SGS Thomson Microelectronics M58LW032C Datasheet

32 Mbit (2Mb x16, Uniform Block, Burst)

FEATURES SUMMARY

WIDE x16 DATA BUS for HIGH BANDWIDTH
SUPPLY VOLTAGE
= 2.7 to 3.6V core supply voltage for Pro-
–V
gram, Erase and Read operations
–V
SYNCHRONOUS/ASYNCHRONOUS READ
– Synchronous Burst read – Asynchronous Random Read – Asynchronous Address Latch Controlled
– Page Read
ACCESS TIME
– Synchronous Burst Read up to 56MHz – Asynchronous Page Mode Read 90/25ns,
– Random Read 90ns, 110ns
PROGRAMMING TIME
– 16 Word Write Buffer – 12µs Word effective programming time
32 UNIFORM 64 KWord MEMORY BLOCKS
ENHANCED SECURITY
– Block Protection/ Unprotection – Smart Protection: irreversible block locking
–V – 128 bit Protection Register with 64 bit Unique
PROGRAM and ERASE SUSPEND
COMMON FLASH INTERFACE
100,000 PROGRAM/ERASE CYCLES per
BLOCK
ELECTRONIC SIGNATURE
– Manufacturer Code: 0020h – Device Code M58LW032C : 8822h
= 1.8 to VDD for I/O B u ffers
DDQ
Read
110/25ns
system
signal for Program Erase Enable
PEN
Code in OTP area
M58LW032C
3V Supp l y Fl ash Memory

Figure 1. Packages

TSOP56 (N)
14 x 20 mm
TBGA
TBGA64 (ZA)
10 x 13 mm
1/61April 2003
M58LW032C

TABLE OF CONTENTS

SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. TSOP56 Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 4. TBGA64 Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 5. Block Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Address Inputs (A1-A21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1
Data Inputs/Outputs (DQ0-DQ15 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Reset/Power-Down (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Latch Enable (L). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Clock (K).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Valid Data Ready (R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Status/(Ready/Busy) (STS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Program/Erase Enable (VPEN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
V
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
DD
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
V
DDQ
V
Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
SS
V
Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
SSQ
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Address Latch.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Bus Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Power-Down.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 2. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
READ MODES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Asynchronous Read Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Asynchronous Latch Controlled Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Asynchronous Random Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Asynchronous Page Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Synchronous Read Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Synchronous Burst Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Single Synchronous Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2/61
M58LW032C
CONFIGURATION REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Read Select Bit (CR15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
X-Latency Bits (CR13-CR11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Internal Clock Divider Bit (CR10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Y-Latency Bit (CR9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Valid Data Ready Bit (CR8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6
Burst Type Bit (CR7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Valid Clock Edge Bit (CR6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Burst Length Bit (CR2-CR0).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 3. Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 4. Burst Type Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 6. Burst Configuration X-1-1-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 7. Burst Configuration X-2-2-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Read Memory Array Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Read Electronic Signature Comma nd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Read Query Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Read Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Clear Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Write to Buffer and Program Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Program/Erase Suspend Comm and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Set Configuration Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Block Protect Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Blocks Unprotect Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Configure STS Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2
Table 5. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 6. Configuration Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 7. Read Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 8. Read Protection Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 8. Protection Register Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 9. Program, Erase Times and Program Erase Endurance Cy cles . . . . . . . . . . . . . . . . . . . 25
STATUS REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Program/Erase Controller Status Bit (SR7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Erase Suspend Status Bit ( SR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Erase Status Bit (SR5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Program Status Bit (SR4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
V
Status Bit (SR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
PEN
Program Suspend Status Bit (SR2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Block Protection Status Bit (SR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3/61
M58LW032C
Reserved (SR0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 10. Status Register Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 11. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 12. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 9. AC Measurement Input Output Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 10. AC Measurement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 13. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 14. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 11. Asynchronous Bus Read AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 15. Asynchronous Bus Read AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 12. Asynchronous Latch Controlled Bus Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . 33
Table 16. Asynchronous Latch Controlled Bus Read AC Characteristics. . . . . . . . . . . . . . . . . . . 33
Figure 13. Asynchronous Page Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 17. Asynchronous Page Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 14. Asynchronous Write AC Waveform, Write Enable Controlled . . . . . . . . . . . . . . . . . . . 35
Figure 15. Asynchronous Latch Controlled Write AC Waveform, Write Enable Controlled. . . . . . 35
Table 18. Asynchronous Write and Latch Controlled Write AC Characteristics, Write Enable
Controlled.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 16. Asynchronous Write AC Waveforms, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . 37
Figure 17. Asynchronous Latch Controlled Write AC Waveforms, Chip Enable Controlled . . . . . 37
Table 19. Asynchronous Write and Latch Controlled Write AC Characteristics, Chip Enable
Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 18. Synchronous Burst Read AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 19. Synchronous Burst Read - Continuous - Valid Data Ready Output. . . . . . . . . . . . . . . 40
Table 20. Synchronous Burst Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 20. Reset, Power-Down and Power-up AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 21. Reset, Power-Down and Power-up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 41
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 21. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Outline . . . . . . . 42
Table 22. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Mechanical Data 42
Figure 22. TBGA64 10x13mm - 8x8 ball array, 1mm pitch, Package Outline . . . . . . . . . . . . . . . . 43
Table 23. TBGA64 10x13mm - 8x8 ball array, 1mm pitch, Package Mechanical Data. . . . . . . . . 43
PART NUMBERING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 24. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
APPENDIX A. BLOCK ADDRESS TABLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 25. Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
APPENDIX B. COMMON FLASH INTERFACE - CFI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 26. Query Structure Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4/61
M58LW032C
Table 27. CFI - Query Address and Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 28. CFI - Device Voltage and Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 29. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 30. Block Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 31. Extended Query information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
APPENDIX C. FLOW CHARTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 23. Write to Buffer and Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 50
Figure 24. Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . 51
Figure 25. Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 26. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . 53
Figure 27. Block Protect Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 28. Blocks Unprotect Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 29. Protection Register Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 56
Figure 30. Command Interface and Program Erase Controller Flowchart (a). . . . . . . . . . . . . . . . 57
Figure 31. Command Interface and Program Erase Controller Flowchart (b). . . . . . . . . . . . . . . . 58
Figure 32. Command Interface and Program Erase Controller Flowchart (c). . . . . . . . . . . . . . . . 59
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 32. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5/61
M58LW032C

