SGS Thomson Microelectronics M58LW032D Datasheet

32 Mbit (4Mb x8, 2Mb x16, Uniform Block)

FEATURES SUMMARY

WIDE x8 or x16 DATA BUS for HIGH
BANDWIDTH
SUPPLY VOLTAGE
= V
DD
and Read operations
ACCESS TIME
– Random Read 90ns,110ns – Page Mode Read 90ns/25ns , 110ns/25 ns
PROGRAMMING TIME
– 16 Word Write Buffer –12µs Word effective programming time
32 UNIFORM 64 KWord/128KByte MEMORY
BLOCKS
ENHANCED SECURITY
– Block Protection/ Unprotection –V
PEN
– 128 bit Protection Register with 64 bit Unique
Code in OTP area
PROGRAM and ERASE SUSPEND
128 bit PROTECTION REGISTER
COMMON FLASH INTERFACE
100, 000 PROGRAM/ERASE CYCLES per
BLOCK
ELECTRONIC SIGNATURE
– Manufacturer Code: 0020h – Device Code M58LW 032D: 0016h
= 2.7 to 3.6V for Program, Erase
DDQ
signal for Program Erase Enable
M58LW032D
3V Supp l y Fl ash Mem ory

Figure 1. Packages

TSOP56 (N)
14 x 20 mm
TBGA
TBGA64 (ZA)
10 x 13 mm
1/51September 2003
M58LW032D

TABLE OF CONTENTS

SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. TSOP56 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 4. TBGA64 Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 5. Block Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Address Input (A0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Address Inputs (A1-A21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Data Inputs/Outputs (DQ0-DQ15 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Chip Enables (E0, E1, E2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Reset/Power-Down (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Byte/Word Organization Select (BYTE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Status/(Ready/Busy) (STS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Program/Erase Enable (V
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
V
DD
V
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
DDQ
V
Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
SS
Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
V
SSQ
Table 2. Device Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
PEN
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Bus Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2
Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
READ MODES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Read Memory Array Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Read Query Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4
Read Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Clear Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Word/Byte Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Write to Buffer and Program Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2/51
M58LW032D
Program/Erase Suspend Comm and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Block Protect Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Blocks Unprotect Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Configure STS Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 4. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 5. Configuration Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 6. Read Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 6. Protection Register Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 7. Word-Wide Read Protection Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 8. Byte-Wide Read Protection Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 9. Program, Erase Times and Program Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . 20
STATUS REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Program/Erase Controller Status (SR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Erase Suspend Status (SR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Erase Status (SR5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Program Status (SR4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
VPEN Status (SR3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Program Suspend Status (SR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Block Protection Status (SR1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Reserved (SR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 10. Status Register Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 11. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5
Table 12. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 7. AC Measurement Input Output Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 8. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 13. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 14. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 9. Bus Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 15. Bus Read AC Characteristics.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 10. Page Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 16. Page Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 11. Write AC Waveform, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 17. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 12. Write AC Waveforms, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 18. Write AC Characteristics, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 13. Reset, Power-Down and Power-Up AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 19. Reset, Power-Down and Power-Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 31
3/51
M58LW032D
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 14. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Outline . . . . . . . 32
Table 20. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Mechanical Data 32
Figure 15. TBGA64 - 10x13mm, 8 x 8 ball array 1mm pitch, Package Outline. . . . . . . . . . . . . . . 33
Table 21. TBGA64 - 10x13mm, 8 x 8 ball array, 1 mm pitch, Package Mechanical Data. . . . . . . 33
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 22. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
APPENDIX A. BLOCK ADDRESS TABLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 23. Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
APPENDIX B. COMMON FLASH INTERFACE - CFI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 24. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 25. CFI - Query Address and Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 26. CFI - Device Voltage and Timing Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 27. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 28. Block Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 29. Extended Query information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
APPENDIX C. FLOW CHARTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 16. Write to Buffer and Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 40
Figure 17. Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . 41
Figure 18. Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 19. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . 43
Figure 20. Block Protect Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 21. Block Unprotect Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 22. Protection Register Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 46
Figure 23. Command Interface and Program Erase Controller Flowchart (a). . . . . . . . . . . . . . . . 47
Figure 24. Command Interface and Program Erase Controller Flowchart (b). . . . . . . . . . . . . . . . 48
Figure 25. Command Interface and Program Erase Controller Flowchart (c). . . . . . . . . . . . . . . . 49
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 30. Document Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4/51

