SGS Thomson Microelectronics L6238SQT, L6238SQA, L6238S Datasheet

12V SENSORLESS SPINDLE MOTOR CONTROLLER
12V OPERATION 3A,THREE-PHASEDMOS OUTPUT
(TOTALR NOHALLSENSORSREQUIRED DIGITALBEMFPROCESSING LINEAROR PWM CONTROL STANDALONE OR EXT. DRIVER SHOOT-THROUGHPROTECTION THERMALSHUTDOWN
dson
0.52Ω)
L6238S
PRODUCT PREVIEW
PLCC44
PQFP44
DESCRIPTION
The L6238S is a Three-Phase, D.C. Brushless Spindle MotorDriver system. This device features boththe Powerand SequenceSections.
Higher Power Applications can be activied with the additionof an external Linear Driver,or by op­eratingthe InternalDrivers in PWM.
Motor Start-Up, without the use of Hall Sensors, can be achieved either by an internal start-up al­gorithm or by manually sequencing the Output Drivers, using a variety of User-Defined Start-UP Algorithms.
BLOCKDIAGRAM
VANALOG
SYS CLOCK
SEQ INCR
MONO/SEQ
CTRL
TDLY(0) TDLY(1) TDLY(2)
MASK DLY
VL
BIAS
SYSTEM
CLOCK
DIGITAL
DELAY
FALIGN
MONO
DET
OUTPUT ENABLE
ALIGN + GO
START-UP
RUN/
BRAKE
SEQUENCER
ZERO CROSSING DETECTOR
TQFP64
ORDERING NUMBERS: L6238S (PLCC44)
L6238SQA (PQFP44) L6238SQT (TQFP64)
Protection features include Stuck Rotor\Backward Rotation Detection and Automatic Thermal Shut­down.
PWM
PWM
LIN
BEMF
SENSE
PWM
COMP
+ + +
-
TIM
CHARGE
POWER
STAGE
PUMP
CPUMP1 CPUMP2 CPUMP3
VPOWER
BRAKE DELAY
OUT A OUT B OUT C
CTR TAP
PWM/ SLEW
ONE-SHOT
SLEW-CTRL
RSENSE1 RSENSE2
GND
CSA INPUT
1/31
OT-WARN
October 1995
SPIN
SENSE
TOGGLE
THERMAL
SHUTDOWM
DIVIDE
BY N
FMTRSEL POL
VCTRL
+
-
DRV
CNTL
GATE DRIVEGM COMP
AV=4V/V
CSA
D95IN232
This isadvanced information on a new product now in development or undergoing evaluation. Details are subject to changewithout notice.
L6238S
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
BV
dss
V
Power
V
Logic
V
Analog
V
in
C
storage
I
mdc
I
mpk
P
tot
Ts Storage and Junction Temperature -40 to 150 °C
THERMALDATA
Symbol Parameter PLCC44 PQFP44 TQFP64 Unit
R
th (j-amb)
Those Thermal Data arevalid if the package is mounted on Mlayer board in stillair
Output Brakdown Voltage 17 V Motor Supply Voltage 15 V Logic Supply Voltage 7 V Analog Supply Voltage 15 V Input Voltage -0.3 to 7 V Charge Pump Storage Capacitor 4.7 µF Motor Current (DC) (TQFP64 only)
(PLCC44 and PQFP44)
3
2.5 Peak Motor Current (Pulsed: Ton= 5ms, d.c. = 10%) 5 A Power Dissipation at Tamb = 50 °C(PLCC44)
(TQFP64) (PQFP44)
2.3
1.7
1.3
Thermal Resistance Junction-Ambient 34 45 45 °C/W
A A
W W W
PIN CONNECTION PLCC44 (Topview)
7
GND
N.C.
