Datasheet L4962A, L4962EH-A, L4962E-A Datasheet (SGS Thomson Microelectronics)

1.5APOWER SWITCHING REGULATOR
1.5AOUTPUTCURRENT
5.1V TO40V OUTPUTVOLTAGE RANGE PRECISE(±2%) ON-CHIPREFERENCE HIGH SWITCHING FREQUENCY VERYHIGH EFFICIENCY (UP TO 90%) VERYFEW EXTERNALCOMPONENTS SOFT START INTERNALLIMITINGCURRENT THERMALSHUTDOWN
DESCRIPTION
TheL4962 is a monolithicpower switching regula­tor delivering1.5Aat a voltage variable from 5V to 40V in step down configuration.
Featuresofthe device includecurrentlimiting,soft start,thermal protectionand 0 to 100% dutycycle for continuousoperatingmode.
L4962
POWERDIP
(12 + 2 + 2)
ORDERING NUMBERS
: L4962/A(12 + 2 + 2 Powerdip)
L4962E/A (Heptawatt L4962EH/A (Horizontal
TheL4962ismountedin a16-leadPowerdipplastic packageand Heptawattpackageand requiresvery few externalcomponents.
Efficient operation at switching frequencies up to 150KHz allows a reduction in the size and cost of external filtercomponents.
HEPTAWATT
Vertical)
Heptawatt)
BLOCKDIAGRAM
June 2000
Pin X = Powerdip Pin (X) = Heptawatt
1/16
L4962
ABSOLUTEMAXIMUM RATINGS
Symbol Parameter Value Unit
Input voltage 50 V
7
Input to output voltage difference 50 V Negative output DC voltage -1 V
2
V
7-V2
V
V
Output peakvoltage at t = 0.1µs; f= 100KHz -5 V
V
11,V15
V
P
T
j,Tstg
I I
Voltageat pin11,15 5.5 V Voltageat pin10 7 V
10
Pin 11 sink current 1 mA
11
Pin 14 source current 20 mA
14
Power dissipationat T
tot
Junction and storage temperature -40 to150
PIN CONNECTION (Top view)
C (Powerdip)
≤90°
pins
T
90°C (Heptawatt)
case
4.3 15
W W
C
°
THERMALDATA
Symbol Parameter Heptawatt Powerdip
R
thj-case
R
thj-pins
R
thj-amb
* Obtained with the GND pins soldered to printed circuit with minimized copperarea.
Thermal resistance junction-case max 4°C/W ­Thermal resistance junction-pins max - 14°C/W Thermal resistance junction-ambient max 50°C/W 80°C/W*
PIN FUNCTIONS
HEPTAWATT POWERDIP NAME
1 7 SUPPLYVOLTAGE Unregulatedvoltage input. Aninternalregulatorpowers
the internal logic.
2 10 FEEDBACK INPUT Thefeedback terminal of theregulation loop.Theoutput
is connected directly to thisterminal for 5.1V operation; it is connected via a divider for higher voltages.
3 11 FREQUENCY
COMPENSATION
A series RC network connected between this terminal and ground determines the regulation loop gain characteristics.
2/16
FUNCTION
PIN FUNCTIONS (cont’d)
L4962
HEPTAWATT POWERDIP NAME
FUNCTION
4 4, 5, 12, 13 GROUND Common ground terminal.
5 14 OSCILLATOR A parallel RC network connected to this terminal
determines the switching frequency. This pin must be connected to pin 7 input when the internal oscillator is used.
6 15 SOFT START Soft start time constant. A capacitor is connected
between this terminaland ground to definethe softstart time constant. This capacitor also determines the average short circuit output current.
7 2 OUTPUT Regulator output.
1, 3, 6,
N.C.
