SGS Thomson Microelectronics L298HN, L298P, L298N Datasheet

.TOTALDC CURRENT UP TO 4 A
.
LOWSATURATIONVOLTAGE
.OVERTEMPERATUREPROTECTION
.
LOGICAL ”0” INPUT VOLTAGE UP TO 1.5 V (HIGHNOISE IMMUNITY)
L298
DUALFULL-BRIDGE DRIVER
DESCRIPTION
TheL298isan integratedmonolithiccircuitin a 15­lead Multiwatt and PowerSO20 packages. It is a highvoltage,highcurrentdualfull-bridgedriver de­signedtoacceptstandardTTLlogiclevelsanddrive inductiveloads such as relays, solenoids, DC and steppingmotors.Twoenableinputsare providedto enableordisablethedeviceindependentlyofthein­put signals.The emittersof thelowertransistorsof each bridgeareconnectedtogetherand the corre­spondingexternalterminalcan beusedforthecon-
BLOCK DIAGRAM
Multiwatt15
ORDERING NUMBERS : L298N (M ultiwatt Vert.)
L298HN (Mult iwat t H oriz .)
L298P (PowerSO20)
nectionofanexternalsensingresistor.Anadditional supplyinputis providedso that the logicworksat a lowervoltage.
PowerSO20
Jenuary 2000
1/13
L298
ABSOLUTEMAXIMUM RATINGS
Symbol Parame t er Value Unit
V
V
V
I,Ven
V
P T
T
stg,Tj
I
sens
Power Supply 50 V
S
LogicSupply Voltage 7 V
SS
Inputand Enable Voltage –0.3 to 7 V Peak OutputCurrent (each Channel)
O
– Non Repetitive (t = 100µs) –Repetitive (80% on –20% off; t –DC Operation
= 10ms)
on
3
2.5 2
Sensing Voltage –1 to 2.3 V
tot TotalPower Dissipation (T
JunctionOperating Temperature –25 to 130 °
op
case
=75°C)
25 W
Storageand JunctionTemperature –40 to 150
A A A
C
°C
PIN CONNECTIONS
(top view)
Multiwatt15
TAB CONNECTED TO PIN 8
GND
Sense A
N.C. Out 1 Out 2
V
S
Input 1
Enable A
Input 2
GND 10
1 2 3 4
PowerSO20
5 6 7 8 9
15 14 13 12 11 10
9 8 7 6 5 4 3 2 1
D95IN239
D95IN240A
20 19 18 17 16 15 14 13 12 11
CURRENT SENSING B OUTPUT 4 OUTPUT 3 INPUT 4 ENABLE B INPUT 3 LOGIC SUPPLY VOLTAGE V GND INPUT 2 ENABLE A INPUT 1 SUPPLY VOLTAGE V OUTPUT 2 OUTPUT 1 CURRENT SENSING A
GND Sense B N.C. Out 4 Out 3 Input 4 Enable B Input 3 VSS GND
S
SS
THERMAL DATA
Symbol Parameter PowerSO20 Multiwatt15 Unit
R
th j-case
R
th j-amb
(*) Mountedon aluminumsubstrate
2/13
Thermal Resistance Junction-case Max. 3 Thermal Resistance Junction-ambient Max. 13 (*) 35 °
°C/W
C/W
PIN FUNCTIONS(referto the block diagram)
MW .15 PowerSO Name Function
1;15 2;19 Sense A; Sense B Between this pin and ground is connected the sense resistorto
control thecurrent of the load.
2;3 4;5 Out 1; Out2 Outputs ofthe Bridge A; the currentthat flows throughthe load
connected between these two pins is monitored at pin 1.
46 V
S
Supply Voltage for the Power Output Stages. A non-inductive 100nFcapacitor must be connected between this pin and ground.
5;7 7;9 Input 1; Input 2 TTL CompatibleInputs of the BridgeA.
6;11 8;14 EnableA; Enable B TTL CompatibleEnable Input: theL statedisables the bridge A
(enable A) and/or the bridgeB (enable B). 8 1,10,11,20 GND Ground. 9 12 VSS Supply Voltage forthe Logic Blocks. A100nF capacitor must be
connected between this pin and ground.