GND
8 9 10 11 12 13 14 15 16 17
CHARGE PUMP 1 CHARGE PUMP 3
OUTPUT A
VPOWER
VANALOG
TDLY(0) TDLY(1) TDLY(2)
CHARGE PUMP 2
GND
OTWARN
SELECT POLE
BRAKE DELAY
RSENSE 1
PWM/LINEAR
PWM LIMIT TMR
OUTPUT B
SPIN SENSE
123564
2322211918 20 28272624 25
RUN/BRAKE
OUTPUT ENABLE
VPOWER
PWM/SLEW
CENTER TAP
SYSTEM CLOCK
SEQ. INCREMENT
MONO/SEQINC CTRL
GND
MASK DELAY
40414244 43
FALIGN
PWM COMP
39 38 37 36 35 34 33 32 31 30 29
GND GATE DRIVE GM COMP OUTPUT C RSENSE 2 CSA INPUT VCONTROL N.C. FMOTOR VLOGIC GND
D95IN245
2/31
PIN CONNECTION PQFP44 (10x10)(Top view)
TDLY(2)
GND
TDLY(1)
OTWARN
SELECT POLE
PWM LIMIT TIMER
PWM/LINEAR
OUTPUT ENABLE
RUN/BRAKE
SEQ. INCREMENT
SYSTEM CLOCK
MONO/SEQINC CTRL
FALING
PWM COMP.
12 13 14 15 16
18 19 20 21 22
GND
VLOGIC
FMOTOR
N.C.
TDLY(0)
N.C.
VCONTROL
VANALOG
VPOWER
2827262423 25 33323129 30
RSENSE 2
CSA INPUT
OUTPUT A
OUTPUT C
CHARGE PUMP 1
CHARGE PUMP 3
GM COMP
GATE DRIVE
GND
123564789101711
44 43 42 41 40 39 38 37 36 35 34
GND
L6238S
GND CHARGE PUMP2 RSENSE 1 BRAKE DELAY SPIN SENSE OUTPUT B PWM/SLEW CENTER TAP VPOWER MASK/DELAY GND
D95IN243
PIN CONNECTION TQFP64 (Topview)
GND
GND
17
N.C.
18
N.C.
N.C.
GND
19 20 21 22 23
25 26 27 28 29 30 31 32
GND
OTWARN
SELECT POLE
PWM LIMIT TMR
PWM/LINEAR
OUTPUT ENABLE
RUN/BRAKE
SEQ. INCREMENT
SYSTEM CLOCK
MONO/SEQINC CTRL
FALIGN
PWM COMP
GND
GND
TDLY(1)
TDLY(2)
VLOGIC
FMOTOR
VANALOG
TDLY(0)
1213141516
37363433 35
CSA INPUT
VCONTROL
VPOWER
VPOWER
RSENSE 2
RSENSE 2
N.C.
N.C.
OUTPUT A
OUTPUT A
4342413938 40 48474644 45
OUTPUT C
OUTPUT C
CHARGE PUMP 3
GM COMP
CHARGE PUMP 1
GATE DRIVE
GND
GND
GND
GND
GND
123564789102411
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
GND
GND GND CHARGE PUMP 2 RSENSE 1 RSENSE 1 BRAKE DELAY SPIN SENSE OUTPUT B OUTPUT B PWM/SLEW CENTER TAP VPOWER VPOWER MASK DELAY GND GND
D95IN244
3/31
L6238S
PIN FUNCTIONS
PLCC44 PQFP44 TQFP64 Name I/O Function
1 39 56, 57 OUTPUT B I/O DMOS Half Bridge Output and Input B for Bemf sensing. 2 40 58 SPIN SENSE O Toggless at each Zero Crossing of the Bemf. 3 41 59 BRAKE DELAY I Energy Recovery time constant, definedby external R-C to ground. 4 42 60, 61 R
sense 1
5 43 62 CHARGE
PUMP 2
6, 7,
17, 29,
39, 40
1, 11,
23, 33,
34, 44
* GROUND S Ground terminals.
