SGS Thomson Microelectronics M58LW032A Datasheet

32 Mbit (2Mb x16, Uniform Block, Burst)

FEATURES SUMMARY

WIDE x16 DATA BUS for HIGH BANDWIDTH
SUPPLY VOLTAGE
= 2.7 to 3.6V core supply voltage for Pro-
–V
gram, Erase and Read operations
–V
SYNCHRONOUS/ASYNCHRONOUS READ
– Synchronous Burst read – Asynchronous Random Read – Asynchronous Ad dress Latch C ontrolled
– Page Read
ACCESS TIME
– Synchronous Burst Read up to 56MHz – Asynchronous Page Mode Read 90/25ns and
– Random Read 90ns, 110ns.
PROGRAMMING TIME
– 16 Word Write Buffer –18µs Word effective programming time
64 UNIFORM 32 KWord MEMORY BLOCKS
BLOCK PROTECTION/ UNPROTECTION
PROGRAM and ERASE SUSPEND
128 bit PROTECTION REGISTER
COMMON FLASH INTERFACE
100, 000 PROGRAM/ERASE CYCLES per
BLOCK
ELECTRONIC SIGNATURE
– Manufacturer Code: 0020h – Device Code M58LW 032A : 8816h
= 1.8V to VDD for I/O Buffers
DDQ
Read
110/25ns
M58LW032A
3V Supp l y Fl ash Memory

Figure 1. Packages

TSOP56 (N)
14 x 20 mm
TBGA
TBGA64 (ZA)
10 x 13 mm
1/61February 2003
M58LW032A

TABLE OF CONTENTS

SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. TSOP56 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 4. TBGA64 Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 5. Block Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Address Inputs (A1-A21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Data Inputs/Outputs (DQ0-DQ15 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Reset/Power-Down (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Latch Enable (L).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Clock (K).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Valid Data Ready (R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Ready/Busy (RB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Program/Erase Enable (V V
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2
DD
V
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
DDQ
Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
V
SS
V
Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
SSQ
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
PP
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Asynchronous Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Asynchronous Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Asynchronous Latch Controlled Bus Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Asynchronous Page Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Asynchronous Bus Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Asynchronous Latch Controlled Bus Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Automatic Low Power.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Power-Down.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 2. Asynchronous Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Synchronous Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Synchronous Burst Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5
Table 3. Synchronous Burst Read Bus Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Burst Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Read Select Bit (M15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
X-Latency Bits (M13-M11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Y-Latency Bit (M9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
2/61
M58LW032A
Valid Data Ready Bit (M8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Burst Type Bit (M7).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Valid Clock Edge Bit (M6).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Burst Length Bit (M2-M0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 4. Burst Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 5. Burst Type Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 6. Burst Configuration X-1-1-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 7. Burst Configuration X-2-2-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0
Read Memory Array Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Read Electronic Signature Comma nd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Read Query Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Read Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Clear Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Write to Buffer and Program Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Program/Erase Suspend Comm and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Set Burst Configuration Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Block Protect Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Blocks Unprotect Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2
Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 6. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 7. Read Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 8. Read Protection Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 8. Protection Register Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 9. Program, Erase Times and Program Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . 25
STATUS REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6
Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Program Status (Bit 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
V
Status (Bit 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
PP
Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Block Protection Status (Bit 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Reserved (Bit 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 10. Status Register Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 11. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 12. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3/61
M58LW032A
Figure 9. AC Measurement Input Output Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 10. AC Measurement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 13. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 14. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 11. Asynchronous Bus Read AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 15. Asynchronous Bus Read AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 12. Asynchronous Latch Controlled Bus Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . 33
Table 16. Asynchronous Latch Controlled Bus Read AC Characteristics. . . . . . . . . . . . . . . . . . . 33
Figure 13. Asynchronous Page Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 17. Asynchronous Page Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 14. Asynchronous Write AC Waveform, Write Enable Controlled . . . . . . . . . . . . . . . . . . . 35
Figure 15. Asynchronous Latch Controlled Write AC Waveform, Write Enable Controlled . . . . . . 35
Table 18. Asynchronous Write and Latch Controlled Write AC Characteristics, Write Enable
Controlled.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 16. Asynchronous Write AC Waveforms, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . 37
Figure 17. Asynchronous Latch Controlled Write AC Waveforms, Chip Enable Controlled . . . . . 37
Table 19. Asynchronous Write and Latch Controlled Write AC Characteristics, Chip Enable
Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 18. Synchronous Burst Read AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 19. Synchronous Burst Read - Continuous - Valid Data Ready Output. . . . . . . . . . . . . . . 40
Table 20. Synchronous Burst Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 20. Reset, Power-Down and Power-up AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 21. Reset, Power-Down and Power-up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 41
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2
Figure 21. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Outline . . . . . . . 42
Table 22. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Mechanical Data 42
Figure 22. TBGA64 10x13mm - 8x8 ball array 1mm pitch, Package Outline . . . . . . . . . . . . . . . . 43
Table 23. TBGA64 10x13mm - 8x8 ball array, 1mm pitch, Package Mechanical Data. . . . . . . . . 43
PART NUMBERING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 24. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4
APPENDIX A. BLOCK ADDRESS TABLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 25. Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
APPENDIX B. COMMON FLASH INTERFACE - CFI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 26. Query Structure Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 27. CFI - Query Address and Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 28. CFI - Device Voltage and Timing Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 29. Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 30. Block Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 31. Extended Query information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
APPENDIX C. FLOW CHARTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 23. Write to Buffer and Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 50
4/61
M58LW032A
Figure 24. Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . 51
Figure 25. Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 26. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . 53
Figure 27. Block Protect Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 28. Blocks Unprotect Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 29. Protection Register Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 56
Figure 30. Command Interface and Program Erase Controller Flowchart (a). . . . . . . . . . . . . . . . 57
Figure 31. Command Interface and Program Erase Controller Flowchart (b). . . . . . . . . . . . . . . . 58
Figure 32. Command Interface and Program Erase Controller Flowchart (c). . . . . . . . . . . . . . . . 59
REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 32. Document Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5/61
M58LW032A

