UP TO 1A STEP DOWN CONVERTER
OPERATINGINPUT VOLTAGE FROM 8V TO
55V
PRECISE5.1V REFERENCEVOLTAGE
OUTPUT VOLTAGE ADJUSTABLE FROM
3.3VTO 50V
SWITCHINGFREQUENCY ADJUSTABLE UP
TO 500KHz
VOLTAGEFEEDFORWARD
ZEROLOAD CURRENTOPERATION
INTERNAL CURRENT LIMITING (PULSE-BY-
PULSEAND HICCUPMODE)
PROTECTION AGAINST FEEDBACK DIS-
CONNECTION
THERMAL SHUTDOWN
DESCRIPTION
The L4976 is a step down monolithic power
switching regulator delivering 1A at a voltage between 3.3V and 50V (selected by a simpleexternal divider). Realized in BCD mixed technology,
the device uses an internal power D-MOS transistor (with a typical Rdson of 0.25Ω) to obtain very
high efficency and high switching speed.
A switching frequency up to 250KHz is achievable (themaximum power dissipationof thepack-
L4976
MinidipSO16W
ORDERING NUMBERS: L4976 (Minidip)
L4976D (SO16)
ages must be observed).
A wide input voltage range between 8V to 55V
and output voltages regulated from 3.3V to 40V
cover the majority of today’s applications.
Features of this new generations of DC-DC converter include pulse-by-pulse current limit, hiccup
mode for short circuit protection, voltage feedforward regulation, protection against feedbackloop
disconnectionand thermalshutdown.
The device is available in plastic dual in line,
MINIDIP 8 for standard assembly, and SO16W
for SMD assembly.
TYPICAL APPLICATIONCIRCUIT
Vi=8V to 55V
R
1
20K
C
2
2.7nF
May 2000
C1
220µ
63V
C
F
7
220nF
5
3
2
L4976
7
R
2
9.1K
22nF
1
C
4
6
C
6
100nF
8
4
L1
260µ
H
(77120)
D1
GI
SB360
C
8
330µF
=3.3V/1A
V
O
1/11
L4976
BLOCKDIAGRAM
2
V
REF
7
COMP
8
FB
3.3V
THERMAL
SHUTDOWN
VREF
E/A
OSCILLATOR
VOLTAGES
MONITOR
PWM
5.1V
INTERNAL
REFERENCE
3.3V
R
Q
S
DRIVE
CC
V
5
CBOOT
CHARGE
6
BOOT
CBOOT
CHARGE
AT LIGHT
LOADS
3
OSCGNDOUT
1
4
PIN CONNECTIONS
GND
REF
V
OSC
OUT
1
2
3
4VCC
FB8
COMP
7
BOOT
6
5
Minidip
N.C.
GND
V
REF
OSC
OUT
OUT
N.C.
N.C.N.C.
2
3
4
5
6
7
8
SO16W
16
15
14
13
12
11
10
9
PIN FUNCTIONS
DIPSO (*)NameFunction
12GNDGround
23VREF5.1V Reference voltage with 20mA current capability.
34OSCAn external resistor connected between the unregulated input voltage and this pin and
45,6OUTStepdown regulator output
511 V
CCUnregulated DC input voltage
612BOOTA capacitor connected between this pin and OUT allows to drive the internal VDMOS
713COMPE/A output to be used for frequency compensation
814FBStepdown feedback input. Connecting directly to this pin results in an output voltage of
(*) Pins 1, 7,8, 9, 10, 15 and 16 are not internally, electrically connected to the die.
a capacitor connected from this pin to ground fix the switching frequency. (Line feed
forward is automatically obtained)
3.3V. An externalresistive divider is required for higher output voltages.
N.C.1
N.C.
FB
COMP
BOOT
VCC
N.C.
2/11
THERMALDATA
SymbolParameterMinidipSO16Unit
R
th(j-amb)
(*) Package mounted on board.
Thermal Resistance Junction to ambientMax.90 (*)110 (*)°C/W
OPERATINGTEMPERATURE RATING
SymbolParameterValueUnit
T
Junction Temperature Range-40 to 150°C
J
ABSOLUTE MAXIMUM RATINGS
L4976
Symbol
MinidipS016
V
11
V5,V
I5,I
V12-V
V
12
V
13
V
14
P
tot
V
V
5
V
4
I
4
6-V5
V
6
V
7
V
8
Input voltage58V
Output DC voltage
6
Output peak voltage at t = 0.1µs f=200KHz
Maximum output currentint. limit.
