Datasheet L4972AD, L4972A Datasheet (SGS Thomson Microelectronics)

L4972A
.
2AOUTPUTCURRENT
.5.1VTO40VOUTPUTVOLTAGERANGE
.
.INTERNALFEED-FORWARD LINEREG.
.INTERNALCURRENT LIMITING
.PRECISE5.1V± 2% ONCHIPREFERENCE
.RESETAND POWERFAILFUNCTIONS
.
INPUT/OUTPUTSYNC PIN
.UNDER VOLTAGE LOCK OUT WITH HYS-
TERETICTURN-ON
.PWM LATCH FOR SINGLE PULSE PER PE-
RIOD
.VERYHIGH EFFICIENCY
.SWITCHINGFREQUENCYUP TO 200KHz
.THERMAL SHUTDOWN
.CONTINUOUSMODE OPERATION
DES CRIPTI ON
TheL4972Aisa stepdownmonolithicpowerswitch­ingregulatordelivering2Aat avoltagevariablefrom
5.1 to 40V. Realized with BCD mixed technology, the device
uses a DMOS output transistorto obtain very high efficiencyandveryfastswitchingtimes.Featuresof
L4972AD
2A SWITCHINGREGULATOR
MULTIPO WER BCD TECHNOLO GY
POWERD IP
(16 + 2 + 2)
ORDERING NUMBERS : L4972A(Powerdip)
L4972AD (SO20)
the L4972A include reset and power fail for micro­processors,feed forward line regulation,soft start, limitingcurrent and thermalprotection. The device ismountedina Powerdip16+2+2and SO20large plasticpackagesand requiresfew externalcompo­nents. Efficient operation at switching frequencies up to 200KHzallowsreduction in the size and cost of externalfiltercomponent.
SO20
BLOCK DIAGRAM
June 2000
This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
1/23
L4972A-L4972AD
ABSOLU TE MAX IMUM RATINGS
Symbol Parameter Valu e Unit
V V V
I
V
4,V8
V
V
2,V7,V9,V10
P
T
J,Tstg
(*) SO-20
11 11 20
20
V
I
3
I
3
I
2
I
7
I
8 tot
InputVoltage 55 V InputOperatingVoltage 50 V OutputDC Voltage
OutputPeak Voltageat t = 0.1µs f = 200khz
-1
-5 Maximum Output Current Internally Limited BoostrapVoltage
BoostrapOperating Voltage
65
V
+15
11
InputVoltage at Pins4, 12 12 V Reset Output Voltage 50 V Reset Output Sink Current 50 mA InputVoltage at Pin 2, 7, 9, 10 7 V Reset Delay Sink Current 30 mA ErrorAmplifier Output Sink Current 1 A Soft Start Sink Current 30 mA TotalPower Dissipation at T
at T
90°C
PINS
=70°C(No copper area on PCB)
amb
5 / 3.75(*)
1.3/1(*)
Junctionand Storage Temperature -40 to 150 °C
V V
V V
W W
PI N CO NNECTI O N (top v iew)
THERMAL DATA
Symbol Parame t er Po w erd ip SO- 20
R
th j-pins
R
thj-amb
Thermal ResistanceJunction-Pins max Thermal ResistanceJunction-ambient max
12°C/W 60°C/W
16°C/W 80°C/W
2/23
L4972A-L4972AD
PIN FUNCTIONS
o
N
1 BOOTSTRAP A C
2 RESET DELAY A C
3 RESET OUT Open CollectorReset/powerFailSignal Output.This output is highwhen the supply
4 RESET INPUT Input of Power Fail Circuit. The threshold is 5.1V. It may be connected via a divider
5, 6
GROUND Common GroundTerminal
15,16
7 FREQUENCY
COMPENSATION
8 SOFT START Soft StartTime Constant.A capacitoris connectedbetweenthi sterminaland ground
9 FEEDBACK INPUT The Feedback Terminal of the Regulation Loop. The output is connecteddirectly to
10 SYNC INPUT Multiple L4972A’s are synchronized by connecting pin 10 inputs together or via an
11 SUPPLYVOLTAGE Unregulated InputVoltage.
12,19 N.C. Not Connected.
