FLASH INTERFACE - CFI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 29. Query Structure Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4/65
M58LW128A, M58LW128B
Table 30. CFI - Query Address and Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 31. CFI - Device Voltage and Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 32. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 33. Block Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 34. Extended Query information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
APPENDIX C. FLOW CHARTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 25. Write to Buffer and Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 57
Figure 26. Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . 58
Figure 27. Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 28. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . 60
Figure 29. Command Interface and Program Erase Controller Flowchart (a). . . . . . . . . . . . . . . . 61
Figure 30. Command Interface and Program Erase Controller Flowchart (b). . . . . . . . . . . . . . . . 62
Figure 31. Command Interface and Program Erase Controller Flowchart (c) . . . . . . . . . . . . . . . . 63
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 35. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5/65
M58LW128A, M58LW128B

SUMMARY DESCRIPTION

M58LW128 is a 1 28 Mbit (8Mb x16 or 4Mb x32) non-volatile memory that can be read, erased and reprogrammed. These operations can be per­formed using a single low voltage (2.7V to 3.6V) core supply. On power-up the memo ry d efaults to Read mode with an asynchronous bus where it can be read in the same way as a non-burst Flash memory.
The memory is divided into 128 blocks of 1Mbit that can be erased ind ependently so it is possible to preserve valid data while old data is erased. Program and Erase command s are written to the Command Interface of the memory. An on-chip Program/Erase Controller simplifies the process of programming or erasing the memory by taking care of all of the special operations that are re­quired to update the memory contents. The end of a Program or Erase operation can be detected and any error conditions identified in the Status Regis­ter. The command set required to control the memory is consistent with JEDEC standards.
The Write Buffer allows the microprocessor to pro­gram up t o 16 W ords (or 8 Double Words) in par­allel, both speeding up the programming and freeing up the microprocessor to perform other work. The minimum buffer size for a program op­eration is an 8 Word (or 4 Double Word) page. A page can only be programmed once between Erase operations.
Erase can be suspended in order to perform either read or program in any ot her block and then re­sumed. Program can be suspended to read data in any other block and then resumed. Each block can be programmed and erased over 100,000 cycles.
Individual block protection against program or erase is provided for data security. All blocks are protected during power-up. Th e protection of the blocks is non-volatile; after power-up the protec-
tion status of e ach block is restored to the state when power was last removed. Software com­mands are provided to allow protection of some or all of the blocks and to cancel all block protection bits simultaneously. All program or erase opera­tions are blocked when the Program Erase Enable input Vpp is low.
The Reset/Power-Down pin is used to apply a Hardware Reset to the memory and to set the de­vice in Power-Down mode. It can also be used to temporarily disable the protection mechanism.
In asynchronous mode Chip Enable, Output En­able and Write Enable signals control the bus op­eration of the memory. An Address Latch input can be used to latch addresses in Latch Controlled mode. Together they allow simple , yet powerful, connection to most microprocessors, often without additional logic.
In synchronous mode all Bus Read operations are synchronous with the Clock. Chip Enable and Out­put Enable select the Bus Read operation; the ad­dress is Latched using the Latch Enable inputs and the address is advanced using Burst Address Advance. The signals are compatible with most microprocessor burst interfaces.
A One Time Programmable (OTP) area is included for security purposes. Either 512 Words (x16 Bus Width) or 512 Double-Words (x32 Bus Width) is available in the OTP area. The process of reading from and writing to the OTP area is not published for security purposes; contact STMicroelectronics for details on how to use the OTP area.
The memory is offered in various packages . The M58LW128A is available in TSOP56 (14 x 20 mm) and TBGA64 (1mm pitch). The M58LW128B is available in TBGA80 (1mm pitch).
6/65
M58LW128A, M58LW128B

Figure 2. Logic Diagram

V
V
DD
23
A1-A23
V
PP
W
E
G
RP
L B K
(1)
WORD
Note: 1. M58LW12 8B onl y.
M58LW128A M58LW128B
V
V
SS
DDQ
SSQ
16
DQ0-DQ15
16
DQ16-DQ31
RB R
AI04314

Table 1. Signal Names

A1 Address Input (x16 Bus Width only) A2-A23 Address inputs DQ0-DQ15 Data Inputs/Outputs
DQ16-DQ31
B
(1)
E G K Clock L R Valid Data Ready RB RP V
PP
W WORD V
DD
V
DDQ
V
SS
V
SSQ
NC Not Connected Internally
Data Inputs/Outputs (x32 Bus Width of M58LW128B only)
Burst Address Advance Chip Enable Output Enable
Latch Enable
Ready/Busy Reset/Power-Down Program/Erase Enable Write Enable Word Organization (M58LW128B only) Supply Voltage Input/Output Supply Voltage Ground Input/Output Ground
7/65
M58LW128A, M58LW128B

