Datasheet L4981A, L4981BD, L4981B, L4981AD Datasheet (SGS Thomson Microelectronics)

L4981A
CONTROLBOOSTPWM UP TO0.99P.F. LIMITLINECURRENT DISTORTIONTO< 5% UNIVERSALINPUT MAINS FEED FORWARD LINE AND LOAD REGULA-
TION AVERAGE CURRENT MODE PWM FOR
TEM POLEOUTPUT LOW START-UP CURRENT (0.3mATYP.) UNDER VOLTAGE LOCKOUT WITH HYS-
TERESIS AND PROGRAMMABLE TURN ON THRESHOLD
OVERVOLTAGE, OVERCURRENT PROTEC­TION
PRECISE 2% ON CHIP REFERENCE EX­TERNALLYAVAILABLE
SOFTSTART
DESCRIPTION
The L4981 I.C. provides the necessary features to achievea veryhigh power factor up to 0.99. Realized in BCD 60II technology this power factor corrector (PFC) pre-regulatorcontains all the con-
L4981B
POWER FACTOR CORRECTOR
MULTIPOWER BCD TECHNOLOGY
DIP20 SO20
ORDERING NUMBERS: L4981X (DIP20)
L4981XD (SO20)
trol functions for designing a highefficiency-mode power supply with sinusoidal line current con­sumption. The L4981 can be easily used in systems with mains voltages between 85V to 265V without any line switch. This new PFC offers the possibility to work at fixed frequency (L4981A) or modulated frequency (L4981B) optimizing the size of the in-
BLOCK DIAGRAM
September 1998
1/17
L4981A - L4981B
put filter; both the operating frequency modes working with an averagecurrent mode PWM con­troller, maintaining sinusoidal line current without slope compensation. Besides power MOSFET gate driver, precise volt­age reference (externally available), error ampli-
soft start are included. To limit the number of the external components, the device integrates pro­tections as overvoltage and overcurrent. The overcurrent level can be programmed using a simple resistor for L4981A. For a better precision and for L4981B an external divider must be used.
fier, undervoltage lockout, current sense and the
ABSOLUTE MAXIMUM RATINGS
Symbol Pin Parameter Value Unit
V
I
GDRV
CC
19 Supply Voltage (I 20 Gate driv. output peak current (t = 1µs) SINK 2
. SOURCE 1.5 A
V
GDRV
Gate driv. output voltage t = 0.1µs-1V Voltages at pins 3, 14, 7, 6, 12, 15 -0.3 to 9 V
V
VA-OUT
AC 4 AC Input Current 5 mA
I
13 Error AmplifierVoltage -0.3 to 8.5 V
Voltages at pin 8, 9 -0.5 to 7 V
CA-OUT 5 Current Amplifier Volt. (Isource = -20mA; Isink = 20mA) -0.3 to 8.5 V
V
V
ROSC
17 Voltage at pin 17 -0.3 to 3 V
11, 18 Voltage at pin 11, 18 -0.3 to 7 V
I
COSC
I
FREQ-MOD
V
SYNC
V
IPK
18 Input Sink Current 15 mA 16 Frequency Modulation Sink Current (L4981B) 5 mA 16 Sync. Voltage (L4981A) -0.3 to 7 V
2 Voltage at pin 2
Voltage at Pin 2 t = 1µs
P
tot Power Dissipation at T
Power Dissipation at T
T
op
T
stg
(*) Maximum package power dissipation limits must be observed.
Operating Ambient Temperature -40 to 125 °C StorageTemperature -55 to 150 °C
50mA) (*) selflimit V
CC
-0.3 to 5.5
-2
=70°C (DIP20) 1 W
amb
=70°C (SO20) 0.6 W
amb
Α
V V
PIN CONNECTIONS (Top views)
L4981A
2/17
L4981B
L4981A - L4981B
THERMAL DATA
Symbol Parameter DIP 20 SO 20 Unit
R
th j-amb
PIN FUNCTIONS
N. Name Description
1 P-GND Power ground. 2 IPK L4981A peak current limiting. A current limitation is obtained using a singleresistor connected
Thermal Resistance Junction-ambient 80 120
between Pin 2 and thesense resistor. To have a better precision another resistor between Pin 2 and a reference voltage (Pin 11) must be added.