8 2 4 CHARGEPUMP1 I Positive terminal of Pump Capacitor. 9 3 5 CHARGEPUMP3 O Positive terminal of Storage Capacitor.
10 4 6, 7 OUTPUT A I/O DMOS Half BridgeOutput and Input A for Bemf sensing.
11, 42 5, 36 9, 10,
V
power
52, 53
12 6 11 V
13, 32 7, 26 8, 18,
analog
N.C N.C Open Terminal
19, 31,
41 14 8 12 Tdly(0) I Three bits that set theDelay between the detection of the Bemf 15 9 13 Tdly(1) I 16 10 14 Tdly(2) I 18 12 20 OTWARN O Overtemperature Warning Output 19 13 21 SELECT POLE I Selects # of Motor Poles. A zero selects 8, while a one selects 4
20 14 22 PWM TIMER I Capacitor connected to this pin sets the maximum time allowed
21 15 23 PWM/LINEAR I Selects PWM or Linear Output Current Control 22 16 24 OUTPUT
ENABLE
23 17 25 SEQUENCE I Rising edge will initiate start-up. A Brakingrountine is started
24 18 26 SEQ
INCREMENT 25 19 27 SYSTEM CLK I Clock Frequency for the system timer/counters. 26 20 28 MONO/SEQ.
INC. CONTROL
27 21 29 Falign I Reference Frequency for the opt. Auto-Start Algorithm. If int.
28 22 30 PWM COMP O Output of the PWM Comparator 30 24 35 Vlogic S 5V Logic Supply Voltage. 31 25 36 Fmotor O Motor Once-per-Revolution signal. 33 27 37 Vcontrol I Voltage at this input controlshe Motor Current 34 28 38 CSA INPUT I Input to the Current Sense Amplifier. 35 29 39, 40 Rsense 2 O Output C connection forthe Motor Current SenseResistor to
36 30 42, 43 OUTPUT C I/O DMOS Half Bridge Output and Input C for Bemf sensing.
37 31 44 gm COMP I A series RC network to ground that defines the compensation of
O Outputs A+B connections for the Motor Current Sense Resistor
to ground
I Negative Terminal of Pump Capacitor.
S Power Section Supply Terminal.
S 12V supply.
zero crossing, and the commutation of the next Phase.
poles.
for 100% duty cycle during PWM operation
I Tristates Power Output Stage when a logic zero.
when this input is brought low.
I A lowto high transition on thispin increments the Output State
Sequencer.
I A logicone will disable the Monotonicity Detectorand Sequence
Increment functions.
start up is not used, this pin must be connected to the System Clock.
ground.
the Transconductance Loop.
4/31
PIN FUNCTIONS
PLCC44 PQFP44 TQFP64 Name I/O Function
38 32 45 GATE DRIVER I/O Drivers the Ext. PFET Gate Driver for Higher Power applications.