SUMMARY DESCRIPTION

The M58LW032D is a 32 Mbit (4Mb x 8 or 2Mb x16) non-volatile memory that can be read, erased and reprogrammed. These operations can be per­formed using a single low voltage (2.7V to 3.6V) core supply.
The memory is divided into 32 blocks of 1Mbit that can be erased i ndependently so it is poss ible to preserve valid data while old data is erased. P ro­gram and Erase commands are written to the Command Interface of the memory. An on-chip Program/Erase Controller simplifies the process of programming or erasing the memory by taking care of all of the special operations that are re­quired to update the memory contents. The end of a Program or Erase operation can be detected and any error conditions identified in the Status Regis­ter. The command set required to control the memory is consistent with JEDEC standards.
The Write Buffer allows the microprocessor to pro­gram from 1 to 16 Words in parallel, both speeding up the programming and freeing up the micropro­cessor to perform other work. A Word Program command is available to program a single word.
Erase can be suspended in order to perform either Read or Program in any other block and then re­sumed. Program ca n be s uspended to Read data in any other block and then resum ed. Eac h block can be programmed and erased over 100,000 cy­cles.
The M58LW032D has several security features to increase data protection.
Block Protection, where each block can be
individually protected against p r ogram or eras e
M58LW032D
operations. All blocks are protected during power-up. The protection of the blocks is non­volatile; after power-up the protection status of each block is restored to the state when power was last removed.
Program Erase Enable i nput V
erase operations are not possible when the Program Erase Enable input V
128 bit Protection Regi ster, divided into two 64
bit segments: the f irst con tains a unique device number written by ST, the second is user programmable. The user programmable segment can be protected.
The Reset/Power-Down pin is used to apply a Hardware Reset to the enabled memory and to set the device in power-down mode.
The device features an Auto Low Power mode. If the bus becomes in active during read operations, the device automatically enters Auto Low Power mode. In this mode the power c onsumption is re­duced to the Auto Low Power supply current.
The STS signal is an open drain output that can be used to identify the Program/Erase Controller sta­tus. It can be configured in two modes: Ready/ Busy mode where a static signal indicates the sta­tus of the P/E.C, and Status mode where a pulsing signal indicates the end of a Program or Block Erase operation. In Status mode it can be used as a system interrupt signal, useful for saving CPU time.
The memory is available in TSOP56 (14 x 20 mm) and TBGA64 (10x13mm, 1mm pitch) packages.
, program or
PEN
is low.
PEN
5/51
M58LW032D

Figure 2. Logic Diagram Table 1. Signal Names

A0 Address input (used in X8 mode only)
V
A0-A21
V
PEN
BYTE
W
E0
E1 E2
RP
DDVDDQ
22
16
DQ0-DQ15
M58LW032D
STS
G
V
V
SS
SSQ
AI06234b
A1-A21 Address inputs BYTE DQ0-DQ15 Data Inputs/Outputs E0 Chip Enable E1 Chip Enable E2 Chip Enable G RP STS Status/(Ready/Busy) V
PEN
W Write Enable V
DD
V
DDQ
V
SS
V
SSQ
NC Not Connected Internally DU Do Not Use
Byte/Word Organization Select
Output Enable Reset/Power-Down
Program/Erase Enable
Supply Voltage Input/Output Supply Voltage Ground Input/Output Ground
6/51

Figure 3. TSOP56 Connections

M58LW032D
V
V
NC
A21 A20 A19 A18 A17 A16
DD A15 A14 A13 A12
E0
PEN
RP A11 A10
A9 A8
V
SS
A7 A6 A5 A4 A3 A2 A1
1
14
M58LW032D
15
56
43 42
28 29
NC WE1
G STS DQ15 DQ7 DQ14 DQ6 V
SS
DQ13 DQ5 DQ12 DQ4 V
DDQ
V
SSQ
DQ11 DQ3 DQ10 DQ2 V
DD
DQ9 DQ1 DQ8 DQ0
A0 BYTE
NC
E2
AI06235
7/51
M58LW032D