6
11
Bootstrap voltage70V
Analogs input voltage (VCC= 24V)12V
(VCC= 20V)6
Power dissipation a T
ParameterValueUnit
-1
-5
V
V
14V
V
-0.3
≤ 60°CMinidip1W
amb
V
SO160.8W
T
j,Tstg
Junction and storage temperature-40 to 150°C
ELECTRICAL CHARACTERISTICS (Tj = 25°C, Cosc = 2.7nF, Rosc = 20kΩ,VCC = 24V, unless other-
wisespecified.) * SpecificationRefered to Tj from 0 to 125°C
SymbolParameterTest ConditionMin.Typ.Max.Unit
DYNAMICCHARACTERISTIC
V
V
oOutput voltageIo = 0.5A3.333.363.39V
V
dDropout voltageVcc = 10V;Io = 1A0.440.55V
I
lMaximum limiting currentVcc = 8 to 55V*1.522.5A
f
sSwitching frequency*90100110KHz
SVRRSupply voltage ripple rejection V
Operating input voltage rangeVo= 3.3 to 50V; Io=1A*855V
I
I
o = 0.2 to 1A3.2923.363.427V
V
cc = 8to 55V*3.223.363.5V
*0.88V
EfficiencyV
Voltage stability of switching
o = 3.3V; Io =1A85%
+2V
i=Vcc
I
o = 1.A; f ripple = 100Hz
RMS;Vo=Vref
;
60dB
Vcc = 8 to 55V36%
frequency
Temp. stability of switching
T
j = 0 to 125°C4%
frequency
3/11
L4976
ELECTRICAL CHARACTERISTICS (continued)
SymbolParameterTest ConditionMin.Typ.Max.Unit
Reference Section
Reference Voltage5.05.15.2V
I
= 0 to 10mA;
ref
V
= 8 to 55V
CC
Line RegulationI
Load RegulationV
= 0mA;
ref
V
= 8 to 55V
CC
= 0 to 5mA;
ref
V
= 0 to 20mA
CC
Short Circuit Current3065100mA
DC Characteristics
IqopTotal operating quiescent
I
q Quiescent currentDuty Cycle = 0; V
current
= 3.8V2.53.5mA
FB
Error Amplifier
V
FB
R
L
V
oHHigh level output voltageV
V
oLLow level output voltageV
I
o sourceSource output currentV
I
o sinkSink output currentV
I
bSource bias current23µA
SVRR E/ASupply voltage ripple rejection V
gmTransconductanceI
Voltage Feedback Input3.333.363.39V
Line regulationVcc= 8 to 55V510mV
Ref. voltage stability vs
Vcc = 55V99.610.2V
Maximum duty cycle9597%
Maximum FrequencyDuty Cycle = 0%
R
osc
= 13kΩ,C
= 820pF
osc
*4.9505.15.250V
510mV
2
6
10
25
46mA
*0.4mV/°C
2.5ms
500kHz
mV
mV
4/11
L4976
Figure1. Quiescentdraincurrent vs. input
voltage.
Iq
(mA)
200KHz
R1=22K
5
C2=1.2nF
4
3
2
Tamb=25°
C
0% DC
1
0 5 10 15 20 25 30 35 40 45 50
100KHz
R1=20K
C2=2.7nF
0Hz
D97IN724
Vcc(V)
Figure3. LineRegulation
VO
(V)
3.377
Tj=125°C
3.376
3.375
3.374
3.373
3.372
3.371
3.370
0 5 10 15 20 25 30 35 40 45 50 VCC(V)
D97IN733
Tj=25°C
Figure 2. Quiescentcurrent vs. junction
temperature
200KHz
R
=22K
1
=1.2nF
C
2
0Hz
D97IN731
Iq
(mA)
5
4
100KHz
=20K
R
1
=2.7nF
C
2
3
VCC=35V
2
0% DC
1
-50 -30 -10 10 30 50 70 90 110 Tj(°C)
Figure 4. Loadregulation
VO
(V)
3.378
3.376
3.374
Tj=25°C
3.372
3.370
Tj=125°C
3.368
3.366
3.364
3.362
3.360
00.2 0.4 0.6 0.8 1.0 1.2 1.4 IO(A)
D97IN734
=35V
V
CC
Figure5. Switchingfrquencyvs. R1 and C2
fsw
(KHz)
500
200
0.82nF
1.2nF
100
50
20
2.2nF
3.3nF
4.7nF
5.6nF
10
5
020406080R1(KΩ)
D97IN784
Tamb=25°C
Figure 6. SwitchingFrequencyvs. input
voltage.
fsw
(KHz)
107.5
105.0
102.5
Tj=25°C
100.0
97.5
95.0
92.5
90.0
0 5 10 15 20 25 30 35 40 45 50 VCC(V)
D97IN735
5/11
L4976
Figure7. Switchingfrequency vs. junction
temperature.
fsw
(KHz)
105
100
95
90
-50050100Tj(°C)
D97IN785
Figure9. Efficiencyvs output voltage.