Figure 3. TSOP56 Connections

A22
A21 A20 A19 A18 A17 A16
V
A15 A14 A13 A12
V
A11 A10
V
DD
PP
RP
A9 A8
SS
A7 A6 A5 A4 A3 A2 A1
1
R
E
14
M58LW128A
15
28 29
56
43 42
NC W
G RB
DQ15 DQ7 DQ14 DQ6 V
SSQ
DQ13 DQ5 DQ12 DQ4 V
DDQ
V
SS
DQ11 DQ3 DQ10 DQ2 V
DD
DQ9 DQ1 DQ8 DQ0 B K A23
L
AI04315
8/65
M58LW128A, M58LW128B

Figure 4. TBGA64 Connections for M58LW128A (Top view through package)

87654321
A
B RA19A2
C
D A16
E
F
G
A1
V
A4 A5
K
A23
DQ0
A6 V
SS
A7A3
A8
A10 A12
A11
DQ10
DQ2B
PP
EA9
RP
DDQ
A13
A14
A15
NC NC
DQ5V
V
DD
NC
NC
NC
NC NC
DQ6
DQ15 RBDQ9DQ8 DQ1 DQ4DQ3
DQ14
A20
A22A18
A21
A17
GDQ12DQ11
W
H
L
NC
V
DD
V
SS
DQ13
V
SSQ
DQ7
NC
AI04316
9/65
M58LW128A, M58LW128B

Figure 5. TBGA80 Connections for M58LW128B (Top view through package)

87654321
A
B RA19A2
C
D NC
E
F
G
A1
A4 A5
DQ24
A8 A22A18
A7
A6A3
DQ25
DQ18
V
SS
A10
A11
DQ27
LDQ17 DQ26 DQ30DQ5DQ3
E
A12A9
V
PP
RP
A13
A14
A15
A23
DQ6WORD
V
DD
A16
A17
NC
DQ28
DQ20 DQ29
W DQ21
A20
DQ22 DQ31DQ19DQ16
A21
NC
DQ23DQ13DQ10
10/65
H
J
K
K DQ15DQ2 DQ12B DQ11 GRB
DQ0
DQ8
DQ1
DQ9 DQ14
V
DD
V
DD
SS
V
SS
DQ4V
V
DDQ
V
V
SSQ
DDQ
V
V
SSQ
DDQ
DQ7
AI04318

Figure 6. Block Addresses

M58LW128A, M58LW128B
M58LW128A, M58LW128B
Word (x16) Bus Width
Address lines A1-A23
7FFFFFh
7F0000h
7EFFFFh
7E0000h
01FFFFh
010000h
00FFFFh
000000h
Note: A l so see Appe ndi x A, Table 28 for a full listing of the Block Addresses
1 Mbit or
64 KWords
1 Mbit or
64 KWords
Total of 128
1 Mbit Blocks
1 Mbit or
64 KWords
1 Mbit or
64 KWords

SIGNAL DESCRIPTIONS

See Figure 2, Logic Diagram and Table 1, Signal Names, for a brief overview of the signals connect­ed to this device.

Address Inputs (A1-A23). The Address Inputs are used to select the cells to access in the mem­ory array during Bus Read operations either to read or to program data to. During Bus Write oper­ations they control the commands sent to the Command Interface of the internal state m ac hine. Chip Enable must be low when selecting the ad­dresses.

The address inputs are latched on the rising edge of Chip Enable, Write Enable or Latch Enable, whichever occurs first in a write operation. The ad­dress latch is transparent when Latch Enable is low, V
. The address is internally latched in a pro-
IL
gram or erase operation. With a x32 Bus Width, WORD
= VIH, Address Input A1 is ignored; the Least Significant Word is output on DQ0-DQ15 and the Most Significant Word is output on DQ16-DQ31. With a x16 Bus Width, WORD on DQ0-DQ15 when A1 is lo w, V
= VIL, the Least Significant Word is ou tput
and the Most
IL,
Significant Word is output on DQ0-DQ15 when A1 is high, V
.
IH