Figure 4. TBGA64 Connections (Top view through package)

87654321
A
B A19A2
C
D A16
E
F
G
H
A1
A4 A5
BYTE
NC
E2
A6 V
V
SS
A7A3
DQ0
A0
DU
A8
A10
A11
DQ10
DQ2
V
DD
V
PEN
E0A9
A12
RP
DDQ
SSQ
A13
A14
A15
DU DU
DQ5V
DQ13
V
DD
DU
DU
DU
DU DU
DQ6
V
SS
DQ15 STSDQ9DQ8 DQ1 DQ4DQ3
DQ14
DQ7
A18
A20
NC
E1
A21
A17
GDQ12DQ11
W
NC
8/51
AI06236b

Figure 5. Block Addresses

Byte (x8) Bus Width Word (x16) Bus Width
M58LW032D
3FFFFFh
3E0000h
3DFFFFh
3C0000h
03FFFFh
020000h
01FFFFh
000000h
Note: Also see A ppendix A, Table 23 for a full l i st i ng of the Block Addresses
1 Mbit or
128 KBytes
1 Mbit or
128 KBytes
Total of 32
1 Mbit Blocks
1 Mbit or
128 KBytes
1 Mbit or
128 KBytes
1FFFFFh
1F0000h
1EFFFFh
1E0000h
01FFFFh
010000h
00FFFFh
000000h
1 Mbit or
64 KWords
1 Mbit or
64 KWords
1 Mbit or
64 KWords
1 Mbit or
64 KWords
AI06238b
9/51
M58LW032D

SIGNAL DESCRIPTIONS

See Figure 2, Logic Diagram and Table 1, Signal Names, for a brief overview of the signals connect­ed to this device.
Address Input (A0). The A0 address input is used to select the higher or lower Byte in X8 mode. It is not used in X16 mode (where A1 is the Lowest Significant bit).

Address Inputs (A1-A21). The Address Inputs are used to select the cells to access in the mem­ory array during Bus Read operations either to read or to program data to. During Bus Write oper­ations they control the commands sent to the Command Interface of the Program/Erase Con­troller.

The device must be enabled (refer to Table 2, De­vice Enable) when selecting the addresses. The address inputs are latched on the rising edge of Write Enable or on the first edge of Chip Enables E0, E1 or E2 that disable the device, whichever occurs first.

Data Inputs/Outputs (DQ0-DQ15). The Data In­puts/Outputs output the data stored at the selected address during a Bus Read operation, or are used to input the data during a program operation. Dur­ing Bus Write operations they repres ent the com­mands sent to the Command Interface of the Program/Erase Controller. When used to input data or Write commands they are latched on t he rising edge of Write Enable or the first edge of Chip Enables E0, E1 or E2 that disable the device, whichever occurs first.

When the device is enabled and O utp ut Enab le is low, V bus outputs data from the memory array, the Elec­tronic Signature, the Block Protection stat us, the CFI Information or the contents of the Status Reg­ister. The data b us is high impedanc e when the device is deselected, Output Enable is high, V the Reset/Power-Down signal is low, V the Program/Erase Controller is active the Ready/ Busy status is given on DQ7.

Chip Enables (E0, E1, E2). The Chip Enable in­puts E0, E1 and E2 activate the memory control logic, input buffers, decoders and sense amplifi­ers. The device is selected at the first edge of Chip Enables E0, E1 or E2 that enable the device and deselected at the first edge of Chip E nables E0, E1 or E2 that disable the device. Refer to Table 2, Device Enable for more details.

