SGS Thomson Microelectronics L6385D, L6385 Datasheet

HIGHVOLTAGERAIL UP TO 600 V dV/dt IMMUNITY +- 50 V/nsec IN FULL TEM-
PERATURERANGE DRIVER CURRENTCAPABILITY:
400 mASOURCE, 650 mASINK
SWITCHING TIMES 50/30 nsec RISE/FALL WITH 1nF LOAD
CMOS/TTL SCHMITT TRIGGER INPUTS WITH HYSTERESISANDPULL DOWN
UNDER VOLTAGE LOCK OUT ON LOWER AND UPPERDRIVING SECTION
INTERNALBOOTSTRAPDIODE OUTPUTSIN PHASEWITH INPUTS
DESCRIPTION
The L6385 is an high-voltage device, manufac­tured with theBCD”OFF-LINE” technology.It has a Driver structure that enables to drive inde-
pendent referenced N Channel Power MOS or IGBT. The Upper (Floating) Section is enabled to work with voltage Rail up to 600V. The Logic In­puts are CMOS/TTL compatible for ease of inter­facing with controlling devices.
June 1999
LOGIC
UV
DETECTION
LEVEL
SHIFTER
BOOTSTRAP DRIVER
R R S
V
CC
LVG
DRIVER
V
CC
8
7
6
5
4
HIN
LIN
HVG
DRIVER
HVG
H.V.
TO LOAD
OUT
LVG
GND
D97IN514B
Vboot
3
2
1
Cboot
UV
DETECTION
BLOCKDIAGRAM
SO8 Minidip
ORDERING NUMBERS:
L6385D L6385
L6385
HIGH-VOLTAGE HIGH AND LOW SIDE DRIVER
1/9
THERMAL DATA
Symbol Parameter SO8 Minidip Unit
R
th j-amb
Thermal ResistanceJunction to Ambient 150 100 °C/W
PIN DESCRIPTION
N. Name Type Function
1 LIN I Lower Driver Logic Input 2 HIN I UpperDriver Logic Input 3 Vcc I Low Voltage Power Supply 4 GND Ground 5 LVG (*) O Low Side Driver Output 6 VOUT O Upper Driver Floating Reference 7 HVG (*) O HighSide Driver Output 8 Vboot BootstrapSupply Voltage
(*) The circuit guarantees 0.3V maximum on the pin (@ I
sink
= 10mA). This allows to omit the ”bleeder”resistor connected between the gate
and thesource of the external MOSFET normally used to hold the pin low.
Vcc
HIN
LIN
GND
1
3
2
4LVG
OUT
HVG
Vboot8 7 6 5
D97IN517
PIN CONNECTION
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
Vout Output Voltage -3 toVboot - 18 V
Vcc Supply Voltage - 0.3 to +18 V
Vboot Floating Supply Voltage - 1 to 618 V
Vhvg Upper Gate Output Voltage - 1 to Vboot V
Vlvg Lower Gate Output Voltage -0.3 toVcc +0.3 V
Vi Logic Input Voltage -0.3 toVcc +0.3 V
dVout/dt Allowed Output Slew Rate 50 V/ns
Ptot Total Power Dissipation (Tj = 85 °C) 750 mW
Tj Junction Temperature 150 °C
Ts Storage Temperature -50 to 150 °C
Note: ESD immunity for pins 6, 7 and 8is guaranteed up to 900V (Human Body Model)
L6385
2/9
RECOMMENDED OPERATINGCONDITIONS
Symbol Pin Parameter Test Condition Min. Typ. Max. Unit
Vout 6 Output Voltage Note 1 580 V
Vboot-
Vout
8 Floating Supply Voltage Note 1 17 V
fsw Switching Frequency HVG,LVGloadCL = 1nF 400 kHz
Vcc 2 Supply Voltage 17 V
T
j
Junction Temperature -45 125 °C
Note 1:
If the condition Vboot - Vout < 18V is guaranteed, Vout can range from -3 to 580V.
ELECTRICALCHARACTERISTICS AC Operation(Vcc= 15V;Tj = 25°C)
Symbol Pin Parameter Test Condition Min. Typ. Max. Unit
ton 1 vs 7 High/Low SideDriver Turn-On
Propagation Delay
Vout = 0V 110 ns
toff 2 vs 5 High/Low SideDriver Turn-Off
Propagation Delay
Vout = 600V 105 ns
tr 7,5 Rise Time CL = 1000pF 50 ns tf 7,5 Fall Time CL = 1000pF 30 ns
DC OPERATION(Vcc = 15V; Tj = 25°C)
Symbol Pin Parameter Test Condition Min. Typ. Max. Unit
Low Supply Voltage Section
Vcc 3 Supply Voltage 17 V Vccth1 Vcc UV Turn On Threshold 9.1 9.6 10.1 V Vccth2 Vcc UV Turn Off Threshold 7.9 8.3 8.8 V Vcchys Vcc UV Hysteresis 1.3 V
Iqccu Undervoltage Quiescent Supply
Current
Vcc≤9V 150 220
µ
A
Iqcc Quiescent Current Vcc = 15V 250 320 µA
R
dson
Bootstrap Driver on Resistance (*) Vcc 12.5V 125
Bootstrapped supply Voltage Section
VBS 8 Bootstrap Supply Voltage 17 V VBSth1 VBS UV Turn On Threshold 8.5 9.5 10.5 V VBSth2 VBS UV Turn Off Threshold 7.2 8.2 9.2 V
VBShys VBS UV Hysteresis 1.3 V
IQBS VBS Quiescent Current HVG ON 200
µ
A
ILK High VoltageLeakage Current VS = VB = 600V 10 µA
High/Low Side Driver
Iso 5,7 Source Short Circuit Current VIN = Vih (tp < 10µs) 300 400 mA
Isi Sink Short Circuit Current VIN = Vil (tp < 10µs) 450 650 mA
Logic Inputs
Vil 2,3 Low LevelLogic Threshold Voltage 1.5 V
Vih High LevelLogic Threshold Voltage 3.6 V
Iih High LevelLogic Input Current VIN = 15V 50 70
µ
A
Iil Low Level Logic Input Current VIN = 0V 1
µ
A
(*) R
DSON
is tested in the following way: R
DSON
=
(
V
CC
V
CBOOT1
)
−(
V
CC
V
CBOOT2
)
I
1
(
V
CC,VCBOOT1
)−
I
2
(
V
CC,VCBOOT2
)
where I
1
is pin 8 current when V
CBOOT=VCBOOT1,I2
when V
CBOOT=VCBOOT2
.
L6385
3/9
Loading...
+ 6 hidden pages