This pin must be grounded if anexternal driver is not used. 41 35 51 MASK/DELAY O Internal Logic Signals used forproduction Testing 43 37 54 CENTER TAP I Motor Center Tap used for differentialBEMF sensing. 44 38 55 PWM/SLEW I R/C at this input set the LinearSlew Rate and PWM OFF-Time
L6238S
Figure1: BrakeDelay TimeoutvsC
(R
T
BD
(s)
3.0
1.0
0.3
0.0
0.0 0.3 1.0 3.0 Cb(µF)
Figure3: PWM Off - Time vs R
brake
=1Meg)
slew/Coff
brake
D95IN274
Figure 2: LinearSlew Rate vs R
S
VR
slew
(V/µs)
3.0
1.0
0.3
0.0 10 30 100 300 Rs(K)
Figure 4: PWMLimit Time - Out vsC
D95IN275
timer
PWM
(µs)
D95IN276
30
10
3
1
100 300 Coff(pF)
PWM
(µs)
30
10
100 300 Ctimer(pF)
D95IN277
5/31
L6238S
ELECTRICAL CHARACTERISTICS (T
=0to70°C; VA=V
amb
Pwr
= 12V; V
= 5V; unless otherwise
logic
specified)
Symbol Parameter Test Condition Min. Typ. Max. Unit
GENERAL
V
analog
I
analog
V
I
logic
logic
Analog Supply Voltage 10.5 13.5 V Analog Supply Current Run Mode VA= 13.5V 1.5 2.7 4.5 mA
Brake Mode V
= 13.5V 280 800 µA
A
Logic Supply Voltage 4.5 5.0 5.5 V Logic Supply Current Run Mode V
= 5.5V 1 2 3.2 mA
logic
Brake Mode 100 500 1000 µA
THERMAL SHUTDOWN
*T
*T
*T
sd
hys
ew
Shut Down Temperature 150 180 °C Recovery Temperature
30 °C
Hysteresis Early Warning Temperature Tsd-25 °C
POWERSTAGE
R
DS(on)
I
o(leak)
V
F
dVo/dt Output Slew Rate (Linear) R
I
gt
V
Gate-Drive
V
Ctrl-Range
I
in(VCtrl)
PWM OFF-TIME CONTROLLER (R
T
off
V
chrg
V
trip
Output ON Resistance per FET Tj=25°C; VA= 10.5V
T
= 125°C; VA= 10.5V
j
Output Leakage Current V
= 15V 1 mA
pwr
0.20 0.26
0.40
Body Diode Forward Drop Im= 2.0A 1.5 V
= 100K 0.15 0.30 0.45 V/µs
slew
Output Slew Rate (PWM) 10 150 V/µs Gate Drive for Ext. Power
DMOS
V V
control A
= 1V; V
= 10.5V
sns
= 0V;
4.5 mA
Ext Driver Disable Voltage 0.7 V Voltage Control Input Range 0 5.0 V Voltage Control Input Current 10 µA
= 100K,C
slew
= 120pF)
off
OFF Time 9 11 14 µs Capacitor Charge Voltage VA= 10.5V 2.31 2.65 3.1 V Lower Trip Threshold 1.25 V
Ω Ω
PWM LIMITTIMER
I
chrg
V
chrg
V
trip
Capacitor Charge Current V
PWM Timer
= 0V; VA= 10.5V 10.0 20.0 30 µA Capacitor Charge Voltage VA= 10.5V 3.0 3.5 4.0 mV Lower Trip Threshold 100 400 V
BEMF AMPLIFIER
V
Z
inCT
Bemf
Center Tap Imput Impedance 20 30 40 K Minimum Bemf (Pk-Pk) 60 mV
CURRENT SENSE AMPLIFIER
I
snsin
G
v
SR Slew Rate 0.33 0.8 V/µs
6/31
Input Bias Current VA= 13.5V 10 µA Voltage Gain 3.8 4.0 4.2 V/V
ELECTRICALCHARACTERISTICS (Continued)
Symbol Parameter Test Condition Min. Typ. Max. Unit
BRAKEDELAY
V
V
chrg
I
in
I
out3
Thres
Capacitor Charge Voltage RT= 50K 8.8 9.6 10.5 V Input Current Vin= 5.0V 500 nA Source Current VA= 10.5V 0.5 mA Delay Timer Low TripThreshold 1.2 1.8 2.8 V
CHARGEPUMP
V
out
F
cp
I
in
I
brkdly
I
brake
Storage Capacitor Output
VA= 10.5V; I
= 500µA17 V
out
Voltage Charge Pump Frequency 140 450 KHz Vstorage Input Current (Run
V
storage
= 12V; VA=V
=0 25 µA
logic
Mode) Vstorage Leakage Current
V
storage
= 12V; VA=V
= 0 0.4 1 µA
logic
(Brake Delay Mode) Vstorage Leakage Current
V
storage
= 12V; VA=V
= 0 0.1 1 µA
logic
(Brake Mode)
SEQUENCEINCREMENT
t
seq
Time Between Rising Edges 1 µs
OUTPUT TRANSCONDUCTANCE AMPLIFIER Note:Measure at OTA Comp. pin.