When the Chip Enable inputs deselect the memo­ry, power consumption is reduc ed to t he Standby level, I
Output Enable (G
the outputs through the data output buffers during a read operation. When Output Enable, G the outputs are high impedance.
(refer to Table 2, Device Enable), the data
IL
. When
IL
.
DD1
). The Output Enable, G, gates
, is at V
IH,
or
IH
Write Enable (W
). The Write Enable input, W,
controls writing to the Command Interface, Input Address and Data latches. Both addresses and data can be latched on the rising edge of Write En­able.
Reset/Power-Down (RP
). The Reset/Power-
Down pin can be used to apply a Hardware Reset to the me mory.
A Hardware Reset is achieved by holding Reset/ Power-Down Low, V
, for at least t
IL
Reset/Power-Down is Low, V
, the Status Regis-
IL
PLPH
. When
ter information is c leared and t he power consump­tion is reduced to power-down level. The device is deselected and outputs are high impedance. If Re­set/Power-Down goes low, V
,during a Block
IL
Erase, a Write to Buffe r and Program or a Block Protect/Unprotect the operation is aborted and the data may be corrupted. In this case the STS pin stays low, V
until the completion of the Reset/Power-Down
BH,
, for a max imum t imi ng of t
IL
PLPH
+ t
PH-
pulse. After Reset/Power-Down goes High, V
IH
, the memory will be ready for Bus Read and Bus Write operations after t
. Note that STS does not fall
PHQV
during a reset, see Ready/Busy Output section. In an application, it is recommended to associate
Reset/Power-Down pin, RP
, with the reset sig nal of the microprocessor. Otherwise, if a reset opera­tion occurs while the memory is performing an Erase or Program operation, the memory may out­put the Status Register information inst ead of be­ing initialized to the default Asynchronous Random Read.
Byte /Word Or ganizat ion Sel ect (BYT E
). The
Byte/Word Organization Select pin is used to switch between the x8 and x16 bu s widths of the memory. When Byte/Word Organizati on Select is Low, V High, V
, the memory is in x8 mode, when it is
IL
, the memory is in x16 mode.
IH
Status/(Ready/Busy) (STS). The STS signal is an open drain output t hat can be used to id entify the Program/Erase Controller status. It can be configured in two modes:
Ready/Busy - the pin is Low, V
, during
OL
Program and Erase operations and high impedance when the memory is ready for any Read, Program or Erase operation.
Status - the pin gives a pulsing signal to indicate
the end of a Program or Block Erase operation.
After power-up or reset the STS pin i s configured in Ready/Busy mode. T he pin can be co nfigured for Status mode using the Configure STS com­mand.
When the Program/Erase Controller is idle, or sus­pended, STS can float High through a pul l-up re-
10/51
M58LW032D
sistor. The use of an open-drain output allows the STS pins from several memo ries to be c onnect ed to a single pull-up resistor (a Low will indicate that one, or more, of the memories is busy).
STS is not Low during a reset unless the reset was applied when the Program/Erase controller was active.
Program/Erase Enable (V
Erase Enable input, V
PEN,
). The Program/
PEN
is used to protect all blocks, preventing Program and Erase operations from affecting their data.
Program/Erase Enable must be kept High during all Program/Erase Controller operations, other­wise the operations is not guaranteed to suc ceed and data may become corrupt.
V
Supply Voltage. VDD provides the power
DD
supply to the internal core of the memory device. It is the main power supply for all operations (Read, Program and Erase).

Table 2. Device Enable

E2 E1 E0 Device
V
IL
V
IL
V
IL
V
IL
V
IH
V
IH
V
IH
V
IH
Note: For single device operations, E2 and E1 can be connected to VSS.
V
IL
V
IL
V
IH
V
IH
V
IL
V
IL
V
IH
V
IH
V
Supply Voltage. V
DDQ
provides the power
DDQ
supply to the I/O pins and enables all Outputs to
. V
be powered independently from V tied to V
or can use a separate supply.
DD
DD
DDQ
can be
It is recommended to power-up and power-down V
DD
and V
together to avoid any condition that
DDQ
would result in data corruption.
Ground. Ground, V
V
SS
is the reference for
SS,
the core power supply. It must be connected to the system ground.
V
Ground. V
SSQ
the input/output circuitry driven by V
ground is the reference for
SSQ
DDQ
. V
SSQ
must be connected to VSS.
Note: Each device in a system should have V
DD
and V
decoupled with a 0.1µF ceramic
DDQ
capacitor close to the pin (high frequency, in­herently low inductance ca pacitors should b e as close as possible to the package). See Fig­ure 8, AC Measurement Load Circuit.
V
IL
V
IH
V
IL
V
IH
V
IL
V
IH
V
IL
V
IH
Enabled Disabled Disabled Disabled
Enabled
Enabled
Enabled Disabled
11/51
M58LW032D