Data Inputs/Outputs (DQ0-DQ31). The Data In­puts/Outputs output the data stored at the selected address during a Bus Read operation, or are used

to input the data during a Program operation. Dur­ing Bus Write operations they repres ent the com­mands sent to the Command Interface of the internal state machine. When used to input data or write commands they are latched on the rising edge of Write Enable or Chip Enable, whichever occurs first.
When Chip Enable and Output Enable are both low, V ory array, the Electronic Signature, the Block Pro­tection status, the CFI Information or the contents of the Status Register. The data bus is high imped­ance when the chip is deselected, Output E nable is High, V Low, V active the Ready/Busy status is given on DQ7 while DQ0-DQ6 and DQ8-DQ 31 are high imped­ance.
With a x16 Bus Width, WORD are not used and are high impedance.
Chip Enable (E
vates the memory control logic, input buffers, de­coders and sense amplifiers. Chip Enable, E V consumption to the Standby level, I
Output Enable (G
the outputs through the data output buffers during a read operation. When Output Enable, G
M58LW128B
Double-Word (x32) Bus Width
Address lines A2-A23
(A1 is Don't Care)
3FFFFFh
3F8000h
3F7FFFh
3F0000h
00FFFFh
008000h 007FFFh
000000h
, the data bus outputs data from the mem-
IL
IH,
. When the Program/Erase Controller is
IL
1 Mbit or
32 KDouble-Words
1 Mbit or
32 KDouble-Words
1 Mbit or
32 KDouble-Words
1 Mbit or
32 KDouble-Words
AI06130
or the Reset/Power-Down signal is
= VIL, DQ16-DQ31
). The Chip Enable, E, input acti-
deselects the memory and reduces the power
IH
DD1
.
). The Output Enable, G, gates
, is at V
, at
IH
11/65
M58LW128A, M58LW128B
the outputs are high impedance. Output Enable, G
, can be used to inhibit the data ou tput during a
burst read operation.
Write Enable (W
). The Write Enable input, W,
controls writing to the Command Interface, Input Address and Data latches. Both addresses and data can be latched on the rising edge of Write En­able (also see Latch Enable, L
Reset/Power-Down (RP
).
). The Reset/Power­Down pin can be used to apply a Hardware Reset to the memory or to temporarily unprotect all blocks that have been prot e cte d .
A Hardware Reset is achieved by holding Reset/ Power-Down Low, V
, for at least t
IL
Reset/Power-Down is Low, V
, the Status Regis-
IL
PLPH
. When
ter information is cleared and the current is re­duced to I
(refer to Table 16, DC
DD2
Characteristics). The device is deselected and outputs are high impedance. If Reset/Power­Down goes low, V
,during a Block Erase, a Write
IL
to Buffer and Program or a Block Protect/Unpro­tect the operation is aborted and the data may be corrupted. In this case the Ready/Bu sy pin stays low, V
After Reset/Power-Down goes High, V
, for a maximum timing of t
IL
PLPH
+ t
PHRH
, the
IH
.
memory will be ready for Bus Read and Bus Write operations after t
. Note that Ready/Busy does
RHEL
not fall during a reset, see Ready/Busy Output section.
During power-up Reset/Power-Down must be held Low, V
Furthermore it must stay low for t
IL.
VDHPH
after the Supply Voltage inputs become stable. The device will then be configured in Asynchro­nous Random Read mode.
See Table 23 and F igure 21, Reset, Power-Down and Power-up Characteristics, for more details.
Holding RP
at VHH will temporarily unprotect the protected blocks in the memory. Program and Erase operations on all blocks will be possible.
In an application, it is recommended to associate Reset/Power-Down pin, RP
, with the reset sign al of the microprocessor. Otherwise, if a reset opera­tion occurs while the memory is performing a pro­gram or erase operation, the memory may output the Status Register information instead of being initialized to the default Asynchronous Random Read.
Latch Enable (L
). The Bus Interface can be con-
figured to latch the Address Input s on the rising edge of Latch Enable, L
. In synchronous bus oper­ations the address is latched on the active edge of the Clock when Latch Enable is Low, V
. Once
IL
latched, the addresses may change without affect­ing the address used by the memory. When Latch Enable is Low, V
, the latch is transparent.
IL

Clo c k (K). The Clock, K, is used to synchronize the memory with the external bus during Synchro-

nous Bus Read operations. The Clock can be con­figured to have an active rising or falling edge. Bus signals are latched on the active edge of the Clock during synchronous bus operations. In Synchro­nous Burst Read m ode the address is latched on the first active clock edge when Latch Enable is low, V
, or on the rising edge of Latch Enable,
IL
whichever occurs first. During Asynchronous Bus operations the Clock is
not used.
Burst Address Advance (B
Advance, B
, controls the advancing of the address
). The Burst Address
by the internal address counter during synchro­nous bus operations.
Burst Address Advance, B
, is only sampled on the active clock edge of the Clock when the X- or Y ­latency time has expired. If Burst Address Ad­vance is Low, V vances. If Burst Address Advance is High, V
, the internal address counter ad-
IL
IH
, the internal address counter does not change; the same data remains on the Data Inputs/Outputs and Burst Address Advance is not sampled until the Y-latency expires.
The Burst Address Advance, B
, may be tied to VIL.