10; 12 13;15 Input3; Input 4 TTL CompatibleInputs of the BridgeB. 13; 14 16;17 Out 3; Out 4 Outputs of the BridgeB. The current that flows throughthe load
connected between these two pins is monitored at pin 15. – 3;18 N.C. NotConnected
ELECTRICALCHARACTERISTICS (VS= 42V; VSS=5V,Tj=25°C;unlessotherwise specified)
L298
Symb o l Parameter Test Co n d ition s Min. Typ. Max. Unit
Supply Voltage(pin 4) Operative Condition VIH+2.5 46 V
V
S
V
Logic SupplyVoltage (pin 9) 4.5 5 7 V
SS
Quiescent SupplyCurrent (pin 4) Ven=H; IL=0 Vi=L
I
S
=L Vi=X 4 mA
V
en
Quiescent Current from VSS(pin 9) Ven=H; IL=0 Vi=L
I
SS
=L Vi=X 6 mA
V
en
Input Low Voltage
V
iL
V
V
i
i
=H
=H
–0.3 1.5 V
13 50
24
7
22 70
36 12
mA mA
mA mA
(pins 5, 7, 10, 12)
V
Input High Voltage
iH
2.3 VSS V
(pins 5, 7, 10, 12)
I
Low Voltage Input Current
iL
Vi= L –10
A
µ
(pins 5, 7, 10, 12)
I
High Voltage Input Current
iH
Vi = H≤V
(pins 5, 7, 10, 12)
V
= L EnableLow Voltage (pins 6,11) –0.3 1.5 V
en
= H Enable High Voltage (pins 6, 11) 2.3 V
V
en
=L Low VoltageEnable Current
I
en
Ven= L –10
SS
–0.6V
30 100 µ
SS
A
V
A
µ
(pins 6, 11)
I
=H HighVoltage Enable Current
en
(pins 6, 11)
V
CEsat(H)
V
CEsat(L)
V
V
Source Saturation Voltage IL=1A
Sink SaturationVoltage IL= 1A (5)
TotalDrop IL= 1A (5)
CEsat
SensingVoltage (pins 1, 15) –1 (1) 2 V
sens
=H≤VSS–0.6V
V
en
I
=2A
L
I
= 2A (5)
L
I
= 2A (5)
L
0.95 1.35
0.85 1.2
1.80 3.2
30 100 µ
1.7
2
2.7
1.6
1.7
2.3
4.9
A
V V
V V
V V
3/13
L298
ELECTRICALCHARACTERISTICS (continued)
Symb o l Param et er Test Co n d ition s Min . T yp. Max. U n it
T
) SourceCurrent Turn-off Delay 0.5Vito 0.9IL(2);(4) 1.5
1(Vi
T
) SourceCurrent Fall Time 0.9 ILto 0.1 IL(2);(4) 0.2
2(Vi
) SourceCurrent Turn-on Delay 0.5Vito 0.1IL(2);(4) 2
T
3(Vi
T
) SourceCurrent Rise Time 0.1 ILto 0.9 IL(2);(4) 0.7
4(Vi
T5(Vi) Sink Current Turn-offDelay 0.5Vito 0.9IL(3);(4) 0.7 T6(Vi) Sink Current Fall Time 0.9ILto 0.1 IL(3);(4) 0.25 T7(Vi) Sink Current Turn-onDelay 0.5Vito 0.9IL(3);(4) 1.6 T8(Vi) Sink Current Rise Time 0.1 ILto 0.9 IL(3);(4) 0.2
fc (Vi) Commutation Frequency IL= 2A 25 40 KHz
T
) SourceCurrent Turn-off Delay 0.5Vento 0.9 IL(2); (4) 3
1(Ven
T2(Ven) SourceCurrent Fall Time 0.9 ILto 0.1 IL(2);(4) 1 T3(Ven) SourceCurrent Turn-on Delay 0.5Vento 0.1 IL(2); (4) 0.3 T
) SourceCurrent Rise Time 0.1ILto 0.9 IL(2);(4) 0.4
4(Ven
) Sink Current Turn-off Delay 0.5Vento 0.9 IL(3); (4) 2.2
T
5(Ven
T
) Sink Current Fall Time 0.9 ILto 0.1 IL(3);(4) 0.35
6(Ven
T7(Ven) Sink Current Turn-on Delay 0.5Vento 0.9 IL(3); (4) 0.25 T8(Ven) Sink Current Rise Time 0.1 ILto 0.9 IL(3);(4) 0.1
µs µ µs µ µ µ µ µs
µs µ µs µ µs µ µ µ
s
s s s s
s
s
s s s
1) 1)Sensingvoltage canbe –1V for t≤50µsec; insteady stateV
2) See fig.2.