SUMMARY DESCRIPTION

The M58LW032 is a 32 Mbit (2M b x16) non-vola­tile memory that can be read, erased and repro­grammed. These operations can be performed using a single low voltage (2.7V to 3.6V) core sup­ply. On power-up the memory defaults to Read mode with an asynchronous bus where it can be read in the same way as a non-burst Flash mem­ory.
The memory is divided into 64 blocks of 512Kbit that can be erased ind ependently so it is possible to preserve valid data while old data is erased. Program and Erase command s are written to the Command Interface of the memory. An on-chip Program/Erase Controller simplifies the process of programming or erasing the memory by taking care of all of the special operations that are re­quired to update the memory contents. The end of a Program or Erase operation can be detected and any error conditions identified in the Status Regis­ter. The command set required to control the memory is consistent with JEDEC standards.
The Write Buffer allows the microprocessor to pro­gram from 1 to 16 Words in parallel, both speeding up the programming and freeing up the micropro­cessor to perform other work. A Word Program command is available to program a single word.
Erase can be suspended in order to perform either Read or Program in any other block and then re­sumed. Program ca n be s uspended to Read data in any other block and then resum ed. Eac h block can be programmed and erased over 100,000 cy­cles.
Individual block protection against Program or Erase is provided for data security. All blocks are
protected during power-up. Th e protection of the blocks is non-volatile; after power-up the protec­tion status of e ach block is restored to the state when power was last removed. Software com­mands are provided to allow protection of some or all of the blocks and to cancel all block protection bits simultaneously. All Program or Erase opera­tions are blocked when the Program Erase Enable input Vpp is low.
The Reset/Power-Down pin is used to apply a Hardware Reset to the memory and to set the de­vice in power-down mode.
In asynchronous mode Chip Enable, Output En­able and Write Enable signals control the bus op­eration of the memory. An Address Latch input can be used to latch addresses. Tog ether they allow simple, yet powerful, connection to most micropro­cessors, often without additional logic.
In synchronous mode all Bus Read operations are synchronous with the Clock. Chip Enable and Out­put Enable select the Bus Read operation and the address is Latched using the Lat ch Enable input. The signals are compatible with most micropro­cessor burst interfaces.
The device includes a 128 bit Protection Register. The Protection Register is divided into two 64 bit segments, the first one is written by the manufac­turer (contact STMicroelectronics to define the code to be written here), while the second one is programmable by the use r. The us er prog ra mma­ble segment can be locked.
The memory is available in TSOP56 (14 x 20 mm) and TBGA64 (10 x 13mm, 1mm pitch) packages.
6/61

Figure 2. Logic Diagram

M58LW032A
A1-A21
V
PP
W E
RP
V
V
DDQ
DD
21
16
DQ0-DQ15
M58LW032A
G
RB R
L
K
V
V
SS
SSQ
AI04320

Table 1. Signal Names

A1-A21 Address inputs DQ0-DQ15 Data Inputs/Outputs E G K Clock L R Valid Data Ready RB RP V
PP
W V
DD
V
DDQ
V
SS
V
SSQ
NC Not Connected Internally DU Do Not Use
Chip Enable Output Enable
Latch Enable
Ready/Busy Reset/Power-Down Program/Erase Enable Write Enable Supply Voltage Input/Output Supply Voltage Ground Input/Output Ground
7/61
M58LW032A