BUS OPERATIONS

There are five standard bus operations that control the memory. Each of these is described in this section, see Tables 3, Bus Operations, for a sum­mary.
On Power-up or after a Hardware Reset the mem­ory defaults to Read Array mode (Page Read).
Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the memory and do not affect bus operations.
Bus Read. Bus Read operations are used to out­put the contents of the Memory Array, the Elec­tronic Signature, the Status Register, the Common Flash Interface and the Block Protection Status.
A valid bus operation i nvolves set ting the des ired address on the Address inputs, enabling the de­vice (refer to Table 2, Device Enable), a pplying a Low signal, V Write Enable High, V the previous command written to the memory (see Command Interface section).
See Figure 9, Bus Read AC Waveforms, and Ta­ble 15, Bus Read AC Characteristics, for details of when the output becomes valid.
Bus Write. Bus Write operations write Com­mands to the memory or latch addresses and input data to be programmed.
A valid Bus Write operation begin s by setting the desired address on the Address Inputs and en­abling the device (refer to Chip Enable section).
, to Output Enable and keeping
IL
. The data read depends on
IH
The Address Inputs are latched by the Command Interface on the rising edge of Write Enable or the first edge of E0, E1 or E2 that disables the device (refer to Table 2, Device Enable).
The Data Input/Outputs a re latched by the Com­mand Interface on the rising edge of Write Enable or the first edge of E0, E1 o r E2 that disables t he device whichever occurs first. Output Enable must remain High, V
, during the Bus Write operation.
IH
See Figures 11, and 12, Write AC Waveforms, and Tables 17 and 18, Write and Chip Enable Con­trolled Write AC Characteristics, for details of the timing requirements.

Output Disa bl e . The Data Inputs/Outputs are high impedance when the Output Enable is at V

IH
Power-Down. The memory is in Power-Down mode when Reset/Power-Down, RP
, is Low. The power consumption is reduced to the Power-Down level, I
, and the out puts are high impedance,
DD2
independent of Chip Enable, Output Enable or Write Enable.
Standby. Standby disables most of the internal circuitry, allowing a substantial reduction of the current consumption. The memory is in standby when Chip Enable is at V tion is reduced to the standby level I
. The power consump-
IH
DD1
and the outputs are set to high impedance, independently of the Output Enable or Write Enable inputs.
If Chip Enable switches to V
during a program or
IH
erase operation, the d ev ice en ters Standby mode when finished.
.

Table 3. Bus Operations

or VIH.
E0, E1
or E2
V
IL
V
IL
V
IL
V
IH
Bus Operation
Bus Read Bus Write
Output Disable

Power-Down X X X

Standby

Note: 1. DQ8-DQ15 are High Z in x8 mode.
2. X = Don’t Care V
12/51
IL
G
V
IL
V
IH
V
IH
XX
W RP
V
IH
V
IL
V
IH
V
IH
V
IH
V
IH
V
IL
V
IH
A1-A21 (x16)
A0-A21 (x8)
Address Data Output Address Data Input
X High Z X High Z X High Z
DQ0-DQ15 (x16) DQ0-DQ7 (x8)
(1)

READ MODES

Read operations in the M58LW032D are asyn­chronous. The device outputs the data corre­sponding to the address latched, that is the memory array, Status Register, Common Flash In­terface, Electronic Signature or Block Protection Status depending on the command issued.
During read operations, if the bus is inactive for a time equivalent to t
, the device autom at ically
AVQV
enters Auto Low Power mode. In this mode the in­ternal supply current is reduced to the Auto Low Power supply current, I
. The Data Inputs/Out-
DD5
puts will still output data if a Bus Read operation is in progress.
Read operations can be performed in two different ways, Random Read (where each Bus Read oper­ation accesses a different Page) and Page Read.
M58LW032D
In Page Read mode a Page of data is internally read and stored in a Page Buffer. Each memory page is a 4 Words or 8 Bytes and has the same A3-A21. In x8 mode only A0, A1 and A2 may change, in x16 mode only A1 and A2 may change.
The first read operation within the Page has the normal access time (t within the same Page have much sho rter access times (t
). If the Page changes then the nor-
AVQV1
mal, longer timings apply again. See Figure 10, Page Read AC Waveforms and
Table 16, Page Read AC Characteristics for de­tails on when the outputs become valid.
), subsequent reads
AVQV
13/51
M58LW032D

