TION (100µA Typ.at V
PROTECTION AGAINST FEEDBACK DIS-
CONNECTION
THERMAL SHUTDOWN
OUTPUTOVERVOLTAGEPROTECTION
SOFTSTART FUNCTION
CC
= 24V)
L4973D3.3 - L4973D5.1
MULTIPOWERBCD TECHNOLOGY
POWERDIP(12+3+3)SO20(12+4+4)
ORDERING NUMBERS:
L4973V3.3 (Powerdip)
L4973D3.3(SO20)
L4973V5.1 (Powerdip)
L4973D5.1(SO20)
DESCRIPTION
The L4973 is a step down monolithic power
switching regulator delivering 3.5A at fixed voltages of 3.3V or 5.1V and using a simple external
divideroutput adjustable voltage up to 50V.
Realized in BCD mixed technology, the device
TYPICAL APPLICATIONCIRCUIT (POWERDIP)
VCC(8V to 55V)
798
R
OSC
L4973
16
April 2000
C
OSC
1
4,5,6,
13,14,15
C
IN
C2
17
C
SS
D97IN554A
10
11
12
3
2
R
C
C
COMP
COMP
BOOT
D1
L1
VO(3.3V or 5.1V)
C
OUT
1/16
L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1
uses an internal power D-MOS transistor (with a
typicalRdson of 0.15ohm) to obtain very high efficiencyand very fast switching times.
Switching frequencyup to 300KHzare achievable
(the maximum power dissipation of the packages
mustbe observed).
A wide input voltage range between 8V to 55V
and output voltages regulated from 3.3V to 40V
coverthe majorityof thetoday applications.
Features of this new generation of DC-DC con-
PIN CONNECTIONS(Top view
OSC
OUT
OUT
GND
GND
GND
V
V
BOOT
1
2
3
4
5
6
7
CC
8
CC
9INH
D94IN162A
POWERDIP (12+3+3)
17
16
15
14
13
12
11
10
)
SYNC18
SS
V5.1
GND
GND
GND
VFB
COMP
verterincludes pulse by pulse current limit, hiccup
mode for output short circuit protection, voltage
feed forward regulation, soft start, input/output
synchronization,protectionagainst feedback loop
disconnection, inhibit for zero current consumptionand thermal shutdown.
Packagesavailable are in plastic dual in line, DIP18 (12+3+3) for standard assembly, and SO20
(12+4+4)for SMD assembly.
OSC
OUT
OUT
GND
GND
GND
GND
V
CC
V
CC
BOOTINH
2
3
4
5
6
7
8
9
10
D94IN163A
20
19
18
17
16
15
14
13
12
11
SO20 (12+4+4)
SYNC1
SS
V5.1
GND
GND
GND
GND
VFB
COMP
BLOCKDIAGRAM
ZERO CURRENT
17(19)
SS
VFB
11(12)
5.1V
3.3V
12(13)
18(20)
Pin x = Powerdip
Pin (x) = S020
COMP
SYNC
2/16
INH
INHIBIT
+
E/A
-
V5.1
VREF
GOOD
SOFT
START
THERMAL
SHUTDOWN
-
PWM
+
OSCILLATOR
1(1)2(2)3(3)
5.1V
3.3V
(4,5,6,7,14,15,16,17)
INTERNAL
REFERENCE
HICCUP CURRENT
LIMITING
CURRENT
LIMITING
RSQ
4,5,6,13,14,15
INTERNAL
Q
V
SUPPLY
CC
DRIVER
5.1V
V
CC
8(9)7(8)16(18)10(11)
CBOOT
CHARGE
BOOT
9(10)
OUTOUTGNDOSC
D94IN161B
L4973V3 - L4973V5 - L4973D3- L4973D5
THERMALDATA
SymbolParameterPowerdipSO20Unit
R
th(j-pin)
R
th(j-amb)
(*) Package mounted on board.
ABSOLUTE MAXIMUM RATINGS
Thermal Resistance Junction to pinMax.1215°C/W
Thermal Resistance to AmbientMax.60 (*)80 (*)°C/W
Symbol
DIP-18S0-20
V
V
7,V8
2,V3
V9,V
V2,V
Input voltage58V
8
Output DC voltage
3
ParameterValueUnit
Output peak voltage at t = 0.1µs f=200KHz
V
I
2,I3
9-V8
V
V
V
V
9
11
17
12
I2,I
V10-V
V
10
V
12
Maximum output currentint. limit.