C/W
°
L4981B
peak current limiting. A precise current limitation is obtained using two external resistor only. These resistorsmust be connected between the sense resistor, Pin 2 and the reference voltage.
3 OVP Overvoltage protection. At this input are compared an internal precise 5.1V (typ) voltage
reference with a sample of the boost output voltage obtained via a resistive voltage divider in order to limit the maximum output peak voltage.
4 IAC Input for the AC current. An input current proportional to the rectifiedmains voltagegenerates,
via a multiplier,the current reference for the currentamplifier.
5 CA-OUT Current amplifieroutput. An external RC network determinatesthe loop gain. 6 LFF Load feedforward; this voltage input pin allowsto modify the multiplier output current
proportionally to the load, in order to give a faster response versus load transient. The best control is obtained working between 1.5V and 5.3V. If this function is not used, connect this pin to the voltagereference (pin = 11).
7 VRMS Input for proportional RMS line voltage. theVRMS input compesates theline voltage changes.
Connecting a low pass filter between therectified line andthe pin 7, a DC voltage proportional to the inputline RMS voltage is obtained. The best control isreached using input voltage between 1.5V and 5.5V. Ifthisfunction is not used connectthis pin to the voltage reference (pin = 11).
8 MULT-OUT Multiplier output. This pin common to the multiplier output and the current amplifier N.I. inputis
9I
SENSE
an high impedence input like I Current amplifierinverting input. Care must be takento avoid this pin goes down -0.5V.
. The MULT-OUT pin must be taken not below -0.5V.
SENSE
10 S-GND Signal ground. 11 V
REF
Output reference voltage (typ = 5.1V).Voltage refence at ± 2% of accuracy externally available, it’s internallycurrent limitedand candeliver an output current up to 10mA.
12 SS A capacitor connected to ground defines the soft start time. An internal current generator
delivering 100µA (typ) charges the external capacitor defining the soft start time constant. An internal MOS discharge,the external soft start capacitor both in overvoltage and UVLO conditions.
13 VA-OUT Error amplifier output, an RC network fixes the voltage loop gain characteristics. 14 VFEED Voltage error amplifier inverting input. This feedback input is connected via a voltage divider to
the boost outputvoltage.
15 P-UVLO Programmable under voltage lock out threshold input. A voltage divider between supply
voltage and GND can be connected in orderto program the turn on threshold.
16 SYNC
(L4981A)
This synchronization input/output pin is CMOS logic compatible. Operating as SYNC in, a rectangular wave must be applied at this pin. Opearting as SYNC out,a rectangular clock pulse train is available to synchronize otherdevices.
FREQ-MOD
(L4981B)
17 R 18 C 19 V
OSC OSC
CC
Frequency modulation current input. An external resistor must be connected between pin 16 and the rectified line voltage in order to modulate the oscillatorfrequency. Connecting pin 16 to ground a fixed frequencyimposed by R
An external resistor connected to ground fixes the constant charging current of C
OSC
and C
is obtained.
OSC
OSC
. An external capacitor connected to GND fixes the switching frequency. Supply input voltage.
20 GDRV Output gate driver. Bipolar and DMOS transistors totem pole output stage candeliver peak
current in excess1A useful to drive MOSFET or IGBT power stages.