COMMAND INTERFACE

All Bus Write operations t o the me mory are in ter­preted by the Command Interface. Commands consist of one or more sequential Bus Write oper­ations. The Commands are summarized in Table 4, Commands. Refer to Table 4 in conjunction with the text descriptions below.
After power-up or a Reset operation the memory enters Read mode.
Read Memory A rray Command. The Read Mem­ory Array command is used to return the memory to Read mode. One Bus Write cycle is required to issue the Read Memory Array command and re­turn the memory to Read mode. Once the com­mand is issued the memory remains in Read mode until another command is issued. From Read mode Bus Read ope rations will access the memory array. After power-up or a reset the mem­ory defaults to Read Array mode (Page Read).
While the Program/Erase Controller is executing a Program, Erase, Block Protec t, Blocks Unprotect or Protection Register Program operation the memory will not accept the Read Mem ory Array command until the operation completes.
Read Electronic Si g nature Command . The Read Electronic Signature command is used to read the Manufacturer Code, the Device Code, t he Block Protection Status and the Protection Register. One Bus Write cycle is required to issue the Read Electronic Signature command. Once the com­mand is issued subsequ ent Bus Read operations read the Manufacturer Code, the Device Code, the Block Protection Status or the Protect ion Register until another command is issued. Refer to Table 6, Read Electronic Signature, Tables 7 an d 8, Word and Byte-wide Read Protection Reg ister and F ig­ure 6, Protection Register Memory Map for infor­mation on the addresses.

Read Query Command. The Read Query Com­mand is used to read data from the Common Flash Interface (CFI) Memory Area. One Bus Write cycle is required to issue the Read Query Command. Once the command is issued subsequent Bus Read operations read from the Common Flash In­terface Memory Area. See Appendix B, Tables 24, 25, 26, 27, 28 and 29 for details on the information contained in the Common Flash Interface (CFI) memory area.

Read Statu s Register Co mm an d . The Read Sta­tus Register command is us ed to read the Status Register. One Bus Write cycle is required to issue the Read Status Register command. Once the command is issued subsequent Bus Read opera­tions read the Status Register until another com­mand is issued.
The Status Register information is present on the output data bus (DQ1-DQ7) when the device is en­abled and Output Enable is Low, V
.
IL
See the section on the Status Register and Table 10 for details on the definitions of the Status Reg­ister bits
Clear Status Register Command. The Clear Sta­tus Register command can be used to reset bits SR1, SR3, SR4 and SR5 in the Status Register to ‘0’. One Bus Write is required to issue the Clear Status Register command.
The bits in the Status Register are stic ky and do not automatically return to ‘0’ when a new Write to Buffer and Program, Erase, Block Protect, Block Unprotect or Protection Register Program com­mand is issued. If any error occurs then it is essen­tial to clear any error bits in the Status Register by issuing the Clear Status Register command before attempting a new Program, Erase or Resume command.
Block Erase Command. The Block Erase com­mand can be used to e rase a block. I t sets all of the bits in the block to ‘1’. All previous data in the block is lost. If the block is protected then the Erase operation will abort, the data in the block will not be changed and the Status Register will output the error.
Two Bus Write operations are required to issue the command; the second Bus Write cycle latches the block address and starts the Program/Erase Con­troller. Once the command is issued subsequent Bus Read operations read the Status Register. See the section on the Status Register for det ails on the definitions of the Status Register bits.
During the Erase operation the memory will only accept the Read Status Register command and the Program/Erase Su spend command. All ot her commands will be ignored. Typical Erase times are given in Table 9.
See Appendix C, Figure 18, Block Erase Flow­chart and Pseudo Code, for a suggested flowchart on using the Block Erase command.
Word/Byte Program Command. The Word/ Byte Program command is used to program a sin­gle Word or Byte in the memory array. Two Bus Write operations are required to issue the com­mand; the first write cycle sets up the Word Pro­gram command, the second write cycle latches the address and dat a to be programmed, and starts the Program/Erase Controller.
If the block being program m ed i s prote cted an er­ror will be set in the Status Register and the oper­ation will abort without affecting the data in the memory array. The block must be unprotected us­ing the Blocks Unprotect command or by using the
14/51
M58LW032D
Blocks Temporary Unprotect feature of the Reset/ Power-Down pin, RP
.