V
V
outL
I
source
I
sink
oh
Voltage Output High VA= 10.5V 10 V Output Voltage 2.0 V Output Voltage 40.0 0.5 V Output Sink Current 40.0 µA
L6238S
LOGICSECTION
V
inH
V
inL
V
inH
V
inL
I
inH
I
inL
V
outL
V
inL
F
sys
t
off/ton
Input Voltage (All Inputs
V
Except Run/Brake Run/Brake Input Voltage V
Input Current
Output Voltage Vsink = 2.0mA
V System Clock Frequency 8.0 12.0 MHz Clock ON/OFF Time 20 ns
Phase DelayTruth Table
Tdelay (2) Tdelay (1) Tdelay (0)
1 0 1 2.0 1 0 0 9.4 1 1 1 18.80 1 1 0 20.68 0 0 1 22.56 0 0 0 24,44 (*) 0 1 1 26.32 0 1 0 28.20
(*) Input Default
= 4.5 to 5.5V 3.5
logic
= 4.5 to 5.5V 2.0
logic
= 2.0mA 4.5
source
1.5
1.0
1.0 µA
-1.0
0.5 V
Commutation Phase Delay,
in Electrical Degrees
V V
V V
mA
V
7/31
L6238S
FUNCTIONAL DESCRIPTION
1.0 INTRODUCTION
1.1 Typical Application
In a typical application,the L6238Swill operatein conjunction with the L6244 Voice Coil Driver as
Figure1-1
27K
10K
0.1µF
3.6K
SENSE V
Vpower
GATE
POR
V
VCM
SENSE +INPUT
SENSE -INPUT
OUT A
CC
458
38
42
44 9 37
DRIVE
43 35
19
LOGIC
data(0)20data(1)21data(2)22data(3)23data(4)24data(5)25data(6)26data(7)
shown in Fig. 1-1. This configurationrequires a minimum amount of external components.
1.2 Input Default States
Figure 1-2 depicts the two possible input struc­tures for the logic inputs. If a particular pin is not
360K
14
10K
GAIN1-IN
ERROR
AMP OUTPUT
13
11
36WR28A027A118
CS
100K
GAIN2-IN
DA0Out
10
15
314 31 33
6,7,17,29,39,40
41
GND
POR DLY
CC/2
V
PROG
V
CP2CP1
PUMP
V
D95IN278
Rprogram
0.01µF
1µF
0.068µF
360K
360K
Rs 0.4
OUT
DA2
SENSE OUT
OUT B
12
L6244
VOICE COIL DRIVER
8/31
12V
60-90Hz
Note: If the internal Start-up
Algorithm is not used,
VLOGIC(5V)
connect this pinto SYS_CLK
MONO
GATE
22µF
LOGIC
V
SEQ.
DRV
ANLG
V
PWR
V
ALIGN
F
OUT ENA
38 26
12 39
27 11,42
OUT A
22
10
CTRL
RUN/BRK
V
33
23
43
CTR TAP
SEQ INC
34
1
OUT B
MTR
F
31
OUT C
OT WARM
18
L6238S
36
CONTROLLER
DLY(0)TDLY(1)TDLY(2)
T
16
15
14
SPINDLE MOTOR DRIVER
4.35
346.33
5
CSA
RSENSE
CHRG PUMP 2
10nF
20
8
PWM
TMR
6,7,17,
CHRG PUMP 1
29,39,40
GND
3
BRK
37
GM
44
PWM
CHRG
25 9
SYS CLK
DLY
COMP
SLEW
PUMP 3
10K
4.7µF
220pF
0.1µF
0.068µF
100K
400pF
8.12MHz
L6238S
Figure1-2
V
LOGIC
10µA
330
PULL-UP PULL-DOWN
D95IN279
V
LOGIC
330
10µA
used in an application, it may either be connected to ground or VLOGICas required, It may also be simplyleft unconnected.