SUMMARY DESCRIPTION

M58LW032C is a 32 M bit (2Mb x16) non-volatile memory that can be read, erased and repro­grammed. These operations can be performed us­ing a single low voltage (2.7V t o 3.6V) core supply. On power-up the memory defaults to Read mode with an asynchronous bus where it can be read in the same way as a non-burst Flash memory.
The memory is divided into 32 blocks of 1Mbit that can be erased i ndependently so it is poss ible to preserve valid data while old data is erased. P ro­gram and Erase commands are written to the Command Interface of the memory. An on-chip Program/Erase Controller simplifies the process of programming or erasing the memory by taking care of all of the special operations that are re­quired to update the memory contents. The end of a Program or Erase operation can be detected and any error conditions identified in the Status Regis­ter. The command set required to control the memory is consistent with JEDEC standards.
The device supports synchronous burst read and asynchronous read from all blocks of the memory array; at power-up the device is configured for asynchronous read. In asynchronous mode an Address Latch input can be used to latch address­es in Latch Controlled mode. In synchronous burst mode, data is output on each clock cycle at fre­quencies of up to 56MHz.
The Write Buffer allows the microprocessor to pro­gram from 1 to 16 Words in parallel, both speeding up the programming and freeing up the micropro­cessor to perform other work. A Word Program command is available to program a single Word.
Erase can be suspended in order to perform either Read or Program in any other block and then re­sumed. Program ca n be s uspended to Read data in any other block and then resum ed. Eac h block can be programmed and erased over 100,000 cy­cles.
The M58LW032C has several security features to increase data protection.
Block Protection, where each block can be
individually protected against p r ogram or eras e operations. All blocks are protected during power-up. The protection of the blocks is non­volatile; after power-up the protection status of each block is restored to the state when power was last removed.
Program Erase Enable i nput V
, program or
PEN
erase operations are not possible when the Program Erase Enable input V
Smart Protection, which allows protected blocks
PEN
is low.
to be permanently locked. This feature is not described in the datasheet for security reasons. Please contact STMicroelectronics for further details.
128 bit Protection Regi ster, divided in to two 64
bit segments: the f irst con tains a unique device number written by ST, the second is user programmable. The user programmable segment can be protected.
The Reset/Power-Down pin is used to apply a Hardware Reset to the memory and to set the de­vice in power-down mode.
The device features an Auto Low Power mode. If the bus becomes inactive during Asynchronous Read operations, the device automatically enters Auto Low Power mode. In this mode the power consumption is reduced to the Auto Low Power supply current.
The STS signal is an open drain output that can be used to identify the Program/Erase Controller sta­tus. It can be configured in two modes: Ready/ Busy mode where a static signal indicates the sta­tus of the P/E.C, and Status mode where a pulsing signal indicates the end of a Program or Block Erase operation. In Status mode it can be used as a system interrupt signal, useful for saving CPU time.
The memory is available in TSOP56 (14 x 20 mm) and TBGA64 (10 x 13mm, 1mm pitch) packages.
6/61