Valid Data Ready (R). The Valid Data Ready output, R, is an open drain output that can be used to identify if the memory is ready to output data or not. The Valid Data Ready output is only active during Synchronous Burst Read operat ions when the Burst Length is set to Continuous. The Valid Data Ready output can be configured to be active on the clock edge of the invalid data read cycle or one cycle before. Valid Data Ready Low, VOL, in­dicates that the data is not, or will not be valid. Val­id Data Ready in a high-impedance state indicates that valid data is or will be available.

Unless the Burst Length is set to Cont inuous and Synchronous Burst Read has been selected, Valid Data Ready is high-impedance. It may be tied t o other components with the same Valid Data Ready signal to create a unique System Ready signal.
When the system clock frequency is between 33MHz and 50MHz and the Y latency is set to 2, values of B
sampled on odd clock cycles, starting
from the first read are not considered. Designers should use an external pull-up resistor
of the correct value to meet the external timing re­quirements for Valid Data Ready rising. Refer to Figure 20.
Word Organization (WORD
zatio n inpu t, WORD
, selects the x16 or x32 B us
). The Word Organi-
Width on the M58L W128B. The Word Organiza­tion input is not available on the M58LW128A.
When WORD
is Low, VIL, Word-wide x16 Bus Width is selected; data is read and written to DQ0­DQ15; DQ16-DQ31 are at high impedance and A1
12/65
M58LW128A, M58LW128B
is the LSB of the address bus. When WORD is High, V
, the Double-Word wide x32 Bus Width is
IH
selected and the data is read and written to on DQ0-DQ31; A2 is the LSB of the address bus and
A1 is don’t care.
Ready/Busy (RB
). The Ready/Busy output, RB,
is an open-drain output that can be used to identify if the Program/Erase Controller is currently active. When Ready/Busy is high impedance, the mem o­ry is ready for any read, program or erase opera­tion. Ready/Busy is Low, V
, during program and
OL
erase operations. When the de vice is busy it will not accept any additional Program or Erase com­mands except Program/Erase Suspend. When the Program/Erase Controller is idle, or suspended, Ready Busy can float High through a pull-up resis­tor.
The use of an open-drain output allows the Ready/ Busy pins from several memories to be connected to a single pull-up resistor. A Low will then indicate that one, or more, of the memories is busy.
Ready/Busy is not Low during a reset unless the reset was applied when the Program/Erase Con­troller was active; Ready/Busy can rise before Re­set/Power-Down rises.
Program/Erase Enable (V
Erase Enable input, V
). The Program/
PP
is used to protect all
PP,
blocks, preventing Program and Erase operations from affecting their data.
When Program/Erase Enable is Low, V
, any pro-
IL
gram or erase operation sent to the Command In­terface will cause the V
Status bit (bit3) in the
PP
Status Register to be set. When Program/Erase Enable is High, V
, program and erase operations
IH
can be performed on unprotected blocks. Pro­gram/Erase Enable must be kept High during all Program, Erase, Block P rotect and Block Unpro-
tect operations, otherwise the operation is not guaranteed to succeed and data may become cor­rupt.
V
Supply Voltage. The Supply Voltage, VDD,
DD
is the core power supply. Al l internal c ircuits draw their current from the V
pin, including the Pro-
DD
gram/Erase Controller. A 0.1µF capacitor should be connec ted between
the Supply Voltage, V
, and the Ground, VSS, to
DD
decouple the current surges from the power sup­ply. The PCB track widths must be sufficient to carry the currents required during all operations of the parts, see Table 16, DC Characteristics, for maximum current supply requirements.
Input/Output Supply Voltage (V
put/Output Supply Voltage, V
DDQ
). The In-
DDQ
, is the input/out­put buffer power supply. All input and output pins and voltage references are powered and mea­sured relative to the Input /Output Suppl y Voltage pin, V
The Input/Output Supply Volt age, V ways be equal or less than the V
DDQ
.
, mus t al-
DDQ
Supply Volt-
DD
age, including during Power-Up. A 0.1µF capacitor should be connec ted between
the Input/Output Supply Voltage, V Ground, V from the power supply. If V
, to decouple the current surges
SSQ
and VDD are con-
DDQ
DDQ
, and the
nected together then onl y one decoupling capac i­tor is required.
Ground (V
). Ground, V
SS
is the reference for
SS,
all core power supply voltages.
Ground (V
). Ground, V
SSQ
is the reference
SSQ,
for input/output voltage measurements. It is es­sential to connect V ground
.
SS
and V
to the same
SSQ
13/65
M58LW128A, M58LW128B

BUS OPERATIONS

The bus operations that control the memory are described in this section, see Tables 2 and 3, Bus Operations, for a summary. The bus operation is selected through the Burst Configuration Register; the bits in this register are described at the end of this secti on.
On Power-up or after a Hardware Reset the mem­ory defaults to Asynchronous Bus Read and Asyn­chronous Bus Write, n o other bus operation can be performed until the Burst Control Register has been configured.
Synchronous Read operations and Latch Con­trolled Bus Read operations can only be used to read the memory array. The Electr onic Sign ature, CFI or Stat us Register will b e read in asynchro ­nous mode regardless of the Burst Control Regis­ter se tt i n gs.
Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the memory and do not affect bus operations.