13 V 14 V
ref start
17 OSCILLATOR R
18 OSCILLATOR C
20 OUTPUT Regulator Output.
Name Function
capacitor connected between this terminal and the output allows to drive
boot
properlythe internalD-MOS transistor.
capacitor connected between this terminal and ground determines the reset
d
signaldelay time.
and theoutput voltages are safe.
tothe inputforpowerfailfunction.It mustbe connectedto thepin 14 an external30K resistorwhen power fail signal not required.
A series RC network connected between this terminal and ground determines the regulation loop gain characteristics.
to define the soft start time constant.
thisterminal for5.1V operation; It is connected via a dividerfor higher voltages.
externalsyncr. pulse.
5.1VV
DeviceReferenceVoltage.
ref
InternalStart-up Circuit to Drive the PowerStage.
. Externalresistorconnected to grounddeterminestheconstantchargingcurrent
osc
of C
.
osc
. External capacitor connected to ground determines (with R
osc
frequency.
) the switching
osc
3/23
L4972A-L4972AD
CIRCU I T OP ER ATION
The L4972Ais a 2A monolithicstepdownswitching regulatorworkingincontinuousmoderealizedinthe new BCD Technology.This technologyallows the integrationofisolatedverticalDMOSpowertransis­tors plusmixedCMOS/Bipolartransistors.
The device candeliver 2A at an outputvoltage ad­justable from 5.1V to 40V and contains diagnostic and control functionsthat make it particularly suit­able for microprocessorbased systems.
BLOCKDIAGRAM The block diagram shows theDMOSpowertran-
sistorsand the PWM control loop.Integratedfunc­tions include a reference voltage trimmed to 5.1V ±2%,softstart,undervoltagelockout,oscillatorwith feedforward control, pulse by pulse current limit, thermal shutdown and finally the reset and power fail circuit.The reset and power failcircuit provides an outputsignalfora microprocessorindicatingthe statusof the system.
Deviceturn on is around11V witha typical1Vhys­terysis,thisthresholdporvidesa correctvoltagefor the driving stageof the DMOS gateand the hyste­rysispreventsinstabilities.
Anexternalbootstrapcapacitorchargeto 12Vbyan internalvoltagereferenceis neededto providecor­rect gatedriveto the powerDMOS.Thedrivingcir­cuit is able to source and sink peak currents of around0.5A to the gate of the DMOStransistor.A typical switching time of the current in the DMOS transistor is 50ns. Due to the fast commutation switchingfrequenciesup to 200kHzare possible.
The PWMcontrolloop consistsof a sawtoothoscil­lator,erroramplifier,comparator,latch andthe out­putstage.An errorsignalis producedbycomparing theoutputvoltagewiththeprecise5.1V± 2%onchip reference.This error signal is then comparedwith the sawtooth oscillator in order to generate frixed frequencypulsewidth modulateddrive for the out­put stage. A PWM latch is included to eliminate multiple pulsingwithin a period even in noisy envi­ronments.
Thegainand stabilityoftheloopcanbe adjustedby
an externalRC networkconnectedto the outputof the error amplifier. A voltage feedforward control has beenaddedto the oscillator,this maintainssu­perior line regulation over a wide input voltage range.Closingthe loopdirectlygivesan outputvol­tageof 5.1V,highervoltagesareobtainedbyinsert­ing a voltagedivider.
Atturnon,outputovercurrentsarepreventedbythe soft start function (fig. 2). The error amplifier is in­itiallyclampedbyan externalcapacitor,Css,and al­lowedto riselinearlyunderthe chargeof aninternal constantcurrentsource.