Figure 2. Logi c D iag ram Table 1. Si gn a l Nam es

A1-A21 Address inputs
V
V
DDQ
DD
DQ0-DQ15 Data Inputs/Outputs
M58LW032C
A1-A21
V
PEN
W E
RP
E
21
16
DQ0-DQ15
M58LW032C
G
STS R
L
K
V
V
SS
SSQ
AI06208
G K Clock L R Valid Data Ready STS Status/(Ready/Busy) RP
V
PEN
W V
DD
V
DDQ
V
SS
V
SSQ
NC Not Connected Internally
Chip Enable Output Enable
Latch Enable
Reset/Power-Down Program/Erase Enable Write Enable Supply Voltage Input/Output Supply Voltage Ground Input/Output Ground
7/61
M58LW032C

Figure 3. TSOP56 Connections

V
NC
A21 A20 A19 A18 A17 A16
V
DD A15 A14 A13 A12
PEN
RP A11 A10
A9 A8
V
SS
A7 A6 A5 A4 A3 A2 A1
1
R
E
14
M58LW032C
15
28 29
56
43 42
NC W
G STS
DQ15 DQ7 DQ14 DQ6 V
SS
DQ13 DQ5 DQ12 DQ4 V
DDQ
V
SSQ
DQ11 DQ3 DQ10 DQ2 V
DD
DQ9 DQ1 DQ8 DQ0 NC K NC L
8/61
AI06209

Figure 4. TBGA64 Connections (Top view through package)

M58LW032C
87654321
A
B RA19A2
C
D A16
E
F
G
A1
V
A4 A5
K
NC
DQ0
NC
A6 V
SS
A7A3
A8
A10 A12
A11
DQ10
DQ2
PEN
EA9
RP
DDQ
A13
A14
A15
NC NC
DQ5V
V
DD
NC
NC
NC
NC
DQ6
A20
DQ15 STSDQ9DQ8 DQ1 DQ4DQ3
NC
DQ14
NCA18
A21
A17
GDQ12DQ11
W
H
L
NC
V
DD
V
SS
DQ13
V
SSQ
DQ7
NC
AI06210b
9/61
M58LW032C

Figure 5. Block Addresses

Word (x16) Bus Width
1FFFFFh
1F0000h
1EFFFFh
1E0000h
Total of 32
1 Mbit Blocks
01FFFFh
010000h
00FFFFh
000000h
Note: Also see Appendix A, T able 25 for a full li st i ng of the Block Addresses.
1 Mbit or
64 KWords
1 Mbit or
64 KWords
1 Mbit or
64 KWords
1 Mbit or
64 KWords
AI06254
10/61

SIGNAL DESCRIPTIONS

See Figure 2, Logic Diagram and Table 11, Signal Names, for a brief overview of the signals connect­ed to this device.

Address Inputs (A1-A21). The Address Inputs are used to select the cells to access in the mem­ory array during Bus Read operations either to read or to program data to. During Bus Write oper­ations they control the commands sent to the Command Interface of the internal state m ac hine. Chip Enable and Latch Enable must be low when selecting the addresses.

The address inputs are latched on the rising edge of Chip Enable, Write Enable or Latch Enable, whichever occurs first in a Write operation. The address latch is transparent when Latch Enable is low, V
. The address is internally latched in an
IL