Write to Buffer and Program Command. The Write to Buffer and Program comm and is used to program the memory array.

Up to 16 Words/32 Bytes can be load ed into the Write Buffer and programmed into the memory. Each Write Buffer has the same A5-A 21 add ress­es. In Byte-wide mode only A0-A4 may change in Word-wide mode only A1-A4 may change, in .
Four successive steps are required to issue the command.
1. One Bus Write o peration is required to set up the Write to Buffer and Program Comm and. Is­sue the set up command with the selected memory Block Address where the program op­eration should occur (any address in the block where the values will be programmed can be used). Any Bus Read operations will start to out­put the Status Register after the 1st cycle.
2. Use one Bus Write operation to write the same block address along with the value N on the Data Inputs/Output, where N+1 is the number of Words/Bytes to be programmed.
3. Use N+1 Bus Write operations to load the ad­dress and data for each Word into the Write Buffer. See the constraints on the address c om­binations listed below. The addresses must have the same A5-A21.
4. Finally, use one Bus Write operation to issue the final cycle to confirm the command and start the Program operation.
Invalid address combinations or failing to follow the correct sequence of Bus Write cycles will set an error in the Status Register and abort the oper­ation without affecting the data in the memory ar­ray. The Status Register should be cleared before re-issuing the command.
If the block being program m ed i s prote cted an er­ror will be set in the Status Register and the oper­ation will abort without affecting the data in the memory array. The block must be unprotected us­ing the Blocks Unprotect command.
See Appendix C, Figure 16, Write to Buffer and Program Flowchart and Pseudo Code, for a sug­gested flowchart on using the W rite to Buf fer and Program command.
Program/Erase Suspend Command. The Pro­gram/Erase Suspend command is used to pause a Word/Byte Program, Write to Buffer and Program or Erase operation. The command will only be ac­cepted during a Program or an Erase operation. It can be issued at any tim e during an Erase opera­tion but will only be accepted during a Word Pro­gram or Write to Buf fer and P rogram comman d if the Program/Erase Controller is running.
One Bus Write cycle is required to i ssue the P ro­gram/Erase Suspend command and pause the Program/Erase Controller. Once the command is issued it is necessary to poll the Program/Erase Controller Status bit (SR7) to find out when the Program/Erase Controller has paused; no other commands will be accepted until the Program/ Erase Controller has paused. After the Program/ Erase Controller has paused, the memory will con­tinue to output the Status Register until another command is issued.
During the polling period between issuing the Pro­gram/Erase Suspend command and the Program/ Erase Controller pausing it is possible for the op­eration to complete. Once the Program/Erase Controller Status bit (SR7) indicates t hat the Pro­gram/Erase Controller is no longer active, the Pro­gram Suspend Status bit (SR2) or the Erase Suspend Status bit (SR6) can be used to deter­mine if the operation has completed or is suspend­ed. For timing on the delay between issuing the Program/Erase Suspend command and the Pro­gram/Erase Controller pausing see Table 9.
During Program/Erase Suspend the Read Memo­ry Array, Read Status Register, Read Elect ronic Signature, Read Query and Program/Erase Re­sume commands will be accepted by the Com­mand Interface. Additionally, if the suspended operation was Erase then the W rite to B uffer and Program, and the Program Suspend commands will also be ac cepted. W hen a program o peration is completed inside a Block Erase Suspend the Read Memory Array command m ust be issued to reset the device in Read mode, then the Erase Re­sume command can be issued to complete the whole sequence. Only the blocks not being erased may be read or programmed correctly.
See Appendix C, Figure 17 , Program Suspend & Resume Flowchart and Pseudo Code, and Figure 19, Erase Suspend & Resume Flowchart and Pseudo Code, for suggested flowcharts on using the Program/Erase Suspend command .
Program / Erase Resume Command. The Pro­gram/Erase Resume command can be used to re­start the Program/Erase Controller after a Program/Erase Suspend operat ion h as paused it. One Bus Write cycle is required to i ssue the P ro­gram/Erase Resume command. Once the com­mand is issued subsequ ent Bus Read operations read the Status Register.