Outputoverloadprotectionis providedby a current limitcircuit. Theloadcurrentis sensedby a internal metalresistorconnectedtoa comparator.Whenthe loadcurrentexceedsa presetthreshold,the output of the comparatorsetsa flipflop whichturns offthe powerDMOS.Thenextclockpulse,fromaninternal 40kHzoscillator,willresettheflipflopandthepower DMOS will again conduct. This current protection method,ensuresaconstantcurrentoutputwhenthe systemis overloadedorshortcircuitedandlimitsthe switchingfrequency,inthiscondition,to40kHz.The Reset and Power fail circuit (fig. 4), generatesan output signal when the supply voltage exceeds a threshold programmed by an external voltage di­vider. The reset signal, is generated with a delay timeprogrammedbya externalcapacitoronthede­lay pin. When the supply voltage falls below the thresholdor the output voltagegoes below 5V, the resetoutputgoeslowimmediately.Theresetoutput is an opendrain.
Fig. 4A shows thecasewhen the supplyvoltageis higherthan the threshold,but the output voltage is not yet 5V.
Fig.4Bshowsthecasewhentheoutputis 5.1V,but the supply voltage is not yet higherthan the fixed threshold.
The thermal protection disables circuit operation when the junction temperature reaches about 150°C and has a hysterysis to prevent unstable conditions.
4/23
Figure1 : FeedforwardWaveform.
Figure2 : SoftStart Function.
L4972A-L4972AD
Figure3 : LimitingCurrentFunction.
5/23
L4972A-L4972AD
Figure4 : Resetand PowerFail Functions. A
B
6/23
L4972A-L4972AD
ELECTRICALCHARACTERISTICS (referto the test circuit,TJ=25°C, Vi=35V, R4= 30KΩ,
= 2.7nF,fSW= 100KHztyp, unless otherwisespecified)
C
9
DYNAMICCHARACTERISTICS
Symbol Parameter Test Conditions Min. Typ. Max. Unit Fig.
V
V
V
V
V
InputVolt. Range (pin 11) Vo=V
i
OutputVoltage Vi=15V to 50V
o
Line Regulation Vi= 15V to 50V
o
Load Regulation Vo =V
o
Dropout Voltage between
d
I
o
I
o
I
o
Io= 2A 0.25 0.4 V
Pin11 and 20
I
20L
Max Limiting Current Vi= 15V to 50V
V
η
Efficiency (*) I
o
V Vo= 12V
SVR Supply VoltageRipple
Rejection
V f = 100Hz; V
f SwitchingFrequency 90 100 110 KHz 5
Vi Voltage Stability of
∆f/∆
V Switching Frequency
f/T
Temperature Stability of
j
Tj=0 to 125°C1%5 SwitchingFrequency
f
max
(*) Only for DIP version (**) Pulse testing with a low duty cycle
Maximum Operating SwitchingFrequency
Vo=V
I
o
ref
to 40V
15 50 V 5
= 2A (**)
5 5.1 5.2 V 5
= 1A;Vo=V
ref
12 30 mV
= 0.5A; Vo=V
refIo
ref
= 0.5Ato 2A 7 20 mV
2.5 2.8 3.5 A
to 40V
o=Vref
= 2A,f = 100KHz
o=Vref
75 85
90
= 2VRMS;Io=1A
i
= 15V to 45V 2 6 % 5
i
refR4
o=Vref
= 15K
56 60 dB 5
200 KHz 5
% %
=2AC9= 2.2nF
V
SECTION(pin13)
ref
Symbol Parameter Test C o n di tion Mi n . Typ. Max. Uni t Fig.
V
∆ ∆V
V
13
V
T
ReferenceVoltage 5 5.1 5.2 V 7 Line Regulation Vi= 15V to 50V 10 25 mV 7
13
Load Regulation I13 = 0 to 1mA 20 40 mV 7
13
Average Temperature
13
T
=0°C to 125°C 0.4 mV/°C7
j
CoefficientReference Voltage
ShortCircuit Current Limit V13= 0 70 mA 7
SECTION(pin15)
V
START
I
13 short
Symbol Parameter Test C o n di tion Mi n . Typ. Max. Uni t Fig.