Erase or Program operation. Data Inputs/Outputs (DQ0-DQ15). The Data In-

puts/Outputs output the data stored at the selected address during a Bus Read operation, or are used to input the data during a program operation. Dur­ing Bus Write operations they repres ent the com­mands sent to the Command Interface of the internal state machine. When used to input data or Write commands they are latched on the rising edge of Write Enable or Chip Enable, whichever occurs first.
When Chip Enable and Output Enable are both low, V
, the data bus outputs data from the mem-
IL
ory array, the Electronic Signature, the Block Pro­tection status, the CFI Information or the contents of the Status Register. The data bus is high imped­ance when the chip is deselected, Output E nable is high, V low, V
or the Reset/Power-Down signal is
IH,
. When the Program/Erase Controller is
IL
active the Ready/Busy status is given on DQ7.
Chip Enable (E
). The Chip Enable, E, input acti-
vates the memory control logic, input buffers, de­coders and sense amplifiers. Chip Enable, E V
deselects the memory and reduces the power
IH
consumption to the Standby level, I
Output Enable (G
). The Output Enable, G, gates
DD1
.
, at
the outputs through the data output buffers during a read operation. When Output Enable, G
, is at V
IH
the outputs are high impedance. Output Enable, G
, can be used to inhibit the data ou tput during a
burst read operation.
Write Enable (W
). The Write Enable input, W,
controls writing to the Command Interface, Input Address and Data latches. Both addresses and data can be latched on the rising edge of Write En­able (also see Latch Enable, L
Reset/Power-Down (RP
).
). The Reset/Power­Down pin can be used to apply a Hardware Reset to the me mory.
M58LW032C
A Hardware Reset is achieved by holding Reset/ Power-Down Low, V Reset/Power-Down is Low, V ter information is c leared and t he power consump­tion is reduced to power-down level. The device is deselected and outputs are high impedance. If Re­set/Power-Down goes low, V Erase, a Write to Buffe r and Program or a Block Protect/Unprotect the operation is aborted and the data may be corrupted. In this case the Ready/ Busy pin stays low, V t
PLPH
+ t
until the completion of the Reset/
PHRH,
Power-Down pulse. After Reset/Power-Down goes High, V
memory will be ready for Bus Read and Bus Write operations after t does not fall during a reset , s ee Rea dy /Busy Ou t­put section.
In an application, it is recommended to associate Reset/Power-Down pin, RP of the microprocessor. Otherwise, if a reset opera­tion occurs while the memory is performing an Erase or Program operation, the memory may out­put the Status Register information inst ead of be­ing initialized to the default Asynchronous Random Read.
Latch Enable (L
ured to latch the Address Inputs on the rising edge of Latch Enable, L the address is latched on the active edge of the Clock when Latch Enable is Low, V ing of Latch Enable, whichever occurs first. Once latched, the addresses may change without affect­ing the address used by the memory. When Latch Enable is Low, V

Clo c k (K). The Clock, K, is used to synchronize the memory with the external bus during Synchro­nous Bus Read operations. The Clock can be con­figured to have an active rising or falling edge. Bus signals are latched on the active edge of the Clock during synchronous bus operations. In Synchro­nous Burst Read m ode the address is latched on the first active clock edge when Latch Enable is low, VIL, or on the rising edge of Latch Enable, whichever occurs first.

During asynchronous bus operations the Clock is not used.

Valid Data Ready (R). The Valid Data Ready output, R, is an open drain output that can be used to identify if the memory is ready to output data or not. The Valid Data Ready output is only active during Synchronous Burst Read operat ions when the Burst Length is set to Continuous. The Valid Data Ready output can be configured to be active on the clock edge of the invalid data read cycle or one cycle before. Valid Data Ready Low, V

, for at least t
IL
, for a ma ximum timin g of
IL
. Note that Ready/Busy
PHQV
, the Status Regis-
IL
,during a Block
IL
PLPH
. When
, the
IH
, with the reset sig nal
). The Bus Interface is config-
. In synchronous bus operations
or on the ris-
IL
, the latch is transparent.
IL
, in-
OL
11/61
M58LW032C
dicates that the data is not, or will not be valid. Val­id Data Ready in a high-impedance state indicates that valid data is or will be available.
Unless Synchronous Burst Read has been select­ed, Valid Data Ready is high-impedance. It may be tied to other components with the same Valid Data Ready signal to create a unique System Ready signal.
The Valid Data Ready, R, output has an internal pull-up resistor of approximately 1 M powered from V
, designers should use an external pull-
DDQ
up resistor of the correct value to meet the external timing requirements for Valid Data Ready rising. Refer to Figure 19.
Status/(Ready/Busy) (STS). The STS signal is an open drain output t hat can be used to id entify the Program/Erase Controller status. It can be configured in two modes:
Ready/Busy - the pin is Low, V
, during
OL
Program and Erase operations and high impedance when the memory is ready for any Read, Program or Erase operation.
Status - the pin gives a pulsing signal to indicate
the end of a Program or Block Erase operation.
After power-up or reset the STS pin i s configured in Ready/Busy mode. T he pin can be co nfigured for Status mode using the Configure STS com­mand.
When the Program/Erase Controller is idle, or sus­pended, STS can float High through a pul l-up re­sistor. The use of an open-drain output allows the STS pins from several memo ries to be c onnect ed to a single pull-up resistor (a Low will indicate that one, or more, of the memories is busy).
STS is not Low during a reset unless the reset was applied when the Program/Erase controller was active. Ready/Busy can rise before Reset/Power­Down rises.
Program/Erase Enable (V
Erase Enable input, V
PEN,
). The Program/
PEN
is used to protect all blocks, preventing Program and Erase operations from affecting their data.
Program/Erase Enable must be kept High during all Program/Erase Controller operations, other­wise the operations is not guaranteed to suc ceed and data may become corrupt.
V
Supply Voltage. VDD provides the power
DD
supply to the internal core of the memory device. It is the main power supply for all operations (Read, Program and Erase).
Supply Voltage. V
V
DDQ
provides the power
DDQ
supply to the I/O pins and enables all Outputs to
. V
be powered independently from V tied to V
or can use a separate supply.
DDQ
can be
It is recommended to power-up and power-down V
DD
and V
together to avoid any condition that
DDQ
would result in data corruption.
Ground. Ground, V
V
SS
is the reference for
SS,
the core power supply. It must be connected to the system ground.
V
Ground. V
SSQ
the input/output circuitry driven by V
ground is the reference for
SSQ
DDQ
. V
SSQ
must be connected to VSS.
Note: Each device in a system should have V
DD
and V
decoupled with a 0.1µF ceramic
DDQ
capacitor close to the pin (high frequency, in­herently low inductance ca pacitors should b e as close as possible to the package). See Fig­ure 10, AC Measurement Load Circuit.
12/61