3
8
Bootstrap voltage70V
Analogs input voltage (VCC= 24V)12V
14V
V19Analogs input voltage (VCC= 24V)13V
V
13
(VCC= 20V)6
-0.3
V
18
V
20
(VCC= 20V)5.5
-0.3
V
10
V
11
InhibitVcc
-0.3
P
T
J,TSTG
tot
Power dissipation a T
(T
=70°C no copper area)
amb
(T
=70°C 4cm copper area on PCB)
amb
Power dissipation a T
≤ 90°C
pins
=90°CSO204W
pins
Junction and storage temperature-40 to 150°C
DIP
12+3+3
1.3
PIN FUNCTIONS
PowerdipSO20NAMEDESCRIPTION
1112COMPE/A output to be used for frequency compensation
1011INHA logic signal (active high) disables the device (sleep mode operation).
910BOOTA capacitor connected between thispin and the output allows to drive the
1820SYNCInput/Output synchronization.
7,88,9VccUnregulated DCinput voltage
2,32,3OUTStepdown regulator output.
1213VFBStepdown feedback input. Connecting the output directly to this pin results
1618V5.1Reference voltage externally available.
4,5,6
13,14,15
4,5,6,7
14,15,16,17
GNDSignal ground
11OSCAn external resistor connected between the unregulated input voltage and
If not used it must be connected to GND; if floating the deviceis disabled.
internal D-MOS.
in an output voltage of 3.3V for the L4973V3.3 and 5.1V. An external
resistive divider is required for higher outputvoltages. Foroutput voltage
less than 3.3V, seenote ** and Figure 32.
Pin 1 and a capacitor connected from Pin 1 to ground fixes the switching
frequency. (Line feed forward is automatically obtained)
-1
-5
V
V
V
V
V
V
V
V
5
W
W
2
W
3/16
L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1
ELECTRICAL CHARACTERISTICS
R
OSC = 20K
Ω
; unless otherwisespecified)•= specificationsreferredto TJfrom0 to 125°C.
Figure1c: Application Circuit (see fig.1 part list)
V
CC
L4973V3 - L4973V5 - L4973D3- L4973D5
INHSYNC
7,810189
1
17
C1C2R2C7
C3C4C5
16
11
Figure1d: Application Circuit (see fig. 1 part list)
V
CC
7,810189
1
17
C1C2R2C7
16
11
L4973V5.1
4,5,6
13,14,15
R1
C6
D97IN665A
INHSYNC
L4973V3.3
4,5,6
13,14,15
C8
2,3
12
D1
L1
3
x
C0
Vo
C12
C8
12
2,3
L1
Vo
C3C4C5
Figure2:
QuiescentDrain Currentvs. Input
Voltage(0% DutyCycle)
Ibias
(mA)
5.0
Tamb=25°
0% DC
C
4.5
4.0
3.5
3.0
2.5
2.0
0 1020304050VCC(V)
200KHz-R2=22K
C7=1.2nF
D97IN633A
100KHz-R2=20K
C7=2.7nF
0Hz
R1
C6
D97IN664A
D1
3x
C0
C12
Figure3: Quiescent Drain Currentvs. Junction
Temperature
Ibias
(mA)
200KHz-R2=22K
4.0
100KHz-R2=20K
3.5
3.0
0% DC
VCC= 35V
0Hz
2.5
-50050100Tj(°C)
D97IN634
C7=1.2nF
C7=2.7nF
7/16
L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1
Figure4: Stand by Drain Currentvs. input
Voltage
Ibias
(µA)
V
=5V
inh
150
25°C
100
125°C
50
0 1020304050VCC(V)
D97IN635A
Figure6: ReferenceVoltage vs. Input Voltage
(Pin 16)
V
REF
(V)
5.15
Tj=25°
Pin 16
C
D97IN636A
Figure5: Reference Voltage vs. Junction
Temperature(Pin 16)
V
REF
D97IN637
(V)
Pin 16
5.15
Vcc=35V
5.1
5.05
5.0
-4004080Tj(°C)-202060100
Figure7:
ReferenceVoltage vs. ReferenceInput
Current
V
REF
(V)
5.2
D97IN638
5.1
5.05
5.0
0 1020304050VCC(V)
Figure8:
Inhibit Current vs. Inhibit Voltage
(Pin 10)
Iinh
(µA)
Tj=0°C
Tj=125°C
100
50
0
Vcc=35V
Pin 10
D97IN651
Tj=25°C
Vcc=40V
5.1
5.0