3/17
L4981A - L4981B
ELECTRICALCHARACTERISTICS
R
=24K,CSS=1µF, V
V
OSC FEED
= GND, V
IPK
= 1V,V
CA-OUT
= 1V, TJ=25°C
OVP
(Unlessotherwise specified V
= 3.5V, V
ISENSE
= 0V, V
LFF=VREF,IAC
= 18V, C
CC
= 1nF,
OSC
= 100µA, V
RMS
= 1V,
Symbol Prameter Test Condition Min. Typ. Max. Unit
ERROR AMPLIFIER SECTION
V
IO
I
IB
Input Offset Voltage –25°C<TJ<85°C ±8mV Input Bias Current V
= 0V -500 -50 500 nA
FEED
Open Loop Gain 70 100 dB
V
13H
V
13L
-I
13
I
13
Output High voltage V
Output Low Voltage V
Output Source Current V Output Sink Current V
FEED
I
VA-OUT
FEED
I
VA-OUT
FEED FEED
= 4.7V
= -0.5mA
= 5.5V
= 0.5mA = 4.7V; V = 5.5V; V
5.5 6.5 7.5 V
0.4 1 V
= 3.5V 2 10 mA
VA-OUT
= 3.5V 4 20 mA
VA-OUT
REFERENCE SECTION
V
ref
V
ref
V
ref
I
ref sc
Reference OutputVoltage –25°C<TJ<85°C 4.97 5.1 5.23 V
=25°CI
T
j
Load Regulation 1mA I
–25°C<T
Line Regulation 12V VCC≤ 19V
–25°C<T
Short Circuit Current V
=0V 203050mA
ref
= 0 5.01 5.1 5.19 V
ref
ref
J
10mA
<85°C
315mV
310mV
<85°C
J
OSCILLATOR SECTION
f
V
I I
V
osc
svp 18C 18D
18
Initial Accuracy Tj=25°C 85 100 115 KHz Frequency Stability 12V V
–25°C<T
CC
J
19V
<85°C
80 100 120 KHz
Ramp Valley to Peak 4.7 5 5.3 V Charge Current V Discharge Current V
= 3.5V 0.45 0.55 0.65 mA
COSC
= 3.5V 11.5 mA
COSC
Ramp Valley Voltage 0.9 1.15 1.4 V
SYNC SECTION (Only for L4981A)
t
W
I
16
-I
16
V
16L
V
16H
t
d
FREQUENCY MODULATION FUNCTION
f
18max
f
18min
Output Pulse Width 50%Amplitude 0.3 0.8 µs Sink Current with Low Output
Voltage Source Current with High Output
Voltage
V V
V V
SYNC COSC
SYNC COSC
= 0.4V
=0V
= 4.5V
= 6.7V
0.4 0.8 mA
16 mA
Low Input Voltage 0.9 V High Input Voltage 3.5 V Pulse for Synchronization 800 ns
(Only for Maximum Oscillation Frequency V Minimum Oscillator Frequency I
L4981B
FREQ-MOD
FREQ-MOD
V
VRMS
I
FREQ-MOD
V
VRMS
)
= 0V (Pin 16) I
= 360µA (Pin16)
= 4V (Pin 7)
= 180µA (Pin16)
= 2V (Pin 7)
= 0 85 100 115 KHz
freq
74 KHz
76 KHz
SOFT START SECTION
Soft Start SourceCurrent VSS= 3V 60 100 140 µA Output Saturation Voltage V3= 6V, ISS= 2mA 0.1 0.25 V
V
I
SS
12sat
4/17
L4981A - L4981B
ELECTRICALCHARACTERISTICS
(continued)
Symbol Parameter Test Condition Min. Typ. Max. Unit
SUPPLY VOLTAGE
V
CC
Operating Supply Voltage 19.5 V
OVER VOLTAGE PROTECTION COMPARATOR
Rising Threshold Voltage V
-20mV
ref
5.1 V +20mV
ref
Hysteresis 180 250 320 mV Input Bias Current 0.05 1 Propagation delay tooutput V