BUS OPERATIONS

There are six standard bus operations that control the device. These are Address Latch, B us Read, Bus Write, Output Disable, Power-Down and Standby. See Table 2, Bus Operations, for a sum­mary.
Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the memory and do not affect Bus Write operations.

Address Latch. Address latch operations input valid addresses.

A valid bus operation i nvolves set ting the des ired address on the Address Inputs, setting Chip En­able and Latch Enable Low, V Enable High, V
; the address is latched on the ris-
IH
and keeping Write
IL

ing edge of Address Latch. Bus Read. Bus Read operations are used to out-

put the contents of the Memory Array, the Elec­tronic Signature, the Status Register, the Common Flash Interface and the Block Protection Status.
A valid bus operation i nvolves set ting the des ired address on the Address Inputs, applying a Low signal, V Latch Enable and keeping Write Enable High, V
, to Chip Enable, Output Enable and
IL
IH
The data read depends on the previous command written to the memory (see Command Interface section). See Figures 11, 12, 13, 18 and 19 Read AC Waveforms, and Tables 15, 16, 17 and 20 Read AC Characteristics, for details of when the output becomes valid.

Bus Write. Bus Write operations write Com­mands to the memory or latch addresses and input data to be programmed.

M58LW032C
A valid Bus Write operation begin s by setting the desired address on the Address Inputs and setting Latch Enable Low, V latched by the Command Interface on the rising edge of Chip Enable or Write Enable, whichever occurs first. The Data Inputs/Outputs are latched by the Command Interface on the rising edge of Chip Enable or Write Enable, whichever occurs first. Output Enable must remain High, V the Bus Wr ite operation.
See Figures 14, 15, 16 and 17, Write AC Wave­forms, and Tables 18 and 19, Write AC Character­istics, for details of the timing requirements.

Output Disa bl e . The The Data Inputs/Outputs are high impedance when the Out put Enable i s at

.
V
IH

Power-Down. The memory is in Power-Down mode when Reset/Power-Down, RP power consumption is reduced to the Power-Down level, I

, and the out puts are high impedance,
DD2
independent of Chip Enable, Output Enable or Write Enable.

Standby. Stan dby disables most of the inte rnal

.
circuitry, allowing a substantial reduction of the current consumption. The memory is in standby when Chip Enable is at V tion is reduced to the standby level I outputs are set to high impedance, independently from the Output Enable or Write Enable inputs.
If Chip Enable switches to V erase operation, the d ev ice en ters Standby mode when finished.
. The Address Inputs are
IL
, is Low. The
. The power consump-
IH
during a program or
IH
DD1
, during
IH
and the

Table 2. Bus Operations

Operation E G W RP L A1-A21 DQ0-DQ15
Address Latch
Bus Read Bus Write
Output Disable
Power-Down X X X
Standby
Note: 1. X = Don’t Care VIL or VIH.
2. Depends on G
V
IL
V
IL
V
IL
V
IL
V
IH
X
V
IL
V
IH
V
IH
XX
V
IH
V
IH
V
IL
V
IH
V
IH
V
IH
V
IH
V
IH
V
IL
V
IH
V
IL
V
IL
V
IL
X X High Z X X High Z X X High Z
Address Address Data Output Address Data Input
Data Output or Hi-Z
(2)
13/61
M58LW032C

READ MODES

Read operations can be performed in two different ways depending on the settings in the Configura-
tion Register. If the clock signal is ‘d on’t care’ for the data output, the read operation is asynchro­nous; if the data output is synchronized with clock, the read operation is synchronous.
The read mode and f ormat of the data output are determined by the Configuration Register. (See Configuration Register section for details).
On Power-up or after a Hardware Reset the mem­ory defaults to Asynchronous Read mode.