V
V
V
I
14 short
14
ReferenceVoltage 11.4 12 12.6 V 7 Line Regulation Vi= 15 to 50V 0.6 1.4 V 7
14
Load Regulation I14= 0 to 1mA 50 200 mV 7
14
ShortCircuit Current Limit V15=0V 80 mA 7
7/23
L4972A-L4972AD
ELECTRICALCHARACTERISTICS (continued)
DC CHARACTERISTICS
Symbol Parameter Test C o n di tion Mi n . Typ . Max. Uni t Fig .
V
11on
V
11 Hyst
I
11Q
I
11OQ
I
20L
SOFT START(pin8)
Symbol Parameter Test C o n di tion Mi n . Typ . Max. Uni t Fig .
I
8
V
ERRORAMPLIFIER
Symbol Parameter Test C o n di tion Mi n . Typ . Max. Uni t Fig .
V
7H
V
7L
I
7H
-I
7L
I
9
G
SVR Supply VoltageRejection 15 < V
V
OS
RAMP GENERATOR (pin 18)
Turn-onThreshold 10 11 12 V 7A Turn-offHysteresys 1 V 7A QuiescentCurrent V8=0; S1=D 13 19 mA 7A OperatingSupply Current V8= 0; S1 = B; S2 = B 16 23 mA 7A Out Leak Current Vi= 55V; S3 =A; V8=0 2 mA 7A
SoftStart Source Current V8= 3V; V9= 0V 80 115 150 OutputSaturationVoltage I8 = 20mA;V11= 10V
8
HighLevel Out Voltage I7= 100µA; S1 = C
I
= 200µA; V11= 10V
8
V
= 4.7V
9
6V7C
Low LevelOut Voltage I7 = 100µA; S1 = C
V
= 5.3V;
9
1
0.7
1.2 V 7C
A7B
µ
V V
SourceOutput Current V7= 1V;V7= 4.7V 100 150 µA7C SinkOutput Current V7= 6V;V9= 5.3V 100 150 InputBias Current S1 = B; RS= 10K DC OpenLoop Gain S1 = A; RS=10
V
InputOffset Voltage RS=50
< 50V 60 80 dB 7C
i
S1= A 2 10 mV 7C
0.4 3
60 dB 7C
A7C
µ
A7C
µ
7B 7B
Symbol Parameter Test C o n di tion Mi n . Typ . Max. Uni t Fig .
V
18
V
18
I
18
I
18
Ramp Valley S1 = B; S2 = B 1.2 1.5 V 7A Ramp Peak S1 = B Vi= 15V
S2 = B V
=45V
i
Min.Ramp Current S1 = A; I17= 100µA 270 300
2.5
5.5
V V
A7A
µ
Max. Ramp Current S1 = A; I17 = 1mA 2.4 2.7 mA 7A
SYNCFUNCTION (pin 10)
Symbol Parameter Test C o n di tion Mi n . Typ . Max. Uni t Fig .
8/23
I
V
V
I
V
10L
10H
t
W
10
Low InputVoltage Vi= 15V to 50V;V8=0;
S1 = B; S2 = B; S4 = B
10
HighInput voltage V8 = 0;
S1 = B; S2 = B; S4 = B SyncInputCurrent withLow
InputVoltage Input Current with High
V10=V18= 0.9V; S4 = B;
S1 = B; S2 = B
V10= 2.5V 1.5 mA 7A InputVoltage
10
OutputAmplitude 4 5 V – OutputPulse Width V
= 2.5V 0.3 0.5 0.8
thr
–0.3 0.9 V 7A
2.5 5.5 V 7A
0.4 mA 7A
s–
µ
7A 7A
L4972A-L4972AD
ELE CTRICAL CHARACT ERI S TI CS (continued)
RESETAND POWERFAIL FUNCTIONS
Symbol Parameter Test Conditions Min. Typ. Max. Unit Fig.