OVP=Vthr
+100mV 1 2
V
V
3Hys
I t
thr
3 d
OVER CURRENT PROTECTIONCOMPARATOR
V
th
t
d
I
ipk
I
L
Threshold Voltage ±30 mV Propagation delay toOutput V Current Source Generator V Leakage Current V
OCP=Vthr IPK IPK
-0.2V 0.4 0.9 µs = -0.1V = -0.1V
only for L4981A only for L4981B
65 85 105 µA
5 µA
CURRENT AMPLIFIER SECTION
V
offset
I
9bias
Input Offset Voltage V Input Bias Current V
MULT OUT=VSENSE SENSE
Open Loop Gain 1.1V≤V
SVR Supply Voltage Rejection 12V V
V
MULT OUT
V
5H
V
5L
-I
5
I
5
Output High Voltage V
Output Low Voltage V
Output Source Current V Output Sink Current 2 10 mA
MULT OUT
I
CA OUT
MULT OUT
I
CA OUT
MULT OUT
V
IAC
= 0V, V
= 0V -500 50 500 nA
CA OUT
CC
= 3.5V V = 200mV
= -0.5mA, V
= -200mV
= 0.5mA, V
= 200mV,
= 3.5V ±2mV
6V 70 100 dB
19V
SENSE
= 3.5V
68 90 dB
6.2 V
=0V
IAC
=0V
IAC
210 mA
= 3.5V
CA-OUT
0.9 V
OUTPUT SECTION
V
V
V
20L
20H
t
r
t
f
GDRV
Output Voltage Low I Output Voltage High I
Output Voltage Rise Time C Output Voltage Fall Time C Voltage Clamp I
= 250mA 0.5 0.8 V
SINK
= 250mA
SOURCE
V
= 15V
CC
= 1nF 50 150 ns
OUT
= 1nF 30 100 ns
OUT
= 0mA 13 16 19 V
SOURCE
11.5 12.5 V
TOTAL STANDBY CURRENT SECTION
I
19start
I
19on
Supply Current before start up VCC= 14V 0.3 0.5 mA Supply Current after turn on V
IAC
=0V,V
COSC
=0,
812mA
Pin17= Open
I
19
V
CC
Operating Supply Current Pin20 = 1nF 12 16 mA Zener Voltage (*) 20 25 30 V
UNDER VOLTAGE LOCKOUT SECTION
V
V
th OFF
thON
Turn on Threshold 14.5 15.5 16.5 V Turn off Threshold 9 10 11 V Programmable Turn-on Threshold Pin 15 to V
CC
= 220K
10.6 12 13.4 V
Pin15 to GND = 33K
LOAD FEED FORWARD
I
LFF
V
I
(*) Maximum package power dissipation limits must be observed.
Bias Current V6= 1.6V 70 140
= 5.3V 200 300 µA
V
6
Input Voltage Range 1.6 5.3 V
V
A
µ
s
µ
A
µ
5/17
L4981A - L4981B
ELECTRICALCHARACTERISTICS
(continued)
Symbol Prameter Test Condition Min. Typ. Max. Unit
MULTIPLIER SECTION
Multipler Output Current V
V
MULTOUT
I
AC
V
VA-OUT
V
MULTOUT
I
AC
V
VA-OUT
V
MULTOUT
I
AC
V
VA-OUT
V
MULTOUT
I
AC
V
VA-OUT
V
MULTOUT
I
AC
V
VA-OUT
V
MULTOUT
C
OSC
V
VA-OUT
V
MULTOUT
I
AC
V
VA-OUT
V
MULTOUT
I
AC
=0,V
=50µA, COSC =0V
= 4V, V
=0,V
= 200µA, C
= 2V, V
=0,V
= 100µA, C
= 2V, V
=0,V
= 100µA, COSC =0V
= 4V, V
=0,V
= 100µA, C
= 4V, V
=0,V
= 0V, IAC= 200µA
= 4V, V
=0,V
= 200µA, COSC =0V
= 2V, V
=0,V
=0,C
OSC
= 4V, V