Figure 3. TSOP56 Connections

A21 A20 A19 A18 A17 A16
V
A15 A14 A13 A12
V
A11 A10
V
NC
DD
PP
RP
A9 A8
SS
A7 A6 A5 A4 A3 A2 A1
1
E
14
M58LW032A
15
28 29
56
43 42
NC WR
G RB DQ15 DQ7 DQ14 DQ6 V
SS
DQ13 DQ5 DQ12 DQ4 V
DDQ
V
SSQ
DQ11 DQ3 DQ10 DQ2 V
DD
DQ9 DQ1 DQ8 DQ0
NC K NC
L
AI04321
8/61

Figure 4. TBGA64 Connections (Top view through package)

M58LW032A
87654321
A
B A19A2
C
D A16
E
F
G
A1
A4 A5
K
DU
A6 V
V
A7A3
DQ1
DQ0
DU
SS
A8
A10 A12
A11
DQ10
DQ2
PP
EA9
RP
DDQ
A13
A14
A15
DU
DQ4DQ3
DQ5V
V
DD
DU
DU
DU
DU
DU DU
DQ6
DQ15 RBDQ9DQ8
DQ14
A18
A20
DU
R
A21
A17
GDQ12DQ11
W
H
L
DU
V
DD
V
SSQ
DQ13
V
SS
DQ7
DU
AI04322
9/61
M58LW032A

Figure 5. Block Addresses

M58LW032A Word (x16) Bus Width Address lines A1-A21
1FFFFFh
1F8000h
1F7FFFh
1F0000h
00FFFFh
008000h
007FFFh
000000h
Note: Also see Appendix A, T able 25 for a full li st i ng of the Block Addresses
512 Kbit or
32 KWords
512 Kbit or
32 KWords
512 Kbit or
32 KWords
512 Kbit or
32 KWords
AI05500
10/61

SIGNAL DESCRIPTIONS

See Figure 2, Logic Diagram and Table 1, Signal Names, for a brief overview of the signals connect­ed to this device.

Address Inputs (A1-A21). The Address Inputs are used to select the cells to access in the mem­ory array during Bus Read operations either to read or to program data to. During Bus Write oper­ations they control the commands sent to the Command Interface of the internal state m ac hine. Chip Enable and Latch Enable must be low when selecting the addresses.

The address inputs are latched on the rising edge of Chip Enable, Write Enable or Latch Enable, whichever occurs first in a Write operation. The address latch is transparent when Latch Enable is low, V
. The address is internally latched in an
IL