8, 9, 16
ELECTRICAL CHARACTERISTICS
(Refer to the test circuit, T
=25°C, Vi= 35V, unless otherwise
j
specified)
Symbol Parameter Test Conditions Min. Typ. Max. Unit
DYNAMICCHARACTERISTICS
V
Output voltage range Vi= 46V Io=1A V
o
V
Input voltage range Vo=V
i
V
V
Line regulation Vi= 10V to 40V Vo=V
o
V
Load regulation Vo=V
o
Internal reference voltage
ref
(pin 10)
V
I
I
Average temperature
ref
coefficient of refer. voltage
T
V
Dropout voltage Io= 1.5A 1.5 2 V
d
Maximum operatingload
om
current
I
Current limiting threshold
2L
(pin 2) Input average current Vi= 46V; outputshort-circuit 15 30 mA
SH
Efficiency f = 100KHz V
η
SVR Supply voltage ripple
rejection
ref
to 36V Io= 1.5A 9 46 V
ref
=1A 15 50 mV
refIo
ref
Io= 0.5A to 1.5A 8 20 mV
40 V
Vi= 9V to 46V Io= 1A 5 5.1 5.2 V
T
=0°C to125°C
j
=1A
I
o
Vi= 9V to 46V V
o=Vref
to 36V
1.5 A
Vi= 9V to 46V V
I
o
fripple
V
to 36V
o=Vref
o=Vref
=1A Vo= 12V 80 %
V
=2V
i
rms
50 56 dB
= 100Hz
o=Vref
Io = 1A
0.4 mV/°C
2 3.3 A
70 %
3/16
L4962
ELECTRICAL CHARACTERISTICS
(continued)
Symbol Parameter Test Conditions Min. Typ. Max. Unit
DYNAMICCHARACTERISTICS
(cont’d)
f Switching frequency 85 100 115 KHz
f
Voltagestability of
V
f
switching frequency
i
f
Temperature stabilityof switching frequency
T
j
Maximum operating
max
Vi= 9V to 46V 0.5 %
Tj=0°C to 125°C1%
Vo=V
ref
Io= 1A 120 150 KHz
switching frequency
T
Thermal shutdown
sd
150 °C
junction temperature
DC CHARACTERISTICS
I
Quiescent draincurrent 100% duty cycle
7Q
pins 2 and 14 open
V
= 46V
i
0% dutycycle 15 20 mA
30 40 mA
-I
Output leakagecurrent 0% duty cycle 1 mA
2L
SOFT START
I
15SO
I
Source current 100 140 180 Sink current 50 70 120 µA
15SI
ERRORAMPLIFIER
V V I
-I
High level output voltage V10= 4.7V I11= 100µA 3.5 V
11H
Low level output voltage V10= 5.3V I11= 100µA 0.5 V
11L
Sink output current V10= 5.3V 100 150
11SI
Source outputcurrent V10= 4.7V 100 150 µA
11SO
I
Input bias current V10= 5.2V 2 10
10
DC open loop gain V11=1Vto3V 46 55 dB
G
v
OSCILLATOR
-I
Oscillator source current 5 mA
14
A
µ
A
µ
A
µ
4/16
L4962
CIRCUITOPERATION
(refertothe blockdiagram)
TheL4962is amonolithicstepdownswitchingregu­latorprovidingoutputvoltagesfrom5.1Vto40Vand delivering 1.5A.
The regulationloop consists of a sawtoothoscilla­tor, error amplifier, comparator and the output stage.An errorsignalisproducedbycomparingthe output voltage with a precise 5.1V on-chip refer­ence (zener zaptrimmedto±2%).
Thiserrorsignalis thencomparedwiththesawtooth signal to generate the fixed frequencypulse width modulated pulseswhich drivethe output stage.
The gain andfrequencystabilityof the loop can be adjusted by an external RC network connectedto pin 11. Closing the loop directly gives an output voltage of 5.1V. Higher voltages are obtained by insertinga voltagedivider.
Output overcurrentsat switchon are prevented by the softstart function.The erroramplifieroutput is initially clamped by the external capacitor C
and
ss
Figure1. Softstart waveforms
allowedtorise,linearly,asthiscapacitoris charged by aconstantcurrentsource.Outputoverloadpro­tection is provided in the form of a current limiter. The load current is sensed by an internal metal resistorconnectedtoa comparator.When the load currentexceedsapresetthresholdthis comparator sets a flipflop whichdisables the output stage and dischargesthe soft start capacitor.Asecondcom­parator resets the flipflopwhen thevoltageacross the soft start capacitorhas fallento 0.4V.