VA-OUT
RMS LFF
RMS LFF
OSC
RMS LFF
OSC
RMS LFF
RMS LFF
OSC
RMS LFF
RMS LFF
RMS LFF
=0V
= 2V,
= 5.1V
= 2V,
= 5.1V
=0V
= 2V,
= 5.1V
=0V
= 4V,
= 5.1V
= 4V,
= 5.1V
=0V
= 2V,
= 2.5V
=4V
= 5.1V
= 4V,
= 5.1V
20 35 52
100 135 170 µA
10 20 30 µA
2 5.5 11
10 22 34 µA
20 37 54 µA
20 39 54
-2 0 2 µA
K Multiplier Gain 0.37
A
µ
A
µ
A
µ
I
MULTOUT
= K I
if VLFF =VREF; I where: K1 = 1V
Figure 1:
MULTI-OUTvs. I
V
LFFD
(
V
AC
MULTOUT
= 5.1V)
VAOUT
= I
1.28
(V
(V
OUT
VA
AC
(V
AC(VRMS
) (
VRMS
1.28)
VRMS
= 1.7V;
0.8⋅V
2
)
2
)
LFF
K1
)
1.28
Figure2: MULTI-OUTvs. I
V
LFFD
= 5.1V)
AC(VRMS
= 2.2V;
6/17
L4981A - L4981B
Figure 3:
MULTI-OUTvs. I
= 5.1V)
V
LFFD
Figure 5: MULTI-OUTvs. I
= 2.5V)
V
LFFD
AC(VRMS
AC(VRMS
= 4.4V;
= 1.7V;
Figure4: MULTI-OUTvs. I
= 5.1V)
V
LFFD
Figure6:
MULTI-OUTvs. I
= 2.5V)
V
LFFD
AC(VRMS
AC(VRMS
= 5.3V;
= 2.2V;
Figure 7: MULTI-OUTvs. I
= 2.5V)
V
LFFD
AC(VRMS
= 4.4V;
Figure8:
MULTI-OUTvs. I
= 2.5V)
V
LFFD
AC(VRMS
= 5.3V;
7/17
L4981A - L4981B
Figure 9A:
FUSE
Vi
85VAC-265V
L4981APower Factor Corrector (200W)
R6
C7
R7
C8
BRIDGE
AC
C1
R8
74
15
16
R11 R3
C12
R14
R15
D3 C5
19
1
L4981A
R21
C3
R5
R4 C4 R16 C6 C10
R
S
PART LIST
T
D4
C9
R12
13 14
121710189582
+
D1
R1 R9
3
D2
R13
20
6
11
C11
MOS
D5 R17
R2 R10
D93IN029B
Vo=400V
C2
-
R
0.07(3 x .22) 1/2W 5%
S
R1 820k 1/4W 1% R2 10k 1/4W 1% R3 1.8k 1/4W 5% R4 1.8k 1/4W 5% R5 R6 R7 360k R8 33k R9 1.8M
R10 21k
18k 1/4W 5%
1.2M 1/4W 5%
1/4W 5% 1/4W 5% 1/4W 1% 1/4W 1%
R11 402 1/4W 1% R12 120k 1/4W 5% R13 27 1/4W 5% R14 R15 R16 R17 1.8k R21 5.1k
1M 1/4W 1%
120k 1/2W 5%
30k 1/4W 5%
Ω Ω
4W 1%
1/4W 1%
BRIDGE = 4 x P600M
T= primary:88 turns of 12 x 32 AWG(0.2mm)
secondary:9 turnsof # 27AWG (0.15mm) core:B1ET3411ATHOMSON- CSF gap:1,6mm for a total primary inductanceof
0.9mH
C1 470nF 400V C2 100µF 450V C3 2.2nF C4 1nF C5 C6 C7
100µF 25V
1µF 16V
220nF 63V
C8 220nF 63V
C9 330nF C10 1µF 16V C11 270pF 400V C12 8.2nF 100V
D1 STTA506D
D2,D3
D4
D5
MOS
1N4148
18V 1/2W
BYT11-600
STH/STW15NA50
FUSE = 4A/250V
= 80kHz PO=200W
f
SW
V V
OUT OVP
=400V I = 442V I
rms max PK max
= 2.53A
= 6.2A
8/17
L4981A - L4981B
Figure 9B:
FUSE
Vi
85VAC-265V
L4981BPower Factor Corrector (200W)
C7
C8
R8
R6
R14
R7
74
R21
R5
R
S
C12
R15
D3 C5
19
1
L4981B
C3
R4 C4 R16 C6 C10
R22
BRIDGE
AC
C1
15
16
R11 R3
PART LIST
T
D4
C9
R12
13 14
121710189582
+
D1
R1 R9
3
D2
R13
20
6
11
C11
MOS
D5 R17
R2 R10
D95IN220