Erase or Program operation. Data Inputs/Outputs (DQ0-DQ15). The Data In-

puts/Outputs output the data stored at the selected address during a Bus Read operation, or are used to input the data during a program operation. Dur­ing Bus Write operations they repres ent the com­mands sent to the Command Interface of the internal state machine. When used to input data or Write commands they are latched on the rising edge of Write Enable or Chip Enable, whichever occurs first.
When Chip Enable and Output Enable are both low, V
, the data bus outputs data from the mem-
IL
ory array, the Electronic Signature, the Block Pro­tection status, the CFI Information or the contents of the Status Register. The data bus is high imped­ance when the chip is deselected, Output E nable is high, V low, V
or the Reset/Power-Down signal is
IH,
. When the Program/Erase Controller is
IL
active the Ready/Busy status is given on DQ7.
Chip Enable (E
). The Chip Enable, E, input acti-
vates the memory control logic, input buffers, de­coders and sense amplifiers. Chip Enable, E V
deselects the memory and reduces the power
IH
consumption to the Standby level, I
Output Enable (G
). The Output Enable, G, gates
DD1
.
, at
the outputs through the data output buffers during a read operation. When Output Enable, G
, is at V
IH
the outputs are high impedance. Output Enable, G
, can be used to inhibit the data ou tput during a
burst read operation.
Write Enable (W
). The Write Enable input, W,
controls writing to the Command Interface, Input Address and Data latches. Both addresses and data can be latched on the rising edge of Write En­able (also see Latch Enable, L
Reset/Power-Down (RP
).
). The Reset/Power­Down pin can be used to apply a Hardware Reset to the me mory.
M58LW032A
A Hardware Reset is achieved by holding Reset/ Power-Down Low, V Reset/Power-Down is Low, V
, for at least t
IL
, the Status Regis-
IL
ter information is c leared and t he power consump­tion is reduced to power-down level. The device is deselected and outputs are high impedance. If Re­set/Power-Down goes low, V
,during a Block
IL
Erase, a Write to Buffe r and Program or a Block Protect/Unprotect the operation is aborted and the data may be corrupted. In this case the Ready/ Busy pin stays low, V t
PLPH
+ t
until the completion of the Reset/
PHRH,
, for a ma ximum timin g of
IL
Power-Down pulse. After Reset/Power-Down goes High, V
memory will be ready for Bus Read and Bus Write operations after t
. Note that Ready/Busy
PHQV
does not fall during a reset , s ee Rea dy /Busy Ou t­put section.
In an application, it is recommended to either as­sociate the Reset/Power-Down pin, RP reset signal of the microprocessor, or to ensure that the Reset/Power-Down pin is kept Low during Power-on. Otherwise, if a reset operation occurs while the memory is performing an Erase or Pr o­gram operation, the memory may output the Sta­tus Register information instead of being initialized to the default Asynchronous Random Read.
Latch Enable (L
). The Bus Interface is config-
ured to latch the Address Inputs on the rising edge of Latch Enable, L
. In synchronous bus operations the address is latched on the active edge of the Clock when Latch Enable is Low, V
IL
ing of Latch Enable, whichever occurs first. Once latched, the addresses may change without affect­ing the address used by the memory. When Latch Enable is Low, V
, the latch is transparent.
IL

Clo c k (K). The Clock, K, is used to synchronize the memory with the external bus during Synchro­nous Bus Read operations. The Clock can be con­figured to have an active rising or falling edge. Bus signals are latched on the active edge of the Clock during synchronous bus operations. In Synchro­nous Burst Read m ode the address is latched on the first active clock edge when Latch Enable is low, V

, or on the rising edge of Latch Enable,
IL
whichever occurs first. During asynchronous bus operations the Clock is

not used. Valid Data Ready (R). The Valid Data Ready

output, R, is an open drain output that can be used to identify if the memory is ready to output data or not. The Valid Data Ready output is only active during Synchronous Burst Read operat ions when the Burst Length is set to Continuous. The Valid Data Ready output can be configured to be active on the clock edge of the invalid data read cycle or
. When
PLPH
, the
IH
, with the
or on the ris-
11/61
M58LW032A
one cycle before. Valid Data Ready Low, VOL, in­dicates that the data is not, or will not be valid. Val­id Data Ready in a high-impedance state indicates that valid data is or will be available.
Unless Synchronous Burst Read has been select­ed, Valid Data Ready is high-impedance. It may be tied to other components with the same Valid Data Ready signal to create a unique System Ready signal.
The Valid Data Ready, R, output has an internal pull-up resistor of approximately 1 MΩ powered from V
, designers should use an external pull-
DDQ
up resistor of the correct value to meet the external timing requirements for Valid Data Ready rising. Refer to Figure 19.
Ready/Busy (RB
). The Ready/Busy output, RB,
is an open-drain output that can be used to identify if the Program/Erase Controller is currently active. When Ready/Busy is high impedance, the mem o­ry is ready for any Read, Program or Erase opera­tion. Ready/Busy is Low, V
, during Program and
OL
Erase operations. When the device is busy it will not accept any additional Program or Erase com­mands except Program/Erase Suspend. When the Program/Erase Controller is idle, or suspended, Ready Busy can float High through a pull-up resis­tor.
The use of an open-drain output allows the Ready/ Busy pins from several memories to be connected to a single pull-up resistor. A Low will then indicate that one, or more, of the memories is busy.
Ready/Busy is not Low during a reset unless the reset was applied when the Program/Erase Con-
troller was active; Ready/Busy can rise before Re­set/Power-Down rises.