V
9R
V
9F
V
2H
V
2L
I
2SO
I
2SI
V
3S
I
3
V
4R
V
4H
I
4
Rising Thereshold Voltage (pin 9)
Falling Thereshold Voltage (pin 9)
DelayHigh Threshold Volt. Vi = 15 to 50V
DelayLow Threshold Volt. Vi = 15 to 50V
DelaySource Current V4=5.3V; V2=3V 306080 DelaySource Sink Current V4=4.7V; V2=3V 10 mA 7D Output SaturationVoltage I3= 15mA;S1 = B V4=4.7V 0.4 V 7D Output Leak Current V3 = 50V; S1 = A 100 Rising Threshold Voltage V9 = V Hysteresis 0.4 0.5 0.6 V 7D InputBias Current 1 3 µA7D
Vi= 15 to 50V V
= 5.3V
4
Vi = 15 to 50V V
= 5.3V
4
V
= 5.3V V9=V
4
V
=4.7V V9=V
4
13
V
ref
-130
4.77 Vref
V
ref
-100
-200
V
ref
-80 V
ref
-160
V
mV
V
mV
4.95 5.1 5.25 V 7D
13
1 1.1 1.2 V 7D
13
A7D
µ
A7D
µ
4.95 5.1 5.25 V 7D
7D
7D
TYPICALPERFORMANCES(usingevaluationboard) : n =83%(V
V
o RIPPLE
Line regulation= 12mV (V Loadregulation= 7mV(I
= 35V ; Vo=VREF ; Io=2A; fsw= 100KHz)
i
= 30mV(at 1A)
= 15 to 50V)
i
= 0.5 to2A)
o
for componentvalues Referto the fig.5 (Part list).
F
9/23
L4972A-L4972AD
Figure6a : ComponentLayoutof fig.5(1 :1 scale).EvaluationBoardAvailable(only for DIP version)
PART LI S T
R1= 30K R
= 10K
2
R
= 15K
3
R
= 30K
4
R
=22
5
R
= 4.7K
6
R
= see table A
7
R
= OPTION
8
R
= 4.7K
9
*C
** C
* 2 capacitors in parallel to increase input RMS current capability. * * 3 capacitors in parallel to reduce total output ESR.
C
3=C4=C5=C6
C
= 390pF Film
7
C
= 22nF MKT 1837(ERO)
8
C
= 2.7nFKP 1830 (ERO)
9
C
= 0.33µFFilm
10
C
= 1nF
11 12=C13=C14
C
=1µF Film
15
= 2,2µF 50V
= 100µF 40V EKR (ROE)
= 1000µF 63V EYF (ROE)
1=C2
D1 = SB 560 (OR EQUIVALENT) L1 = 150µH
core 58310 MAGNETICS 45 TURNS0.91mm (AWG 19) COGEMA949181
TableA
V
0
12V 15V 18V 24V
Note: In the Test and Application Circuit for L4972D are not mounted C2, C14 and R8.
R
9
4.7k
4.7k
4.7k
4.7k
R
7
6.2kW
9.1k
Ω Ω
12 18
Ω Ω
TableB
SUGGESTEDBOOSTRAPCAPACITORS
Ope ratin g F req u ency Bo ostrap Cap . c10
f = 20KHz
f = 50KHz 470nF f =100KHz 330nF f =200KHz f =500KHz
680nF
220nF
100nF
10/23
Figure 6b: P.C. Board and Component Layout of the Circuit of Fig. 5. (1:1 scale)
L4972A-L4972AD
Figure7 :
DCTest Circuits.
11/23
L4972A-L4972AD
Figure7A.
Figure7B.
Figure7C.
12/23
Figure7D.
L4972A-L4972AD
Figure8 : QuiescentDrain Currentvs. Supply
Voltage(0% dutycycle - see fig. 7A).
Figure9 : QuiescentDrain Currentvs. Junction
Temperature(0% duty cycle).
13/23
L4972A-L4972AD
Figure10 :
Figure12 :
QuiescentDrainCurrent vs. DutyCy-
cle.
ReferenceVoltage(pin 13) vs. Junc-
tionTemperature(see fig. 7).
Figure11 :
Figure13
ReferenceVoltage(pin13) vs.Vi
(seefig. 7).
: ReferenceVoltage (pin 14)vs.Vi
(seefig. 7).
Figure14 : ReferenceVoltage(pin14) vs. Junc-
tionTemperature(see fig. 7).