Asynchronous Read Modes

In Asynchronous Read operations the clock signal is ‘don’t care’. The device outpu ts the dat a corre­sponding to the address latched, that is the mem ­ory array, Status Register, Common Flash Interface, Electronic Signature or Block Protection Status depending on the comma nd issued. CR15 in the Configuration Register must be set to ‘1’ for asynchronous operations.
During Asynchronous Read operations, if the bus is inactive for a time equivalent to t vice automatically enters Auto Low Power mode. In this mode the internal supply current is reduced to the Auto Low Power supply current, I Data Inputs/Outputs will still output data if a Bus Read operation is in progress.
Automatic Low Power is only available in Asyn­chronous Read modes.
Asynchronous Read operations can be performed in three different ways, Asynchronous Latch Con­trolled Read, Asynchronous Random Read and Asynchronous Page Read.
Asynchronous Latch Controlled Read.
In Asynchronous Latch Controlled Read opera­tions read the address is latched in the me mory before the value is output on the data bus, allowing the address to change during the cycle without af­fecting the address that the memory uses.
A valid bus operation i nvolves set ting the des ired address on the Address Inputs, setting Chip En­able and Latch Enable Low, V Enable High, V
; the address is latched on the ris-
IH
and keeping Write
IL
ing edge of Address L atch. Once latched, the Ad­dress Inputs can change. Set Output Enable Low,
, to read the data on the Data Inputs/Outputs;
V
IL
see Figure 12, Asynchronous Latch Controlled Read AC Waveforms and Table 16, Asynchro­nous Latch Controlled Read AC Characteristics for details on when the output becomes valid.
See Figures 12, Asynchronous Latch Controlled Read AC Waveforms, and Table 16, Asynchro­nous Latch Controlled Read AC Characteristics, for details.
AVQV
, the de-
. The
DD5
Asynchro nous Random R ead. As th e Lat ch En ­able input is transparent when set Low, V
, Asyn-
IL
chronous Random Read operations can be performed by holding Latch Enable Low, V throughout the bus operation.
See Figures 11, Asynchronous Random Read AC Waveforms, and Table 15, Asynchronous Ran­dom Read AC Characteristics, for details.
Asynchro nous Page Read . In Asynchronous Page Read mode a Page of data is internally read and stored in a Page Buffer. Each memory page is 4 Words and has th e same A3-A22, only A 1 and A2 may change.
The first read operation within the Page has the normal access time (t
), subsequent reads
AVQV
within the same Page have much sho rter access times (t
). If the Page changes then the nor-
AVQV1
mal, longer timings apply again. See Figures 13, Asynchronous Page Read AC
Waveforms, and Table 17, Asynchronous Page Read AC Characteristics, for details.

Synchronous Read Mo de s

In Synchronous Read mode the data output is syn­chronized with the clock. CR15 in the Configura­tion Register must be set to ‘0’ for synchronous operations.
Synchronous Burst Read. In Synchronous Burst Read mode the data is output in bursts syn­chronized with the clock. It is possible to perform burst reads across bank boundaries.
Synchronous Burst Read mode can onl y be used to read the memory array. For other read opera­tions, such as Read Status Register, Read CFI, Read Electronic Signature and Block Protection Status, Single Synchronous Read or Asynchro­nous Read must be used.
In Synchronous Burst Read mode the flow o f the data output depends on param eters that are con­figured in the Configuration Register.
A valid Synchronous Burst Read operation begins when the address is set on the Address Inputs, Write Enable is High, V Latch Enable are Low, V
, and Chip Enable and
IH
, during the active edge
IL
of the Clock. The address is latched on the first ac­tive clock edge when Latch Enable i s low, or on the rising edge of Latch Enable, whichever occurs first. The data becomes available for output after the X-latency specified in the Burst Control Regis­ter has expired. The output buffers are activated by setting Output Enable Low, V
. See Figures 6
IL
and 7 for examples o f Synchronous Burst Read operations.
The number of Words to be out put during a Syn­chronous Burst Read operation can be configured as 4 Words, 8 Words or Continuous (Burst Length
IL
14/61
M58LW032C
bits CR2-CR0). In Synchronous Continuous Burst Read mode one Burst Read operation can access the entire memory sequ entially. If the starting ad­dress is not associated with a page (4 Word) boundary the Valid Data Ready, R, output goes Low, V
, to indicate that the data will not be ready
IL
in time and additional wait-states are required. The Valid Data Ready output timing (bit CR8) can be changed in the Configuration Register.
The order of the data output can be modified through the Burst Type bit in the Configuration
Register. The burst sequence can be sequential or interleaved.
See Table 20, Synchronous Read AC Character­istics and Figure 18 a nd 19, Synchronous Burst Read AC Waveform for details.
Single Synchronous Read. Single Synchro­nous Read operations are similar to S ync hronous Burst Read operations except that only the first data output after the X latency is valid. Single Syn­chronous Reads are used to read the Status Reg­ister, CFI, Electronic Signature and Block Protection Status.
15/61
M58LW032C