Program/Erase Enable (VPP). The Program/ Erase Enable input, V

is used to protect all
PP,
blocks, preventing Program and Erase operations from affecting their data.
Program/Erase Enable must be kept High during all Program/Erase Controller operations, other­wise the operations is not guaranteed to suc ceed and data may become corrupt.
Supply Voltage. VDD provides the power
V
DD
supply to the internal core of the memory device. It is the main power supply for all operations (Read, Program and Erase).
Supply Voltage. V
V
DDQ
provides the power
DDQ
supply to the I/O pins and enables all Outputs to
. V
be powered independently from V tied to V
or can use a separate supply.
DDQ
can be
It is recommended to power-up and power-down V
DD
and V
together to avoid any condition that
DDQ
would result in data corruption.
Ground. Ground, V
V
SS
is the reference for
SS,
the core power supply. It must be connected to the system ground.
V
Ground. V
SSQ
the input/output circuitry driven by V
ground is the reference for
SSQ
DDQ
. V
SSQ
must be connected to VSS.
Note: Each device in a system should have V
and V
decoupled with a 0.1µF cerami c
DDQ
capacitor close to the pin (high frequency, in­herently low inductance ca pacitors should b e as close as possible to the package). See Fig­ure 10, AC Measurement Load Circuit.
12/61

BUS OPERATIONS

There are 12 bus operations that control the mem­ory. Each of these is described in this section, see Tables 2 and 3, Bus Operat ions, for a summary. The bus operation is selected through the Burst Configuration Register; the bits in this register are described at the end of this section.
On Power-up or after a Hardware Reset the mem­ory defaults to Asynchrono us Latch Enable Con­trolled Read and Asynchronous Bus Write, no other bus operation can be performed until the Burst Control Register has been configured.
The Electronic Signature, CFI or Status Register will be read i n asynchr onous m ode or single sy n­chronous burst mode.
Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the memory and do not affect bus operations.

Asynchronous Bus Operation s

For asynchronous bus operations refer to Tabl e 3 together with the text below.
Asynchronous Bus Read. Asynchronous Bus Read operations read from the memory cells, or specific registers (Electronic Signature, Status Register, CFI and Block Prot ection Status) in the Command Interface. A valid bus operation in­volves setting the desired address on the Address Inputs, applying a Low signal, V
, to Chip Enable,
IL
Output Enable and Latch Enable and keeping Write Enable High, V
. The Data Inputs/Outputs
IH
will output the value, see Figure 11, Asynchronous Bus Read AC Waveforms, and Table 15, Asyn­chronous Bus Read AC Characteristics, for details of when the output becomes valid.
Asynchronous Latch Controlled Bus Read.
Asynchronous Latch Controlled Bus Read opera­tions read from the memory cells or specific regis­ters in the Command Interface. The address is latched in the memory before the value is ou tput on the data bu s, allowing the address to cha nge during the cycle without affecting the address that the memo r y uses.
A valid bus operation i nvolves set ting the des ired address on the Address Inputs, setting Chip En­able and Latch Enable Low, V Enable High, V
; the address is latched on the ris-
IH
and keeping Write
IL
ing edge of Address L atch. Once latched, the Ad­dress Inputs can change. Set Output Enable Low, V
, to read the data on the Data Inputs/Outputs;
IL
see Figure 12, Asynchronous Latch Controlled Bus Read AC Waveforms and Table 16, Asyn­chronous Latch Controlled B us Read AC Charac­teristics for details on when the output becomes valid.
Note that, since the Latch Enable input is transpar­ent when set Low, V
, Asynchronous Bus Read
IL
M58LW032A
operations can be performed when the memory is configured for Asynchronous Latch Enable bus operations by holding Latch Enable Low, V throughout the bus operation.
Asynchronous Page Read. Asynchronous Page Read operations are used to read from several ad­dresses within the same memory page. Each memory page is 4 Wo rds and has the same A3­A21, only A1 and A2 may change.
Valid bus operations are the same as Asynchro­nous Bus Read operations but with different tim­ings. The first read operation within the page has identical timings, subsequent reads within the same page have much sh orter access t i mes. If the page changes then the normal, longer timings ap­ply again. See Figure 13, Asynchronous Page Read AC Waveforms and Table 17, Asynchro­nous Page Read AC Characteristics for details on when the outputs become valid.
Asynchronous Bus Write. Asynchronous Bus Write operations write to the Command Interface in order to send commands to the memory or to latch addresses and in put data to program. Bus Write operations are asynchronous, the clock, K, is don’t care during Bus Write operations.
A valid Asynchronous Bus Write operation begins by setting the desired address on the A ddress In­puts and setting Latch Enabl e Low, V dress Inputs are latched by the Command Interface on the rising edge of Chip Enable or Write Enable, whichever occurs first. The Data In­puts/Outputs are la tched by the Comm and Inter­face on the rising edge of Chip Enable or Write Enable, whichever occurs first. Output Enable must remain High, V
, during the whole Asyn-
IH
chronous Bus Write operation. See Figures 14, and 16, Asynchronous Write AC Wavef orms, and Tables 18 and 19, Asynchronous Write and Latch Controlled Write AC Characteristics, for details of the timing requirements.
Asynchronous Latch Controlled Bus Write.
Asynchronous Latch Controlled Bus W rite opera­tions write to the Command Interface in order to send commands to the memory or to latch ad­dresses and input data t o p rogram . Bus W r ite op­erations are asynchronous, the clock , K, is don’t care during Bus Write operations.
A valid Asynchronous Latch Controlled Bus Write operation begins by setting the desired address on the Address Inputs and pulsing Latch Enable Low,
. The Address Inputs are latched b y the Com-
V
IL
mand Interface on the rising edge of Latch Enable, Chip Enable or Write Enable, whichever occurs first. The Data Inputs/Outputs are latched by the Command Interface on the rising edge of Chip En­able or Write Enable, whichever occurs first. Ou t-
. The Ad-
IL
IL
13/61
M58LW032A
put Enable must remain High, VIH, during the whole Asynchronous Bus Write operation. See Figures 15 and 17 Asynchronous Latch Controlled Write AC Waveforms, and Tables 18 and 19, Asynchronous Write and Latch Controlled Write AC Characteristics, for details of the timing re­quirements.