The output stage is thusre-enabledandthe output voltagerisesunder controlof the soft start network. If the overload condition is still present the limiter will trigger again when the threshold current is reached.Theaverageshortcircuitcurrentislimited to a safevalueby the dead timeintroduced by the soft start network. The thermaloverload circuit dis­ables circuit operation when the junctiontempera­ture reaches about 150°C and has hysteresis to preventunstable conditions.
Figure2. Currentlimiterwaveforms
5/16
L4962
Figure3. Testandapplicationcircuit (Powerdip)
1) D1: BYW98 or 3ASchottky diode, 45V ofVRRM; : CORE TYPE - MAGNETICS 58120 - A2 MPP
2) L
1
N°TURNS 45, WIRE GAUGE: 0.8mm (20 AWG)
3) C
: ROE, EKR 220µF 40V
6,C7
Figure 4. Quiescent drain currentvs. supplyvoltage (0% duty cycle)
6/16
Figure 5. Quiesc ent drain current vs. supply v olta ge (100% duty cycle)
Figure 6. Quiescent drain current vs. junction tem­perature(0%duty cycle)
L4962
Figure 7. Quiescent drain current vs. junction tem­perature (100%duty cycle)
Figure 10. Open loop fre­quency and phase re- sponse of error amplifier
Figure 8. Reference voltage (pin 10) vs. V
rdip) vs. V
i
i
Figure 11. Sw itching fre­quency vs. inputvoltage
Figure 9. Reference voltage (pin 10 ) vs. junction tem­perature
Figure 1 2. Switching fre­qu en cy vs . junc ti o n tem­perature
Figure 13. Switching fre­quencyvs. R2 (seetestcircuit)
Figure 14. Line transient response
Figu re 15. Load transi ent response
7/16
L4962
Figure 16. Supply voltage ripplerejectionvs. frequency
Figure 19. Effici ency vs. output current
Figure 17. Dropout voltage between pin 7 and pin 2 vs. currentat pin 2
Figure 20. Effici ency vs. output current
Figure 1 8. Dropout voltage betweenpin7and2vs. junction temperature
Figure 21. Efficiency vs. output current
Figure 22. E fficiency vs. output voltage
8/16
Figure 23. Effici ency vs. output voltage
Figure 24. Maximum allow­ablepowerdissipationvs. am­bient temperature(Powerdip)
APPLICATION INFORMATION
Figure25. Typicalapplication circuit
C1,C6,C7: EKR(ROE)
: BYW98 OR VISK340 (SCHOTTKY)
D
1
SUGGESTED INDUCTORS: (L COGEMA 946043 OR U15,GUP15, 60 TURNS 1mm, AIRGAP 0.8mm (20 AWG)-COGEMA969051.
) = MAGNETICS 58120 - A2MPP - 45TURNS - WIRE GAUGE 0.8mm (20AWG)
1
L4962
Figure26. P.C. board andcomponent layout of the circuit of Fig.25 (1 : 1 scale)
Resistor values for
standard output 7 voltages
V
12V 15V 18V 24V
o
R3 R4
4.7K
4.7K
4.7K
4.7K
6.2K
9.1K 12K 18K
Ω Ω Ω
9/16
L4962
APPLICATION INFORMATION
(continued)
Figure27. - A minimal 5.1V fixedregulator;Veryfewcomponent are required
* COGEMA946043 (TOROID CORE) ** EKR (ROE)
969051 (U15 CORE)
Figure28. Programmablepower supply
Vo= 5.1V to15V I
= 1.5A max
o
Load regulation (0.5Ato 1.5A) = 10mV (V Line regulation(220V±15% and to I
= 5.1V)
o
= 1A) = 15mV (Vo= 5.1V)
o
10/16
L4962
APPLICATION INFORMATION
(continued)
Figure29. DC-DC converter5.1V/4A,± 12V/1A.A suggestionhow to synchronizea negativeoutput
L1, L3 = COGEMA946043 (969051) L2 =COGEMA 946044 (946045)
Figure30. In multiplesupplies several L4962s can be synchronizedas shown
Figure 31. Preregulatorfor distributedsupplies
* L2 and C2 are necessary to reduce the switching frequency spikes
when linear regulators are remote from L4962
11/16
L4962
MOUNTINGINSTRUCTION
The Rth-j-amb of the L4962 can be reduced by solderingtheGNDpinsto a suitablecopperareaof the printed circuit board (Fig. 32). The diagram of figure 33 shows the R
th-j-amb
function of the side ”l” of two equal square copper areashavingthethicknessof 35µ(1.4mils).During
as a
soldering the pins temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds. The external heatsink or printed circuit copper are must be connectedto electricalground.