Block Protect Command. The Block Protect command is used to protec t a block and prevent Program or Erase operations from changing the data in it. Two Bus Write cycles are required to is­sue the Block Protect command; the second Bus Write cycle latches the block address and starts the Program/Erase Controller. Once the command is issued subsequent Bus Read operations read

15/51
M58LW032D
the Status Register. See the section on the Status Register for details on the definitions of the Status Register bits.
During the Block Protect operation the memory will only accept the Read Sta tus Register command. All other commands will be ignored. Typical Block Protection times are given in Table 9.
The Block Protection bits are non-volatile, once set they remain set through reset and power­down/power-up. They ar e cleared by a Blocks Un­protect command.
See Appendix C, Figure 20, Block Protect Flow­chart and Pseudo Code, for a suggested flowchart on using the Block Protect command.

Blocks Unprotect Command. The Blocks Un­protect command is used to unprotect all of the blocks. Two Bus Write cycles are requir ed to issue the Blocks Unprotect command ; the second Bus Write cycle starts the Program/Erase Controller. Once the command is issued subsequent Bus Read operations read the Status Register. See the section on the Stat us Register for details on the definitions of the Status Register bits.

During the Block Unprotect operation the memory will only accept the Read Status Register com­mand. All other commands will be ignored. Typical Block Protection times are given in Table 9.
See Appendix C, Figure 21, Block Unprotect Flow­chart and Pseudo Code, for a suggested flowchart on using the Block Unprotect command.
Protection Regist er Progr am Command. The Protection Register Program c omm and is used to Program the 64 bit user segment of the Protection Register. Two write cycles are required to issue the P rotection Registe r Program com mand.
The first bus cycle sets up the Protection
Register Program command.
The second latches the Address and the Data to
be written to the Protection Register and starts the Program/Erase Controller.
Read operations output the Status Register con­tent after the programming has started.
The user-programmable segment can be locked by programming bi t 1 of t he Protection Register Lock location to ‘0’ (see Table 7 and x for Word­wide and Byte-wide protection addressing). Bit 0 of the Protection Register Lock location locks the factory programmed segment and is programmed to ‘0’ in the factory. The locking of the Protection Register is not reversible, once the lock bits are programmed no further c hanges ca n be made t o the values stored in the Protection Register, see Figure 6, Protection Register Memory Map. At­tempting to program a previously protected Pro­tection Register will result in a Status Register error.
The Protection Register Program cannot be sus­pended. See Appendix C, Figure 22, Protection Register Program Flowchart and Pseudo Code, for the flowchart for using the P rotection Regi ster Program command.
Configure STS Command.
The Configure STS command is used to configure the Status/(Ready/Busy) pin. After power-up or re­set the STS pin is configured in Ready/Busy mode. The pin can be configured in Status mode using the Configure STS command (refer to Sta­tus/(Ready/Busy) section for more details.
Two write cycles are required to issue the Config­ure STS command.
The first bus cycle sets up the Configure STS
command.
The second specifies one of the four possible
configurations (refer to Table 5, Configuration Codes):
– Ready/Busy mode – Pulse on Erase complete mo de – Pulse on Program complete mod e – Pulse on Erase or Program complete mode
The device will not accept the Configure STS com­mand while the Program/Erase controller is busy or during Program/Erase Suspend. When STS pin is pulsing it remains Low for a typical time of 250ns. Any invalid Configuration Code will set an error in the Status Register.
16/51
Loading...
+ 35 hidden pages