Output Disa bl e . The Data Inputs/Outputs are in the high impedance state when the Output Enable is High.

Standby. When Chip Enable is High, V
IH
, the memory enters Standby mode and the Data In­puts/Outputs pins are placed in the high imped­ance state regardless of Output Enable or Write Enable. The Supply Current is reduced to the Standby Supply Current, I
DD1
.
During Program or Erase operations the memory will continue to use the Program/Erase Supply
Current, I til the operation completes.

Automatic Low Power. If there is no change in the state of the bus for a short period of time during Asynchronous Bus Re ad operations the memory enters Auto Low Pow er mode where the internal Supply Current is reduced to the Auto-Standby Supply Current, I still output data if a Bus Read operation is in progress.

Automatic Low Power is only available in Asyn­chronous Read modes.

Power-Down. The memory is in Power-Down mode when Reset/Power-Down, RP power consumption is reduced to the Power-Down level, I independent of Chip Enable, Output Enable or Write Enable.

Table 2. Asynchronous Bus Operations

Bus Operation Step E G W RP L A1-A21 DQ0-DQ15
V
Asynchronous Bus Read
Asynchronous Latch Controlled Bus Read
Asynchronous Page Read Asynchronous Bus Write Asynchronous Latch
Controlled Bus Write Output Disable Standby Power-Down X X X
Note: 1. X = Don’t Care VIL or VIH. High = VIH or VHH.
Address Latch Read
Address Latch
V
IL
IL
V
V
IL
IL
V
V
IL
IL
V
V
IL
IL
V
V
IL
IH
V
V
IL
IH
V
V
IL
IH
V
X X High X X High Z
IH
, for Program or Erase operations un-
DD3
. The Data Inputs/Outputs will
DD5
, is Low. The
, and the out puts are high impedance,
DD2
V
High
IH
V
High
IH
V
High
IH
V
High
IH
V
High
IL
V
High
IL
V
High X X High Z
IH
V V
V
V V
V
V
IL
Address Data Output
IL
Address High Z
IL
IH
IL
IL
IL
X X High Z
X Data Output Address Data Output Address Data Input
Address Data Input
14/61
M58LW032A

Synchronous Bus Operations

For synchronous bus operat ions refer to Table 3 together with the text below.
Synchronous Burst Read. Synchronous Burst Read operations are used to read from the memo­ry at specific times synchronized to an external ref­erence clock. The burst type, length and latency can be configured. The different configurations for Synchronous Burst Read operations are de­scribed in the Burst Configuration Register sec­tion.
A valid Synchronous Burst Read operation begins when the address is set on the Address Inputs, Write Enable is High, V Latch Enable are Low, V
, and Chip Enable and
IH
, during the active edge
IL
of the Clock. The address is latched on the first ac­tive clock edge when Latch Enable i s low, or on the rising edge of Latch Enable, whichever occurs
the X-latency specified in the Burst Control Regis­ter has expired. The output buffers are activated by setting Output Enable Low, V and 7 for exam ples of Synchronous Burst Read operations.
In Continuous Burst mode one Burst Read opera­tion can access the entire m emo ry sequ entially. If the starting address is not associated with a page (4 Word) boundary the V alid Data Ready, R, ou t­put goes Low, V be ready in time and additional wait-states are re­quired. The Valid Data Ready output timing (bit M8) can be changed in the Burst Configuration Register.
The Synchronous Burst Read timing diagrams and AC Characteristics a re described in the AC and DC Parameters section. See Figures 18, 19 and Table 20.
first. The data becomes available for output after