Asynchronous Bus Operation s

For asynchronous bus operations refer to Tabl e 3 together with the text below.
Asynchronous Bus Read. Asynchronous Bus Read operations read from the memory cells, or specific registers (Electronic Signature, Status Register, CFI and Block Prot ection Status) in the Command Interface. A valid bus operation in­volves setting the desired address on the Address Inputs, applying a Low sig nal, V and Output Enable and keeping Write Enable High, V
. The Data Inputs/Outputs will output the
IH
value, see Figure 12, Asynchronous Bus Read AC Waveforms, and Table 17, Asynchronous Bus Read AC Characteristics, for details of when the output becomes valid.
Asynchronous Latch Controlled Bus Read.
Asynchronous Latch Controlled Bus Read opera­tions read from the m emory cells. T he address is latched in the memory before the value is ou tput on the data bu s, allowing the address to cha nge during the cycle without affecting the address that the memo r y uses.
A valid bus operation i nvolves set ting the des ired address on the Address Inputs, setting Chip En­able and Address Latch Low, V Write Ena ble Hig h, V
; the address is latched on
IH
the rising edge of Address Latch. Once latched, the Address Inputs can change. Set Output En­able Low, V
, to read the data on the Data Inputs/
IL
Outputs; see Figure 13, Asynchronous Latch Con­trolled Bus Read AC Waveforms and Table 18, Asynchronous Latch Controlled Bus Read AC Characteristics for details on when the out put be­comes valid.
, to Chip Enable
IL
and keeping
IL
Note that, since the Latch Enable input is transpar­ent when set Low, V
, Asynchronous Bus Read
IL
operations can be performed when the memory is configured for Asynchronous Latch Enable bus operations by holding Latch Enable Low, V throughout the bus operation.
Asynchronous Page Read. Asynchronous Page Read operations are used to read from several ad­dresses within the same memory page. Each memory page is 8 Words or 4 Double-Words and has the same A 4-A23, only A1, A2 and A3 may change.
Valid bus operations are the same as Asynchro­nous Bus Read operations but with different tim­ings. The first read operation within the page has identical timings, subsequent reads within the same page have much sh orter access t i mes. If the page changes then the normal, longer timings ap­ply again. See Figure 14, Asynchronous Page Read AC Waveforms and Table 19, Asynchro­nous Page Read AC Characteristics for details on when the outputs become valid.
Asynchronous Bus Write. Asynchronous Bus Write operations write to the Command Interface in order to send commands to the memory or to latch addresses and in put data to program. Bus Write operations are asynchronous, the clock, K,
is don’t care during Bus Write operations. A valid Asynchronous Bus Write operation begins
by setting the desired address on the A ddress I n­puts and setting Latch Enabl e Low, V
. The Ad-
IL
dress Inputs are latched by the Command Interface on the rising edge of Chip Enable or Write Enable, whichever occurs first. The Data In­puts/Outputs are la tched by the Comm and Inter­face on the rising edge of Chip Enable or Write Enable, whichever occurs first. Output Enable must remain High, V
, during the whole Asyn-
IH
chronous Bus Write operation. See Figures 15, and 17, Asynchronous Write AC Wavef orms, and Tables 20 and 21, Asynchronous Write and Latch Controlled Write AC Characteristics, for details of the timing requirements.
Asynchronous Latch Controlled Bus Write.
Asynchronous Latch Controlled Bus W rite opera­tions write to the Command Interface in order to send commands to the memory or to latch ad­dresses and input data t o p rogram . Bus W r ite op­erations are asynchronous, the clock , K, is don’t care during Bus Write operations.
A valid Asynchronous Latch Controlled Bus Write operation begins by setting the desired address on the Address Inputs and pulsing Latch Enable Low, V
. The Address Inputs are latched b y the Com-
IL
mand Interface on the rising edge of Latch Enable, Chip Enable or Write Enable, whichever occurs
IL
14/65
M58LW128A, M58LW128B
first. The Data Inputs/Outputs are latched by the Command Interface on the rising edge of Chip En­able or Write Enable, whichever occurs first. Ou t­put Enable must remain High, V
, during the
IH
whole Asynchronous Bus Write operation. See Figures 16 and 18 Asynchronous Latch Controlled Write AC Waveforms, and Tables 20 and 21, Asynchronous Write and Latch Controlled Write AC Characteristics, for details of the timing re­quirements.