If no connection is made, the pin is either pulled high or low by internal constant current gener­atorsas shownabove.
A listing of the logic and clock inputs is shown in Table1 with the correspondingdefault state.
Table 1
Pin Function Configuration
Tdly (0,1,2) Pull-Down Select Pole Pull-Down
PWM/Linear Pull-Down
Output Enable Pull-Down
Run/Brake Pull-Up
Sequence Increment Pull-Down
System Clock Pull-Up
Faling Pull-Up
1.3 Modes ofOperation
Thereare 5 basicmodes of operation.
1) Tristate When Output Enable is low, the output power
driversare tristated.
2) Start-Up With Output Enable high, bringing Run/Brake
from a low to a high will energize the motor and the system will be driven by the Fully-Integrated StartUpAlgorithm. A user-defined Start-Up Algorithm, under control of a MicroProcessor,can also be achieved via the sequenceincrementinput.
3) Run Run mode is achieved when the motor speed
(controlled by the external microprocessor)
reaches the nominalspeed.
4) Park When Run/Brake is brought low, energy to park
the heads may be derivedfrom the rectified Bemf. The energy recovery time is a function of the Brake Delay Time Constant. In this state, the qui­escent current of the device is minimized (sleep mode).
5) Brake After the Energy Recovery Time-Out, the device
is in Brake, with all lower Drivers in full conduc­tion.
There are two mutually exclusive conditions which may be present during the Tristate Mode (wake up):
a)the spindleis stopped. b)the system is still running at a speed that
allows for resynchronization.
In order to minimize the ramp up time, the micro­controllerhas thepossibility to:
check the SPIN SENSE pin, (which toggles at the Bemf zerocrossing frequency)
enable the power to the motor based on the previous information.Otherwise the µP may is­sue a Brake command, followed by the start­up procedureafter the motorhas stoppedspin­ning.
2.0 STATEDIAGRAMS
2.1 StateDiagram
Figure 2-1 is a complete State Diagram of the controllerdepicting the operationalflow asa func­tion of the control pins and motor status. The flow can be separatedinto fourdistinct operations.
2.2 Align + Go
Figure 2-2 represent the normal flow that will achieve a spin-up of the spindle motor using the internallygenerated start up algorithm.
Upon power up, or from any state with Run/Brake low the controller first sets the state machine for State=1with the Outputs Tristated.
The period counter that monitors the time be­tween zero crossing is stopped, analog with the phase and maskdelay counters.
When Run/Brake is brought high, the motor is in the firstpart of the align mode at State 2 (Output A high and Output C low). If Output Enable is high, thecontrollerfirst checks to determine if the motor is still spinning for a time of 21(with Sys_Clk = 10MHz). The drivers are now enabled and after the align time-out, (64/Falign), the se­quencer double increments the outputsto State 4 (Output B high and Output A low). The first part of this align mode is used to reduce the effectsof stiction