Table 3. Synchronous Burst Read Bus Operations

Bus Operation Step E G RP
Address Latch

Synchronous Burst Read

Note: 1. X = Don't Care, VIL or VIH.
2. M15 = 0, Bit M 15 i s in the Burst Configuration Register.
3. T = trans i tion, see M6 in the Bu rst Configurat i on Register for details on the ac tive edge of K.
Read Read Abort
V V
V
X
IL
V
IL
X
IH
. See Figures 6
IL
, to indicate that the data will not
IL
(3)
K
V
IH
V
IL
IH
V
IH
L
V
T T X Data Output X X High Z
IL
A1-A21
DQ0-DQ15
Address Input
15/61
M58LW032A

Burst Configuration Register

The Burst Configuration Register is used to config­ure the type of bus access that the memory will perform. The Burst Configuration Register bits are described in Table 4. They specify the selection of the burst length, burst type, burst X and Y laten­cies and the Read operation. See figures 6 and 7 for examples of Synchronous Burst Read configu­rations.
The Burst Configuration Register is set through the Command Interface and will retain its informa­tion until it is re-configured, the device is reset, or the device goes into Reset/Power-Down mode. The Burst Configuration Register is read using the Read Electronic Signature Command at addres s 05h.
Read Select Bit (M15). The Read Select bit, M15, is used to switch between asynchronous and synchronous Bus Read operations. When the Read Select bit is set to ’1’, Bus Read operations are asynchronous; when the Read Select but is set to ’0’, Bus Read operations are synchronous.
On reset or power-up the Read Select bit is set to ’1’ for asynchronous access.

X-Latency Bits (M13-M11). The X-Latency bits are used during Synchronous Bus Read opera­tions to set the number of clock cycles between the address being latched and the first data be­coming available. For correct operation the X-La­tency bits can only assume the values in Table 4, Burst Configuration Register.

Internal Clock Divider Bit (M10). The Internal Clock Divider Bit is used to divide the internal clock by two. When M10 is set to ‘1’ the internal clock is divided by two, which effectively means that the X and Y-Latency values are multiplied by two, that is the number of clock cycles between the address being latched and the first data becoming avail­able will be twice the value set in M13-M11, and the number of clock cycles between consecutive reads will be twice the value set in M9. For exam­ple 8-1-1-1 will become 16-2-2-2. When M10 is set to ‘0’ the internal clock runs n ormally and the X and Y-Latency values are those s et in M13-M11 and M9.
Y-Latency Bit (M9). The Y-Latency bit is used during Synchronous Bus Read operations to set the number of clock cycles between consecutive reads. The Y-Latency value depends on both the X-Latency value and the setting in M9.
When the Y-Latency is 1 the data changes each clock cycle; when the Y-Latency is 2 the data changes every seco nd clock cycle. See Tab le 4, Burst Configuration Register for valid combina­tions of the Y-Latency, the X-Latency and the Clock frequency.

Valid Data Ready Bit (M8). The Valid Data Ready bit controls the timing of the Valid Data Ready output pin, R. When the Valid Data Ready bit is ’0’ the Valid Data Ready output pin is driven Low for the active clock edge when invalid data is output on the bus. When the Valid Data Ready bit is ’1’ the Valid Data Ready output pin is driven Low one clock cycle prior to invalid data being output on the bus.

Burst Type Bit ( M7 ). The Burst Type bit is used to configure the sequence of addresses read as sequential or interleaved. When the Burst Type bit is ’0’ the memory outputs from interleaved ad­dresses; when the Burst Type bit is ’1’ the memory outputs from sequential addresses. See Tables 5, Burst Type Definition, for the sequence of ad­dresses output from a given starting address in each mode.

Valid Clock Edge Bit (M6). The Valid Clock E dge bit, M6, is used to configure the active edge of the Clock, K, during Synchronous Burst Read opera­tions. When the Valid Clock Edge bit is ’0’ the fall­ing edge of the Clock is the active edge; when the Valid Clock Edge bit is ’1 ’ the rising edge of the Clock is active.

Burst Length Bit (M2-M0). The Burst Length bits set the maximum number of Words that can be output during a Synchronous Burst Read opera­tion.