CONFIGURATION REGISTER

The Configuration Register is used to configure the type of bus access that the memory will per­form. The Configuration Register bits are de­scribed in Table 3. They specify the selection of the burst length, burst type, burst X and Y laten­cies and the Read operation. See figures 6 and 7 for examples of Synchronous Burst Read configu­rations.
The Configuration Register is set through the Command Interface and will retain its information until it is re-configured, the device is reset, or the device goes into Reset/Power-Down mode. The Configuration Register is read using the Read Electronic Signature Command at address 05h.
Read Select Bit (CR15). The Read Select bit, CR15, is used to switch between asynchronous and synchronous Bus Read operations. When the
Read Select bit is set to ’1’, Bus Read operations are asynchronous; when the Read Select but is set to ’0’, Bus Read operations are synchronous.
On reset or power-up the Read Select bit is set to ’1’ for asynchronous access.

X-Latency Bits (CR13-CR11). The X-Latency bits are used during Synchronous Bus Read oper­ations to set the number of clock cy cles between the address being latched and the first data be­coming available. For correct operation the X-La­tency bits can only assume the values in Table 3, Configuration Register.

Internal Clock Divider Bit (CR10). The Internal Clock Divider Bit is used to divide the internal clock by two. When CR10 is set to ‘1’ the internal clock is divided by two, which effectively means that the X and Y-Latency values are multiplied by two, that is the number of clock cycles between the address being latched and the first data becoming avail­able will be twice the value set in CR13-CR11, and the number of clock cycles between consecutive reads will be twice the value set in CR9. For exam­ple 8-1-1-1 will be come 16-2-2-2. When C R10 is set to ‘0’ the internal clock runs normally and the X and Y-Latency values are those set in CR13-CR11 and CR9.
Y-Latency Bit (CR9). The Y-Latency bit is used during Synchronous Bus Read operations to set
the number of clock cycles between consecutive reads. The Y-Latency value depends on both the X-Latency value and the setting in CR9.
When the Y-Latency is 1 the data changes each clock cycle; when the Y-Latency is 2 the data changes every seco nd clock cycle. See Tab le 3, Configuration Register for valid combinations of the Y-Latency, the X-Latency and the Clock fre­quency.

Valid Data Ready Bit (CR8). The Valid Data Ready bit controls the timing of the Valid Data Ready output pin, R. When the Valid Data Ready bit is ’0’ the Valid Data Ready output pin is driven Low for the active clock edge when invalid data is output on the bus. When the Valid Data Ready bit is ’1’ the Valid Data Ready output pin is driven Low one clock cycle prior to invalid data being output on the bus.

Burst Type Bit (CR7). The Burst Type bit is used to configure the sequence of addresses read as sequential or interleaved. When the Burst Type bit is ’0’ the memory outputs from interleaved ad­dresses; when the Burst Type bit is ’1’ the memory outputs from sequential addresses. See Tables 4, Burst Type Definition, for the sequence of ad­dresses output from a given starting address in each mode.

Valid Clock Edge Bit (CR6). The Valid Clock Edge bit, CR6, is used to configure the active edge of the Clock, K, during Synchronous Burst Read operations. When the Valid Clock Edge bit is ’0’ the falling edge of the Clock is the active edge; when the Valid Clock Edge bit is ’1’ the rising edge of the Clock is active.

Burst Length Bit (CR2-CR0). The Burst Length bits set the maximum number of Words that can be output during a Synchronous Burst Read oper­ation.