Vo=400V
C2
-
R R1 R2
0.07(3 x .22) 1/2W 5%
S
820k 1/4W 1%
10k 1/4W 1%
R3 1.8k 1/4W 5% R4 1.8k 1/4W 5% R5 18k R6 1.2M R7 R8
360k 1/4W 5%
33k 1/4W 5%
1/4W 5% 1/4W 5%
R9 1.8M 1/4W 1%
R10 21k R11 402 R12 R13
120k 1/4W 5%
27 1/4W 5%
Ω Ω
1/4W 1% 1/4W 1%
R14 1M 1/4W 1% R15 120k 1/2W 5% R16 24k R17 1.8k R21 R22
5.1k 1/4W 1%
1.1M 1/4W 1%
1/4W 5%
4W 1%
BRIDGE = 4 x P600M
T= primary:88 turns of 12 x 32 AWG(0.2mm)
secondary:9 turnsof # 27AWG (0.15mm) core:B1ET3411ATHOMSON- CSF gap:1,6mm for a total primary inductanceof
0.9mH
C1 470nF 400V C2 100µF 450V C3 2.2nF C4 1.1nF C5 C6 C7
100µF 25V
1µF 16V
220nF 63V
C8 220nF 63V
C9 330nF C10 1µF 16V C11 270pF 400V C12 8.2nF 100V
D1 STTA506D
D2,D3
D4
D5
MOS
1N4148
18V 1/2W
BYT11-600
STH/STW15NA50
FUSE = 4A/250V
= 80 to 92kHz PO= 200W
f
SW
V V
OUT OVP
= 400V I = 442V I
rms max PK max
= 2.53A
=6.2A
9/17
L4981A - L4981B
Figure 10: Reference Voltage vs. Source Refer-
ence Current
Figure 12: ReferenceVoltage vs. JunctionTem-
perature
Figure11: ReferenceVoltage vs. Supply Voltage
Figure13: SwitchingFrequency vs. Junction
Temperature
Figure 14: GateDriver Rise and Fall Time
10/17
Figure15: OperatingSupply Current vs. Supply
Voltage
L4981A - L4981B
Figure 16:
ProgrammableUnder Voltage Lock-
Figure17:
out Thresholds
Vl
1
0.8
R22= R23 6.8
0.4
0.2
0
R23 (Kohm)
0
Table 1: ProgrammableUnder VoltageLockout Thresholds.
V
CC ON
11V 10V 82k 12k 12V 10.1V 220k 13V 10.5V 430k 62k 14V 10.8V 909k
14.5V 10.9V 1.36M 200k 15V 11V 2.7M
V
CC OFF
ModulationFrequency Normalized in
an Half Cycleof the Mains Voltage
45
R22 R23
90 135
33k
133k
390k
Electrical degrees
fsw
180
1
0.8
0.4
0.2
0
Figure 18: OscillatorDiagram
11/17
L4981A - L4981B
Figure 19:
200WEvaluation Board Circuit.
T= primary: 75 turns of litz wire 20 x 32 AWG (0.2mm) secondary: 8 turns of # 27AWG (0.15mm) core: B1ET3411A THOMSON - CSF gap: 1.4mm for a total primary inductance of 0.7mH f
= 100kHz; VO= 400V; PO= 200W
sw
NOTE: Start Up Circuit
Usually theV drawing current from the rectified mains. In the evaluation board instead the start up circuit composed by (Q2+R19+R15+Dz) has been designed to perform a fast and effective supply in all the conditions. Once that the L4981A/B has started, the reference
capacitor(C11 infig. 19)can becharged bya resistor
CC
12/17
voltage available at pin 6 by R20 and Q3, ensures Q2 to be turned off.