Table 4, Burst Configuration Register gives the valid combinations of the Burst Length bits that the memory accepts; Tables 5, Burst Type Definition, give the sequence of addresses output from a giv­en starting address for each length.
M5 M4 and M3 are reserved for future use.
16/61

Table 4. Burst Configuration Register

Address
Bit
Mnemonic Bit Name
16 M15 Read Select 1
15 M14 Reserved
Reset Value
Value Description
0 Synchronous Burst Read 1 Asynchronous Bus Read (default at power-up)
001 Reserved 010
X-Latency = 4, 4-1-1-1 (use only with Y-Latency = 1)
M58LW032A
(1)
14
to
12
M13-M11
X-Latency
(2)
XXX
011 100 101
X-Latency = 5, 5-1-1-1, 5-2-2-2 X-Latency = 6, 6-1-1-1, 6-2-2-2 X-Latency = 7, 7-1-1-1, 7-2-2-2
110 X-Latency = 8, 8-1-1-1, 8-2-2-2
11 M10
10 M9
9M8
Clock Divider
Y-Latency
Valid Data Ready
Internal
(3)
X
X
X
0 X and Y-Latencies remains as set in M13-M11 and M9 1 Divides internal clock, X and Y-Latencies multiplied by 2 0 Y-Latency = 1 1 Y-Latency = 2 0 R valid Low during valid Clock edge 1 R valid Low one cycle before valid Clock edge 0 Interleaved
8 M7 Burst Type X
1 Sequential
7M6
Valid Clock Edge
X
0 Falling Clock edge 1 Rising Clock edge
6 to 4 M5-M3 Reserved
3
to
M2-M0 Burst Length XXX
1
Note: 1. 4 - 2 - 2 - 2 (represents X-Y-Y -Y ) is not allowed.
2. X latencies can be calculated as: (t is the clock period).
3. Y latencies can be calcul ated as: t
4. t
SYSTEM MARGIN
is the time m argin requir ed for the calculation.
AVQV
KHQV
– t
LLKH
+ t
SYSTEM MARGIN
001 4 Words 010 8 Words 111 Continuous
+ t
) + t
QVKH
SYSTEM MARGIN
+ t
QVKH
< Y t
K.
< (X - 1) t
is an integer number from 4 to 8 and t
K. (X
K
17/61
M58LW032A

Tabl e 5. Burst Type Defi nition

Starting
Addressx4Sequentialx4Interleaved
x8
Sequential
x8
Interleaved
Continuous
0 0-1-2-3 0-1-2-3 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7-8-9-10..
1 1-2-3-0 1-0-3-2 1-2-3-4-5-6-7-0 1-0-3-2-5-4-7-6 1-2-3-4-5-6-7-8-9-10-11.. 2 2-3-0-1 2-3-0-1 2-3-4-5-6-7-0-1 2-3-0-1-6-7-4-5 2-3-4-5-6-7-8-9-10-11-12..
3 3-0-1-2 3-2-1-0 3-4-5-6-7-0-1-2 3-2-1-0-7-6-5-4 3-4-5-6-7-8-9-10-11-12-13.. 4 4-5-6-7-0-1-2-3 4-5-6-7-0-1-2-3 4-5-6-7-8-9-10-11-2-13-14..
5 5-6-7-0-1-2-3-4 5-4-7-6-1-0-3-2 5-6-7-8-9-10-11-12-13-14.. 6 6-7-0-1-2-3-4-5 6-7-4-5-2-3-0-1 6-7-8-9-10-11-12-13-14-15..
7 7-0-1-2-3-4-5-6 7-6-5-4-3-2-1-0 7-8-9-10-11-12-13-14-15-16.. 8 8-9-10-11-12-13-14-15-16-17..

Figure 6. Burst Configuration X-1-1-1

0123456789
K
ADD
L
DQ
DQ
DQ
DQ
DQ
4-1-1-1
5-1-1-1
6-1-1-1
7-1-1-1
8-1-1-1
VALID
VALID
VALID
VALID
VALIDVALIDVALIDVALID
VALIDVALIDVALID
VALID
VALIDVALIDVALIDVALID
VALID
VALID
VALID
VALIDVALID
AI05512
18/61

Figure 7. Burst Configuration X-2-2-2

0123456789
K
M58LW032A
ADD
L
DQ
DQ
DQ
DQ
5-2-2-2
6-2-2-2
7-2-2-2
8-2-2-2
VALID
NV
NV=NOT VALID
VALID
NV
NV
VALID
NV
VALID
NV
VALID
NV
VALID
NV
VALID
VALID
NV
VALID
NVNV
AI05513
19/61
Loading...
+ 42 hidden pages