Output Disa bl e . The Data Inputs/Outputs are in the high impedance state when the Output Enable is High.

Standby. When Chip Enable is High, V
IH
, the
puts/Outputs pins are placed in the high imped­ance state regardless of Output Enable or Write Enable. The Supply Current is reduced to the Standby Supply Current, I
During Program or Erase operations the memory will continue to use the Program/Erase Supply Current, I til the operation completes.

Power-Down. The memory is in Power-Down mode when Reset/Power-Down, RP current is reduced to I high impedance, independent of Chip Enable, Output Enable or Write Enable.

memory enters Standby mode and the Data In-

Table 2. Asynchronous Bus Operations

Bus Operation Step E G W RP
Asynchronous Bus Read
Asynchronous Latch Controlled Bus Read
Asynchronous Page Read Asynchronous Bus Write Asynchronous Latch
Controlled Bus Write Output Disable Standby Power-Down X X X
Note: 1. X = Don’t Car e VIL or VIH. High = VIH or VHH.
2. M15 = 1, Bit s M15 and M3 are in the Burst Configura tion Register.
Address Latch Read
Address Latch
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVIHVIL
V
ILVIHVIL
V
ILVIHVIH
V
X X High X X X High Z
IH
.
DD1
, for Program or Erase operations un-
DD3
, is Low. The
, and the outputs are
DD2
(2)
M3
High 0 X Address Data Output High 1 High 1 High 0 X Address Data Output High X
High X
High X X X High Z
V
IL
L A1-A23 DQ0-DQ31
V
Address High Z
IL
V
IH
V
IL
V
IL
X X X High Z
X Data Output
Address Data Input
Address Data Input
15/65
M58LW128A, M58LW128B

Synchronous Bus Operations

For synchronous bus operat ions refer to Table 3 together with the text below.
Synchronous Burst Read. Synchronous Burst Read operations are used to read from the memo­ry at specific times synchronized to an external ref­erence clock. The burst type, length and latency can be configured. The different configurations for Synchronous Burst Read operations are de­scribed in the Burst Configuration Register sec­tion.
A valid Synchronous Burst Read operation begins when the address is set on the Address Inputs, Write Enable is High, V Latch Enable are Low, V
, and Chip Enable and
IH
, during the active edge
IL
of the Clock. The address is latched on the first ac­tive clock edge when Latch Enable i s low, or on the rising edge of Latch Enable, whichever occurs first. The data becomes available for output after the X-latency specified in the Burst Control Regis­ter has expired. The output buffers are activated by setting Output E nable Low, V
. See Figure 7
IL
for an example of a Synchron ous Burst Read op­eration.
The Burst Address Advance input and the Y-laten­cy specified in the Burst Control Register deter­mine whether the internal address counter is advanced on the active edge of the Clock. When the internal address counter is advanced the Data Inputs/Outputs change to output the v alue for t he next address.
In Continuous Burst mode (Burst Length Bit M2-
M0 is set to ‘111’), one Burst Read operation can access the entire m emory sequentially and wrap at the last address. The Burst Address Advance, B
, must be kept low , VIL, for the appropriate num­ber of clock cycles. If Burst Address Advance, B is pulled High, V
, the Burst Read will be sus-
IH
pended. In Continuous Burst Mode , if the starting addres s
is not associated with a page (4 Word or 2 Double Word) boundary the Va lid Data Ready, R, ou tput goes Low, V
, to indicate that the data will not be
IL
ready in time and additional wait-states are re­quired. The Valid Data Ready output timing (bit M8) can be changed in the Burst Configuration Register.
When using the x32 Bus Width certain X-latencies are not valid and must not be used; s ee Table 5, Burst Configuration Register.
The Synchronous Burst Read timing diagrams and AC Characteristics a re described in the AC and DC Parameters section. See Figures 19, 20 and Table 22.
Synchronous Pipelined Burst Read. Synchro­nous Burst Read operations can be overlapped to avoid or reduce the X-latency. Pipelined opera­tions should only be used with Burst Configuration Register bit M9 = 0 (Y-latency setting).
A valid Synchronous Pipelined Burst Read opera­tion occurs during a Sy nchronous Burs t Read op­eration when the new address is set on the Address Inputs and a Low pulse is applied to Latch Enable. The data for the new address becomes valid after the X-latency specified in the Burst Con­figuration Register has expired.
For optimum operation the address should be latched on the correct clock cycle. Table 4 gives the clock cycle for each valid X- and Y-latency set­ting. Only these settings are valid, other settings must not be used. There is always one Y-Latency period where the data is not valid. If the address is latched later than the clock cycle s pecified in Ta­bles 4 then additional cycles where the data is not valid are inserted. See Figure 8 for an example of a Synchronous Pipelined Burst Read operation. Here the X-latency is 8, the Y-latency is 1 and the burst length is 4; the first address is latched on cy­cle 1 while the next address is latched on cycle 6, as shown in Table 4.
Synchronous Pipelined Burst Read operations should only be performed on Burst Lengths of 4 or 8 with a x16 Bus Width or a Burst Length of 4 with a x32 Bus Width.
Suspending a Pipelined S ynch ronous B urst Read operation is not recommended.
,
Synchronous Burst Read Suspend. During a Synchronous Burst Read operation it is possible to suspend the operation, freeing the data bus for other higher priority devices.
A valid Synchronous Burst Read operation is sus­pended when b oth Output Enable an d Burst Ad­dress Advance are H igh, V Advance going High, V and the Output Enable going High, V
. The Burst Address
IH
, stops the burst counter
IH
IH
data outputs. The Synchronous Burst Read oper­ation can be resumed by setting Output Enable Low. See Figure 7 for an example o f a Synchro­nous Burst Read Suspend operation.
, inhibits the
16/65
M58LW128A, M58LW128B