Table 3, Configuration Register gives the valid combinations of the Burst Length bits that the memory accepts; Tables 4, Burst Type Definition, give the sequence of addresses output from a giv­en starting address for each length.
CR5 CR4 and CR3 are reserved for future use.
16/61

Table 3. Configuration Register

Address
Bit
Mnemonic Bit Name
16 CR15 Read Select 1
15 CR14 Reserved
Reset
Value
Value Description
0 Synchronous Burst Read 1 Asynchronous Bus Read (default at power-up)
001 Reserved 010
X-Latency = 4, 4-1-1-1 (use only with Y-Latency = 1)
M58LW032C
(1)
14
to
12
CR13-CR11
X-Latency
(2)
XXX
011 100 101
X-Latency = 5, 5-1-1-1, 5-2-2-2 X-Latency = 6, 6-1-1-1, 6-2-2-2 X-Latency = 7, 7-1-1-1, 7-2-2-2
110 X-Latency = 8, 8-1-1-1, 8-2-2-2
X and Y-Latencies remains as set in CR13-CR11 and
11 CR10
Internal
Clock Divider
X
0
CR9
1 Divides internal clock, X and Y-Latencies multiplied by 2
10 CR9
9CR8
Y-Latency
Valid Data Ready
(3)
X
X
0 Y-Latency = 1 1 Y-Latency = 2 0 R valid Low during valid Clock edge 1 R valid Low one cycle before valid Clock edge 0 Interleaved
8 CR7 Burst Type X
1 Sequential
7CR6
Valid Clock Edge
X
0 Falling Clock edge 1 Rising Clock edge
6 to 4 CR5-CR3 Reserved
3
to
CR2-CR0 Burst Length XXX
1
Note: 1. 4 - 2 - 2 - 2 (represents X-Y-Y-Y) is not allowed.
2. X latencies can be calculated as: (t
is the clock period).
3. Y latencies can be calculated as: t
4. t
SYSTEM MARGIN
is the time m argin requir ed for the calculation.
AVQV
KHQV
– t
LLKH
+ t
SYSTEM MARGIN
001 4 Words 010 8 Words 111 Continuous
+ t
) + t
QVKH
SYSTEM MARGIN
+ t
QVKH
< Y t
K.
< (X - 1) t
is an integer number from 4 to 8 and t
K. (X
K
17/61
M58LW032C

Tabl e 4. Burst Type Definit ion

Starting
Addressx4Sequentialx4Interleaved
x8
Sequential
x8
Interleaved
Continuous
0 0-1-2-3 0-1-2-3 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7-8-9-10.. 1 1-2-3-0 1-0-3-2 1-2-3-4-5-6-7-0 1-0-3-2-5-4-7-6 1-2-3-4-5-6-7-8-9-10-11..
2 2-3-0-1 2-3-0-1 2-3-4-5-6-7-0-1 2-3-0-1-6-7-4-5 2-3-4-5-6-7-8-9-10-11-12.. 3 3-0-1-2 3-2-1-0 3-4-5-6-7-0-1-2 3-2-1-0-7-6-5-4 3-4-5-6-7-8-9-10-11-12-13..
4 4-5-6-7-0-1-2-3 4-5-6-7-0-1-2-3 4-5-6-7-8-9-10-11-2-13-14..
5 5-6-7-0-1-2-3-4 5-4-7-6-1-0-3-2 5-6-7-8-9-10-11-12-13-14..
6 6-7-0-1-2-3-4-5 6-7-4-5-2-3-0-1 6-7-8-9-10-11-12-13-14-15.. 7 7-0-1-2-3-4-5-6 7-6-5-4-3-2-1-0 7-8-9-10-11-12-13-14-15-16..
8 8-9-10-11-12-13-14-15-16-17..

Figure 6. Burst Configuration X-1-1-1

0123456789
K
ADD VALID
L
DQ
DQ
DQ
DQ
DQ
4-1-1-1
5-1-1-1
6-1-1-1
7-1-1-1
8-1-1-1
VALID
VALID
VALID
VALIDVALIDVALIDVALID
VALIDVALIDVALID
VALID
VALIDVALIDVALIDVALID
VALID
VALID
VALID
VALIDVALID
AI05512
18/61

Figure 7. Burst Configuration X-2-2-2

0123456789
K
M58LW032C
ADD
L
DQ
DQ
DQ
DQ
5-2-2-2
6-2-2-2
7-2-2-2
8-2-2-2
VALID
NV
NV=NOT VALID
VALID
NV
NV
VALID
NV
VALID
NV
VALID
NV
VALID
NV
VALID
VALID
NV
VALID
NVNV
AI05513
19/61
Loading...
+ 42 hidden pages