4.9
0 1020304050I
Figure9:
V
Line Regulation (see fig. 1)
O
Vcc=10V
Tj=25°C
(V)
5.12
5.1
Tj=125°C
Tj=25°C
5.08
I
O
=1A
REF
D97IN639A
(mA)
8/16
-50
015Vinh(V)105
5.06
0 1020304050VCC(V)
L4973V3 - L4973V5 - L4973D3- L4973D5
Figure10: LoadRegulation(seefig.1c)
VO
(V)
VCC= 35V
5.15
5.1
Tj=25°C
5.05
5.0
0123I
D97IN640
Tj=125°C
Figure12: LoadRegulation (see fig. 1d)
VO
(V)
3.35
3.34
3.33
3.32
3.31
VCC= 35V
Tj=125°C
Tj=25°C
D97IN661
(A)
O
Figure11: LineRegulation(seefig. 1d)
V
O
D97IN660A
(V)
3.35
3.34
3.33
Tj=125°C
Tj=25°C
3.32
=1A
I
3.31
3.3
0 1020304050VCC(V)
O
Figure13: Switching Frequency vs.R2 and C7
(fig. 1)
fsw
(KHz)
500
200
100
50
20
10
0.82nF
1.2nF
2.2nF
3.3nF
4.7nF
5.6nF
D97IN630
Tamb=25°C
3.3
0123I
Figure14:
SwitchingFrequencyvs. Input Voltage
fsw
(KHz)
Tamb=25°C
105
100
95
90
0 1020304050VCC(V)
D97IN631
(A)
O
5
020406080R2(KΩ)
Figure15:
SwitchingFrequency vs. Junction
temperature(see fig. 1)
fsw
(KHz)
105
100
95
90
-50050100Tj(°C)
D97IN632
9/16
L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1
Figure16: DropoutVoltage Between pin 7,8 and
2,3
∆V
(V)
Tj=125°C
0.6
0.4
0.2
0
0123I
Figure18:
Efficiencyvs. OutputVoltage
Tj=0°C
D97IN643
Tj=25°C
(A)
O
(DiodeSTPS745D)
η
(%)
98
96
94
92
100KHz
200KHz
D97IN642
Figure17: Efficiencyvs. Output Voltage
(see fig.1)
η
(%)
98
96
100KHz
94
200KHz
92
90
88
86
0102030V
IO=
3A
VCC= 50V
D97IN641
Figure19: Efficiencyvs. Output Current
( see fig.1c)
η
(%)
VO=5.1V
95
90
Vcc=12V
Vcc=24V
fsw= 100KHz
D97IN645
(V)40
O
90
IO=
88
3A
VCC= 35V
86
0101520VO(V)30525
Figure20:
Efficiencyvs. OutputCurrent
(see fig.1c)
η
(%)
Vcc=12V
90
Vcc=24V
85
Vcc=48V
80
75
0123I
VO= 5.1V
fsw= 200KHz
D97IN646
(A)
O
85
80
0123I
Figure21:
Efficiencyvs. Output Current
Vcc=48V
(see fig.1d)
η
(%)
VO= 3.3V
90
Vcc=12V
85
80
75
0123I
Vcc=24V
Vcc=48V
fsw= 100KHz
D97IN644
(A)
O
(A)
O
10/16
L4973V3 - L4973V5 - L4973D3 - L4973D5
Figure22: Efficiencyvs. Output Current
(seefig.1d)
η
(%)
90
Vcc=12V
VO=3.3V
fsw= 200KHz
85
Vcc=24V
80
Vcc=48V
75
70
0123I
D97IN662
(A)0.51.52.53.5
O
Figure24: Power dissipation vs. Output Voltage
(Deviceonly)
Pdiss
(W)
3.0
2.5
2.0
1.5
1.0
V
=
35V
CC
fsw= 100KHz
D97IN648
IO=3.5A
I
=3A
O
=2.5A
I
O
I
=2A
O
Figure23: Power dissipation vs.Input Voltage
(Deviceonly) (see fig.1c)
Pdiss
(W)
1.5
1.0
0.5
0
0103040Vcc(V)2050
I
O
=2.5A
I
O
=3A
IO=3.5A
I
=2A
O
D97IN647A
=
5.1V
V
O
fsw= 100KHz
Figure25: Pulse by Pulse Limiting Current vs.
Junction Temperature
Ilim
(A)
5.2
5
4.8
Vcc=35
4.6
D97IN652
0.5
0
051520VO(V)102530
Figure26:
I
O
LoadTransient
(A)
3
2
1
T
2
200µs/DIV
1
T
VCC= 35V
f
= 100KHz
sw
I
=1A
O
D97IN649
V
O
(mV)
100
0
-100
4.4
4.2
-40 -2060 80Tj(°C)012020 40100
Figure27:
V
CC
Line Transient
(V)
30
20
10
1
2
1ms/DIV
IO= 1A
= 100KHz
f
sw
D97IN650
V
O
(mV)
100
0
-100
11/16
L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1
Figure28: SourceCurrent Rise and Fall Time,
pin 2, 3 (Seefig1)
Figure30:Soft Start Capacitor Selection vs. In-
ductorand V
Lomax
(µH)
fsw= 200KHz
150
100
CC max (ref. AN938)
D97IN654
Css=56nF
Css=68nF
Css=47nF
Figure29: Soft Start Capacitor Selectionvs.