Table 3. Synchronous Burst Read Bus Operation s

Bus Operation Step E G RP
X VILV VILV
VILV
VILV
X
V
V
Address Latch Read (no address advance) Read (with address advance)
Synchronous Burst Read Pipelined Synchronous
Burst Read
Read Suspend Read Resume (no address
advance) Read Resume (with address
advance) Read Abort
Note: 1. X = Don’t Care, VIL or VIH.
2. M15 = 0, Bit M 15 i s in the Burs t C onfiguration Register.
3. T = tra nsition, see M6 in the Burst Conf i guration Register for details on the active edge of K.
V
IL
V
IL
V
IL
V
ILVIHVIH
V
IL
V
IL
V
IH

Table 4. Addre s s Lat ch Cycle for Optimum Pipelin ed S ynchronous Burst Read

X-Latency Y-Latency
Burst Length = 4 Burst Length = 8
81 6 10
Address Latch Clock Cycle
K
IH
IH
IH
IH
IH
IH
(3)
L B
V
T
IL
TX TX
XX
TX
TX
XX
A1-A23
DQ0-DQ31
X Address Input
V
Data Output
IH
V
Data Output
IL
V
IH
V
IH
V
IL
X
High Z
Data Output
Data Output
High Z
91 7 11 12 1 10 14 13 1 11 15 15 2 11 19
17/65
M58LW128A, M58LW128B

Figure 7. Synchronous B urst Re ad Operation

1
0
K
Address Inputs
L
B
Data Inputs/
Outputs
Note: I n this exa mple t he Bur st Co nfigur ati on Reg ist er is set with M 2-M 0 = 001 (B urst Lengt h = 4 Wo rds or Doubl e Word s) , M6 = 1 (Valid
Clock Edge = Rising Clock Edge), M7 = 0 or 1 (Burst Type = Interleaved or Sequential), M9 = 0 (Y-Latency = 1), M14-M11 = 0011 (X-
Latency = 8) and M15 = 0 (Rea d Se l ect = Synchronous Burst Read), other bi ts are don’t care.
Q1
X-1
X
tBLKH
Q1
X+1
Q2
tBHKH
tBHKH
Q5Q5Q5Q4Q3 Q7Q6 Q8Q8Q7
tBHKH
AI03454b

Figure 8. Exam pl e Synchronous Pipelined Burst Read Op era ti on

01234567891011121314
K
15
Address Inputs
L
E
G
B
Data Inputs/ Outputs
Note: I n this exa mple t he Bur st Co nfigur ati on Reg ist er is set with M 2-M 0 = 001 (B urst Lengt h = 4 Wo rds or Doubl e Word s) , M6 = 1 (Valid
Clock Edge = Rising Clock Edge), M7 = 0 or 1 (Burst Type = Interleaved or Sequential), M9 = 0 (Y-Latency = 1), M14-M11 = 0011 (X­Latency = 8) and M15 = 0 (Rea d Se l ect = Synchronous Burst Read), other bi ts are don’t care.
Q1 R1 S1
Q1
Q2 Q3 Q4 NV R1 R2 R3 R4 NV S1 S2
NV= Not Valid
S3
AI03455
18/65
M58LW128A, M58LW128B