14/23
Figure15 : ReferenceVoltage5.1V(pin 13) Sup-
plyVoltage Ripple Rejectionvs. Fre-
SVR (dB)
L4972A-L4972AD
Figure16 : SwitchingFrequencyvs. InputVoltage
(seefig. 5).
Figure18 : SwitchingFrequencyvs. R4
(seefig.5).
Figure17 : SwitchingFrequencyvs. Junction
Temperature(seefig.5).
Figure19 : MaximumDutyCycle vs. Frequency.
Figure20 :
SupplyVoltageRippleRejectionvs.
Frequency(seefig.5).
Figure21 :
Efficiencyvs. OutputVoltage.
15/23
L4972A-L4972AD
Figure22 :
LineTransientResponse(see fig.5).
Figure24 : DropoutVoltagebetweenPin 11 and
Pin20 vs. Currentat Pin20.
Figure23 :
LoadTransientResponse (seefig. 5).
Figure25 : .DropoutVoltagebetween Pin11 and
Pin20 vs. JunctionTemperature.
Figure26 :
16/23
PowerDissipation(deviceonly) vs.
InputVoltage.
Figure27 :
PowerDissipation (deviceonly)vs.
InputVoltage.
L4972A-L4972AD
Figure28 :
Figure30 :
PowerDissipation(deviceonly) vs.
OutputVoltage.
PowerDissipation(deviceonly) vs.
OutputCurrent.
Figure29 :
Figure31
PowerDissipation(device only) vs.
OutputVoltage.
: PowerDissipation (deviceonly)vs.
OutputCurrent.
Figure32 : Efficiencyvs. OutputCurrent. Figure33 : TestPCB ThermalCharacteristic.
17/23
L4972A-L4972AD
Figure34 : JunctiontoAmbientThermalResistance
vs.AreaonBoardHeatsink(DIP16+2+2)
Figure 36:
Maximum Allowable Power Dissipa-
tion vs. Ambient Temperature (Pow­erdip)
Figure 35: Junctionto AmbientThermalResi stanc e
vs.Areaon BoardHeatsink(SO20)
Figure 37: Maximum Allowable Power Dissipa-
tion vs. Ambient Temperature (SO20)
Figure 38: OpenLoopFre quen c yand Phaseof Er-
ror Amplifier(see fig.7C).
18/23
Figure39 : 2A – 5.1V Low CostApplicationCircuit.
L4972A-L4972AD
Figure40 : A 5.1V/12VMultipleSupply.Note the Synchronizationbetweenthe L4972Aand L4970A.
19/23
L4972A-L4972AD
Figure41 : L4972A’sSync.Example.
Figure 42: 1A/24VMultiple Supply. Note the synchronizationbetween the L4972A and L4962
20/23
L4972A-L4972AD
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
a1 0.51 0.020
B 0.85 1.40 0.033 0.055
b 0.50 0.020
b1 0.38 0.50 0.015 0.020
D 24.80 0.976
E 8.80 0.346
e 2.54 0.100
e3 22.86 0.900
F 7.10 0.280
I 5.10 0.201
L 3.30 0.130
Z 1.27 0.050
mm inch
OUTLINE AND
MECHANICAL DATA
Powerdip 20
21/23
L4972A-L4972AD
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A 2.35 2.65 0.093 0.104
A1 0.1 0.3 0.004 0.012
B 0.33 0.51 0.013 0.020
C 0.23 0.32 0.009
D 12.6 13 0.496 0.512
E 7.4 7.6 0.291 0.299
e 1.27 0.050
H 10 10.65 0.394 0.419
h 0.25 0.75 0.010 0.030
L 0.4 1.27 0.016 0.050
K0°(min.)8°(max.)
mm inch
0.013
OUTLINE AND
MECHANICAL DATA
SO20
B
e
D
1120
110
L
hx45°
A
K
A1 C
H
E
SO20MEC
22/23
L4972A-L4972AD
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the conse­quences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMi­croelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -
The ST logo is a registered trademark of STMicroelectronics
2000 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
23/23
Loading...