(%)
96
94
92
90
88
86
η
100KHz
200KHz
V
I
O
=35V
CC
=1.5A
D97IN737
Figure 8. Dropoutvoltagebetweenpin5 and 4.
∆V
(V)
0.5
0.4
0.3
0.2
0.1
0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 IO(A)
D97IN736
Tj=125°C
Tj=25°C
Tj=-25°C
Figure 10. Efficiencyvs.outputcurrent.
η
(%)
90
85
80
75
70
V
=12V
CC
V
=24V
CC
=48V
V
CC
D97IN738
VCC=8V
fsw=100KHz
VO=5.1V
84
82
0510152025 VO(V)
Figure11. Efficiencyvs. outputcurrent.
η
6/11
(%)
90
85
80
75
=12V
V
CC
VCC=8V
V
=24V
CC
V
=48V
CC
70
65
60
00.2 0.4 0.6 0.8 1.0 1.2 1.4 IO(A)
D97IN739
fsw=100KHz
VO=3.36V
65
60
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 IO(A)
Figure 12. Efficiencyvs.outputcurrent.
η
(%)
90
85
80
=12V
V
CC
V
CC
V
=24V
CC
VCC=8V
=48V
75
70
65
60
00.2 0.4 0.6 0.8 1.0 1.2 1.4 IO(A)
D97IN740
fsw=200KHz
VO=5.1V
L4976
Figure13. Efficiencyvs.outputcurrent.
η
(%)
90
85
80
VCC=8V
V
=12V
CC
=24V
V
CC
75
70
V
=48V
CC
65
60
55
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 IO(A)
D97IN741
fsw=200KHz
VO=3.36V
Figure15. Powerdissipationvs.Vcc.
I
O
=1A
I
O
D97IN743
=0.5A
Pdiss
(mW)
800
600
400
200
=5.1V
V
O
fsw=100KHz
IO=1.5A
Figure 14. Efficiencyvs.Vcc.
η
(%)
85
80
75
70
0 1020304050VCC(V)
IO=1.5A
V
0
V
0
=5.1V-f
=5.1V-f
V
V
0
=3.36V-f
SW
SW
0
=3.36V-f
Figure 16. Efficiencyvs.Vo.
Pdiss
(mW)
800
600
400
200
V
=35V
CC
fsw=100KHz
=100KHz
=200KHz
SW
SW
=
1
200KHz
IO=1.5A
I
O
D97IN742
=100KHz
D97IN744
I
=1A
O
=0.5A
0
0 1020304050VCC(V)
Figure17. Pulseby pulse limitingcurrent vs.
junctiontemperature.
Ilim
(A)
2.9
fsw=100KHz
VCC=35V
2.8
2.7
2.6
2.5
2.4
2.3
-50 -25 025 50 75 100 125 Tj(°C)
D97IN747
0
051015202530 V0(V)
Figure 18. Load transient.
7/11
L4976
Figure19. Line transient.
V
CC
(V)
30
20
10
1
2
1ms/DIV
IO=
1A
fsw= 100KHz
D97IN786
V
O
(mV)
100
0
-100
Figure 20. Openloopfrequencyandphaseof er-
roramplifier
GAIN
(dB)
50
0
-50
-100
-150
-200
1010
3
2
10
5
4
10
10
6
GAIN
Phase
10
7
D97IN787
8
10
Phase
0
45
90
135
f(Hz)10
8/11
L4976
DIM.
MIN.TYP. MAX.MIN.TYP. MAX.
A3.320.131
a10.510.020
B1.151.650.0450.065
b0.3560.550.0140.022
b10.2040.304 0.0080.012
D10.920.430
E7.959.750.3130.384
e2.540.100
e37.620.300
e47.620.300
F6.60.260
I5.080.200
L3.183.810.1250.150
Z1.520.060
mminch
OUTLINE AND
MECHANICAL DATA
Minidip
9/11
L4976
DIM.
MIN.TYP. MAX.MIN.TYP. MAX.
A2.352.650.0930.104
A10.10.30.0040.012
B0.330.510.0130.020
C0.230.320.009
D10.110.50.3980.413
E7.47.60.2910.299
e1.270.050
H1010.65 0.3940.419
h0.250.750.0100.030
L0.41.270.0160.050
K0°(min.)8° (max.)
mminch
0.013
OUTLINE AND
MECHANICAL DATA
SO16 Wide
10/11
L
hx
45
A
B
e
K
A1
C
H
D
16
9
E
1
8
L4976
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logois a registered trademark of STMicroelectronics
2000 STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France- Germany - Hong Kong - India - Italy - Japan - Malaysia- Malta - Morocco -
Singapore- Spain - Sweden - Switzerland - United Kingdom- U.S.A.
http://www.st.com
11/11
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.