ProgrammableUnder voltage Lockout
The PCB allows to insert a couple of resistor (R22, R23) to modify the threshold input voltage. Please refer to fig.16 and table1.
L4981A - L4981B
Figure 20:
P.C.BoardandComponent Layoutof EvaluationBoardCircuit (1:1 scale).
13/17
L4981A - L4981B
The evaluation board has been designed using: a faster not dissipative start-up circuit, a diode (D2) to speed-up the MOS start-off time and (even if a single resistor can be used) an external divider to improve the precision of the overcurrent thresh­old.
Further there is a possibility to change the input threshold voltage using an external divider (R23 and R22) and if an inrush current problem arises
AC POWER
SOURCE
LARCET /3KW
V
i
(V
rms
88 60 222 0.999 2.94 1.98 0.61 0.55 0.70 390 8 200 90.2 110 60 220 0.999 1.79 1.40 0.40 0.31 0.28 392 8 201 91.6 132 60 218 0.999 1.71 1.16 0.40 0.35 0.31 394 8 202 92.8 180 50 217 0.999 1.88 1.52 0.65 0.40 0.34 396 8 203 93.8 220 50 217 0.997 2.25 1.68 0.83 0.57 0.48 398 8 204 94.2 260 50 216 0.995 3.30 1.84 1.30 0.39 0.73 400 8 205 95.2
fP
) (Hz) (W) (%) (%) (%) (%) (%) (V) (V) (W) (%)
i
PM1200 AC POWER ANALYSER
PF A-THD H3 H5 H7 H9 V
a NTC resistor can be used. The PFC demoboard performances has been
evaluatedtesting the followingparameters: PF (power factor), A-THD (percentage of current
total harmonic distortion), H3..H9 (percentage of current’s n voltageripple), V
th
harmonic amplitude),∆Vo(output
(outputvoltage),η (efficiency).
o
The test configuration, equipments and results are:
EMI
FILTER
PFC
L4981
DEMO
LOAD
D94IN057
V
O
O
PO η
EMI/RFI FILTER
The harmonic content measurement has been done using an EMI/RFI filter interposed between
T1 T2
LINE PFC
EARTH
C1
where: T1 = 1mH C1 = 0.33µF, 630V T2 = 27mH C2 = 2.2nF, 630V
14/17
the AC source and the demoboard under test, while the efficiency has been calculated without the filtercontribution.
C
D94IN052
SO20 PACKAGEMECHANICAL DATA
L4981A - L4981B
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A 2.35 2.65 0.093 0.104
A1 0.1 0.3 0.004 0.012
B 0.33 0.51 0.013 0.020
C 0.23 0.32 0.009 0.013
D 12.6 13 0.496 0.512
E 7.4 7.6 0.291 0.299
e 1.27 0.050
H 10 10.65 0.394 0.419
h 0.25 0.75 0.010 0.030
L 0.4 1.27 0.016 0.050
K 0 (min.)8 (max.)
mm inch
L
A
B
e
K
D
1120
E
110
hx45°
SO20MEC
A1
C
H
15/17
L4981A - L4981B
DIP20 PACKAGEMECHANICAL DATA
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
a1 0.254 0.010
B 1.39 1.65 0.055 0.065
b 0.45 0.018
b1 0.25 0.010
D 25.4 1.000
E 8.5 0.335
e 2.54 0.100
e3 22.86 0.900
F 7.1 0.280
I 3.93 0.155
L 3.3 0.130
Z 1.34 0.053
mm inch
16/17
L4981A - L4981B
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
1998 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -
Singapore - Spain - Sweden - Switzerland- Taiwan- Thailand - United Kingdom - U.S.A.
17/17
Loading...