9/31
L6238S
Figure2-1
RUN/BRK=0
DRIVERS OFF
OUTENA=1
OUTENA=1
DRIVERS OFF STATE=STATE+1 MIN CLOCK DELAY LOAD MIN DELAY LOAD MAX MASK DELAY COUNT STATE=STATE+1 MASK COUNT
DRIVERS OFF MIN CLOCK DELAY PERIOD STOP
OUTENA=0
SYS_CLK
OUTENA=0
21
2
RUN/BRAKE=0 FROM ANY STATE
STATE=STATE+2
DRIVERS ON PERIOD STOP DELAY STOP MASK STOP
STATE=STATE+2
STATE=STATE+1 LOAD DELAY=MIN LOAD MASK=MAX PERIOD COUNT DELAY COUNT STATE=STATE+1 MASK COUNT
21
2
SYS_CLK
64/FALIGN
192/FALIGN
POR=0 FROM ANY STATE (FOR IS GENERATED INTERNALLY BY MONITORING VLOGIC)
STATE= 1 DRIVERS OFF MIN CLOCK DELAY PERIOD STOP DELAY STOP MASK STOP
RUN/BRAKE=1
DRIVERS OFF MIN CLOCK DELAY LOAD MIN MASK*** PERIOD STOP DELAY COUNT STATE=STATE+1 MASK COUNT
OUTENA=1
CHECK FOR ZcBEMF
21
2
SYS_CLK
RUN/BRK=0
DRIVERS OFF
BEMF
SEQLNC=1 & OUTENA=0 RUN/BRK=X
OUTENA=1
BEMF
RUN
MODE
BEMF
LOAD DELAY=MIN LOAD MASK=MIN RESET PERIOD PERIOD COUNT DELAY COUNT* STATE=STATE+1 MASK COUNT
MONO=0**
DRIVERS ON LOAD DELAY=PERIOD LOAD MASK=PERIOD RESET PERIOD PERIOD COUNT DELAY COUNT* STATE=STATE+1 MASK COUNT
INT. START-UP DISABLED MIN. CLOCK DELAY LOAD MIN. DELAY LOAD MIN. MASK***
BEMF
LOAD MIN. DELAY LOAD MIN. MASK*** DELAY COUNT STATE=STATE+1 MASK COUNT
BEMF
RUN/BRK=1 & OUTENA=1
STATE=STATE+1* MASK COUNT
SEQINC=1
FROM ANY STATE WITH SEQ_INC=0
OUTENA=1
OUTENA=0
DRIVERS ON PERIOD COUNT DELAY COUNT
SEQINC=0 SEQINC=1
BEMF BEMFSEQINC=0 SEQINC=1
LOAD DELAY=PERIOD LOAD MASK=PERIOD RESET PERIOD PERIOD COUNT DELAY COUNT**
STATE=STATE+1
* VALID IF SEQINC=0, AND DELAY TIMES OUT ** CLOCK DELAY=F(TDLY_[2:0])
WHEN BEMF PERIOD <3.3ms @ 10MHz (SPEED >12.7Hz FOR 8 POLES)
BEMFOUTENA=1
DRIVERS OFF MIN CLOCK DELAY PERIOD STOP
MASK COUNT
RETURN TO
PREVIOUS STATE
(CHANGING SEQINC=1)
ALIGN & GO MODE
* CLOCK DELAY=F(TDLY [2:0] WHENBEMF PERIOD <3.3ms@ 10MHz (SPEED>12.7Hz FOR 8 POLES) BEMF: BEMF RISING WITH PNSLOPE=1 OR BEMF FALLING WITH PNSLOPE=0 BEMF1: BEMF RISING WITH PNSLOPE=0 OR BEMF FALLING WITH PNSLOPE=1 **MONO=0 WHEN FREQ(BEMF)=2*FREQ(PHASE) ***MIN MASK=192/SYS_CLK(I.E. WITH SYS_CLK=10MHz,MIN MASK=19.2µs)
BEMF
After the next align time-out 192/Falign), the con­troller enters the Go mode, were the sequencer again double increments the output phase upon detectionof themotor’s Bemf.
The align time-outmay be optimized for the appli­cation by changing the Faling reference fre­quency.
A Watch-Dog Timer protection feature is built into the control logic to monitor the Falign pin for a clockingsignal. This circuitry, shown in Figure2-3 will prevent start up the device if the Falign clock isnot present.
10/31
RESYNCHRONIZATION MODE
D95IN280
Without this feature, the output would remain in the first phase under high current conditions, if the clockwere not present. If the external sequencer is used to provide start up, thesystem clock may be tied to the Falign pin to satisfy the requirements of the Watch-Dog Timer.
2.3 Resynchronization
If power is momentarily lost, the sequencer can automatically resynchronize to the monitored
Loading...
+ 21 hidden pages