Figure 9. Example Burst Address Advance and Burst Abort operations

1
0
K
Address Inputs
L
B
Data Inputs/ Outputs
Note: 1. In this exam pl e the Bur st Co nf igurat ion Reg ister is set with M 2-M 0 = 010 (B urst Lengt h = 8 Words ), M 6 = 1 (V alid C loc k Edg e =
Rising Clock Edge), M 7 = 0 or 1 (Burst Type = In te rl eaved or Se quential) , M9 = 1 (Y-Lat ency = 2), M14-M11 = 0011 (X-Latency =
8) and M15 = 0 (Read Select = Sy nchronous Burst Read ), other bits a re don’t care.
2. Whe n t he system clock fre quency is be tween 33MHz and 50MHz and th e Y latenc y i s set to 2, values of B cycles, starting from t he first read are not conside red.
Q1
X-2
tBLKH
X
Q1 Q2
X+2
tBHKH
X+6X+4 X+12X+10X+8
tBHKH
Q3 Q4 Q4
tBHKH
Q4Q3
AI03457b
sampled on odd clock
19/65
M58LW128A, M58LW128B

Burst Configuration Register

The Burst Configuration Register is used to config­ure the type of bus access that the memory will perform.
The Burst Configuration Register is set through the Command Interface and will retain its informa­tion until it is re-configured, the device is reset, or the device goes into Reset/Power-Down mode. The Burst Configuration Register bits are de­scribed in Table 5. They specify the selection of the burst length, burst type, burst X and Y laten­cies and the Read operation.
Read Select Bit (M15). The Read Select bit, M15, is used to switch between asynchronous and synchronous Bus Read operations. When the
Read Select bit is set to ’1’, Bus Read operations are asynchronous; when the Read Select but is set to ’0’, Bus Read operations are synchronous.
On reset or power-up the Read Sel ect bi t is set to’1’ for asynchronous accesses.

X-Latency Bits (M14-M11). The X-Latency bits are used during Synchronous Bus Read opera­tions to set the number of clock cycles between the address being latched and the first data be­coming available. For correct operation the X-La­tency bits can only assume the values in Table 5, Burst Configuration Register. The X -Latency bits should also be sele cted in con junction with Table 8, Burst Performance to ensure valid settings.

Y-Latency Bit (M9). The Y-Latency bit is used during Synchronous Bus Read operations to set the number of clock cycles between consecutive reads. The Y-Latency value depends on both the X-Latency value and the setting in M9.
When the Y-Latency is 1 the data changes each clock cycle; when the Y-Latency is 2 the data changes every seco nd clock cycle. See Tab le 5, Burst Configuration Register and Table 8, Burst Performance, for valid co mbinations of the Y-La­tency, the X-Latency and the Clock frequency.

Valid Data Ready Bit (M8). The Valid Data Ready bit controls the timing of the Valid Data

Ready output pin, R. When the Valid Data Ready bit is ’0’ the Valid Data Ready output pin is driven Low for the active clock edge when invalid data is output on the bus. When the Valid Data Ready bit is ’1’ the Valid Data Ready output pin is driven Low one clock cycle prior to invalid data being output on the bus.

Burst Type Bit ( M7 ). The Burst Type bit is used to configure the sequence of addresses read as sequential or interleaved. When the Burst Type bit is ’0’ the memory outputs from interleaved ad­dresses; when the Burst Type bit is ’1’ the memory outputs from sequential ad dresses. See Tables 6 and 7, Burst Type Definition, for t he sequence of addresses output from a give n starting a ddress in each mode.

Valid Clock Edge Bit (M6). The Valid Clock Edge bit, M6, is used to configure the active edge of the Clock, K, during Synchronous Burst Read opera­tions. When the Valid Clock Edge bit is ’0’ the fall­ing edge of the Clock is the active edge; when the Valid Clock Edge bit is ’1 ’ the rising edge of the Clock is active.

Latch Enable Bit (M3). The Latch Enable bit is used to select between Asynchronous Random Read and Asynchronous La tch Enable Controlled Read. When the Latch Enable bit is set to ‘0’ Ran­dom read is selected; when it is set to ‘1’ Latch En­able Controlled Read is selected. To enable these Asynchronous Read configuration s M15 must be set to ‘1’.

Burst Length Bit (M2-M0). The Burst Length bits set the maximum number of Words or Double­Words that can be ou tput during a Synchronous Burst Read operation before the address wraps.

Table 5, Burst Configuration Register gives the valid combinations of the Burst Length bits that the memory accepts; Tables 6 and 7, Burst Type Def­inition, give the sequence of addresses output from a given starting address for each length.
M10, M5 an d M4 are reserved for future use.
20/65
Loading...
+ 45 hidden pages