Inductorand V
Lomax
(µH)
300
250
200
150
100
50
0
25303540Vi(V)5045
fsw= 100KHz
CC max (ref. AN938)
D97IN653
Css=1µF
Css=820nF
Css=680nF
Css=470nF
Css=220nF
Css=100nF
Figure31: Open Loop Frequency and Phase of
Erroramplifier
GAIN
(dB)
50
0
-50
GAIN
D97IN663
Phase
0
45
50
0
15202530Vi(V)40354550
Figure32:
V
3.5A at V
CC
C1C2R2C7
< 3.3V(see part list fig. 1)
O
C3C4C5
Css=33nF
Css=22nF
INHSYNC
7,810189
1
17
L4973V3.3
R5
D97IN666A
4,5,6
13,14,15
11
R1
C6
-100
-150
-200
2,3
1216
2
1010
V
1.52K2K
2.57.5K 3.6K
C8
L1
D1
3
C0
3
4
10
10
PR5R3
13.6K 4.7K
24.7K 3.6K
35.1K1K
Vo
x
R3
5
10
V
Phase
6
O
7
10
=3.36-1.74•
10
90
135
8
f(Hz)10
R
3
R
5
12/16
L4973V3 - L4973V5 - L4973D3 - L4973D5
Figure33: 12V to 3.3V High Performance Buck Converter(fsw= 200kHz)
INHSYNC
VCC
12V±5%
C1
560uF-25V
HFQ
Panasonic
L1 KoolMm 77120- 24 Turns-
D1 STPS1025
Figure34: SynchronizationExample
C2
220nF
R2
22k
C7
1.2nF
C3
33nF
C4
1uF
7,810189
1
17
L4973V3.3
16
11
C5
220pF
0.9mm
R1
9k1
C6
22nF
D97IN668A
4,5,6
13,14,15
C8
220nF
2,3
12
L1
Vo=3.33V
Io=3.5A
D1
C9
470uF-25V
HFQ
Panasonic
η
(%)
92
90
88
86
84
82
80
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Io(A)
V
CC2
Figure35:
V
CC
C1C2R2C7
7,8
1
L4973L4973
1818
4,5,6
13,14,15
13,14,15
V
7,8
1
4,5,6
CC1
V
CC
Multioutputnot Isolated (Pin out referred to DIP12+3+3)
INHSYNC
7,810189
1
17
16
C3C4C5
11
R1
C6
L4973
4,5,6
13,14,15
12
2,3
7,8
1
L4973L4973
1818
4,5,6
13,14,15
C8
D2
n2
L1
n1
D1
C9C10
7,8
4,5,6
1
13,14,15
D97IN669
Vo2
Vo1
C11
VO2=V
O1
PO2< 20%P
n1+n
n
1
O1
2
D97IN667A
13/16
L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1
DIM.
MIN.TYP. MAX.MIN.TYP. MAX.
a10.510.020
B0.851.400.0330.055
b0.500.020
b10.380.500.0150.020
D24.800.976
E8.800.346
e2.540.100
e320.320.800
F7.100.280
I5.100.201
L3.300.130
Z2.540.100
mminch
OUTLINE AND
MECHANICAL DATA
Powerdip 18
14/16
L4973V3 - L4973V5 - L4973D3 - L4973D5
DIM.
MIN.TYP.MAX.MIN.TYP.MAX.
A2.352.650.0930.104
A10.10.30.0040.012
B0.330.510.0130.020
C0.230.320.009
D12.6130.4960.512
E7.47.60.2910.299
e1.270.050
H1010.65 0.3940.419
h0.250.750.0100.030
L0.41.270.0160.050
K0°(min.)8°(max.)
mminch
0.013
OUTLINE AND
MECHANICAL DATA
SO20
B
e
D
1120
110
L
hx45°
A
K
A1
C
H
E
SO20MEC
15/16
L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implicationor otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for useas critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is aregistered trademark of STMicroelectronics
2000 STMicroelectronics– Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia- Brazil- China - Finland- France - Germany -Hong Kong - India - Italy- Japan - Malaysia - Malta - Morocco -
Singapore - Spain - Sweden- Switzerland- United Kingdom - U.S.A.
http://www.st.com
16/16
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.