Figure32.Exampleof P.C.boardcopperareawhichisused as heatsink
Figure 33. Maximum dissipable power and junction to ambient thermalresistancevs. side ”l”
12/16
L4962
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
a1 0.51 0.020
B 0.85 1.40 0.033 0.055
b 0.50 0.020
b1 0.38 0.50 0.015 0.020
D 20.0 0.787
E 8.80 0.346
e 2.54 0.100
e3 17.78 0.700
F 7.10 0.280
I 5.10 0.201
L 3.30 0.130
Z 1.27 0.050
mm inch
OUTLINE AND
MECHANICAL DATA
Powerdip 16
13/16
L4962
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A 4.8 0.189 C 1.37 0.054 D 2.4 2.8 0.094 0.110
D1 1.2 1.35 0.047 0.053
E 0.35 0.55 0.014 0.022
E1 0.7 0.97 0.028 0.038
F 0.6 0.8 0.024 0.031
F1 0.9 0.035
G 2.34 2.54 2.74 0.095 0.100 0.105 G1 4.88 5.08 5.28 0.193 0.200 0.205 G2 7.42 7.62 7.82 0.295 0.300 0.307 H2 10.4 0.409 H3 10.05 10.4 0.396 0.409
L 16.7 16.9 17.1 0.657 0.668 0.673 L1 14.92 L2 21.24 21.54 21.84 0.386 0.848 0.860 L3 22.27 22.52 22.77 0.877 0.891 0.896 L4 1.29 L5 2.6 2.8 3 0.102 0.110 0.118 L6 15.1 15.5 15.8 0.594 0.610 0.622 L7 6 6.35 6.6 0.236 0.250 L9 0.2 0.008
M 2.55 2.8 3.05 0.100 0.110 0.120
M1 4.83 5.08 5.33 0.190 0.200 0.210
V4 40° (typ.)
Dia 3.65 3.85 0.144 0.152
mm inch
0.587
0.051
0.260
OUTLINE AND
MECHANICAL DATA
Heptawatt V
H3
L
VV
E
L1
M1
A
C
D
M
D1
H2
V4
L9
H1
L5
Dia.
L2 L3
F
E1
E
GG1G2
F
L7
L4
L6
F1H2
HEPTAMEC
14/16
L4962
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A 4.8 0.189 C 1.37 0.054 D 2.4 2.8 0.094 0.110
D1 1.2 1.35 0.047 0.053
E 0.35 0.55 0.014 0.022 F 0.6 0.8 0.024 0.031
F1 0.9 0.035
G 2.41 2.54 2.67 0.095 0.100 0.105 G1 4.91 5.08 5.21 0.193 0.200 G2 7.49 7.62 7.8 0.295 0.300 0.307 H2 10.4 0.409 H3 10.05 10.4 0.396 0.409
L 14.2 0.559 L1 4.4 L2 15.8 L3 5.1 L5 2.6 3 0.102 0.118 L6 15.1 15.8 0.594 0.622 L7 6 6.6 0.236 L9 4.44 0.175
Dia 3.65 3.85 0.144 0.152
mm inch
0.205
0.173
0.622
0.201
0.260
OUTLINE AND
MECHANICAL DATA
Heptawatt H
15/16
L4962
Information furnishedisbelievedto beaccurate andreliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from itsuse.No license is granted by implicationor otherwise under any patentor patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as criticalcomponentsin lifesupport devices or systems withoutexpress written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
2000 STMicroelectronics – Printed in Italy– All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - HongKong - India- Italy- Japan - Malaysia- Malta- Morocco -
Singapore - Spain - Sweden - Switzerland - United Kingdom- U.S.A.
http://www.st.com
16/16
Loading...