3) See fig.4.
4) The loadmust be a pureresistor.
Figure1 : Typical SaturationVoltagevs.Output
Current.
min≥–0.5 V.
sens
Figure2 : SwitchingTimes TestCircuits.
4/13
Note : For INPUT Switching,set EN = H
For ENABLESwitching, set IN = H
L298
Figure3 :
Figure4 :
SourceCurrentDelayTimesvs. InputorEnable Switching.
SwitchingTimes Test Circuits.
Note : For INPUT Switching,set EN = H
ForENABLESwitching, set IN = L
5/13
L298
Figure5 :
SinkCurrent DelayTimes vs. Input 0 V EnableSwitching.
Figure6 : BidirectionalDC MotorControl.
Inpu ts Function
= H C = H ; D = L Forward
V
en
C = L ; D = H Reverse C = D FastMotor Stop
= L C = X ; D = X FreeRunning
V
en
L = Low H =High X= Don’tcare
MotorStop
6/13
L298
Figure7 : Forhighercurrents,outputscanbe paralleled.Takecareto parallelchannel 1 with channel4
andchannel2 withchannel3.
APPLICATION INFORMATION (Refer to the block diagram)
1.1.POWEROUTPUT STAGE TheL298integratestwopoweroutputstages(A;B).
The power output stage is a bridge configuration and its outputscan drive an inductiveload in com­monor differenzialmode,dependingonthestateof the inputs. The currentthat flows through the load comesoutfromthe bridgeat the sense output: an externalresistor(R
SA;RSB
.)allowstodetectthein-
tensityof this current.
1.2.INPUT STAGE Eachbridgeis drivenby meansof fourgatesthe in-
putof whichareIn1; In2 ; EnA and In3; In4 ; EnB. TheIninputssetthebridgestatewhenTheEninput ishigh;a lowstateoftheEninputinhibitsthebridge. Alltheinputsare TTL compatible.
2.SUGGESTIONS A non inductivecapacitor,usuallyof 100 nF, must
be foreseen between both Vs and Vss, to ground, asnearaspossible toGNDpin.Whenthe largeca­pacitorof thepowersupply is too farfrom the IC, a second smaller one must be foreseen near the L298.
Thesenseresistor,not of a wirewoundtype, must begroundednear thenegativepoleofVsthatmust be nearthe GNDpin of the I.C.
Eachinput must be connectedto the source of the driving signalsby meansof a veryshortpath.
Turn-OnandTurn-Off:BeforetoTurn-ONtheSup­plyVoltageand beforetoTurnitOFF,theEnablein­put mustbe drivento the Low state.
3.APPLICATIONS Fig6 showsa bidirectionalDC motorcontrolSche-
maticDiagram forwhichonlyonebridgeisneeded. Theexternalbridge of diodesD1 to D4 is made by four fast recovery elements (trr must be chosen of a VF as low as possibleat the worstcase of the load current.
Thesenseoutputvoltagecanbeusedtocontrolthe currentamplitudebychoppingtheinputs,or to pro­videovercurrentprotectionbyswitchinglow theen­ableinput.
The brake function (Fast motor stop) requires that the Absolute Maximum Rating of 2 Amps must neverbe overcome.
Whenthe repetitivepeak currentneededfrom the loadis higher than 2 Amps,a paralleledconfigura­tioncan be chosen(See Fig.7).
An externalbridge of diodes are requiredwhen in­ductiveloadsare drivenandwhenthe inputsof the ICarechopped;Shottkydiodeswouldbepreferred.
200 nsec) that
7/13
L298
Thissolutioncandriveuntil3 AmpsInDCoperation anduntil3.5Amps of a repetitivepeakcurrent.
OnFig8itisshownthedrivingofa twophasebipolar
Fig 10 shows a secondtwo phasebipolar stepper motorcontrolcircuit where the currentis controlled bythe I.C.L6506.
steppermotor; the needed signalsto drive the in­puts of the L298 are generated,in this example, fromtheIC L297.
Fig9 showsan exampleof P.C.B. designedforthe applicationofFig8.
Figure8 :
TwoPhase BipolarStepperMotorCircuit.
Thiscircuit drivesbipolar steppermotorswithwindingcurrentsup to 2 A. The diodesare fast2 A types.
RS1=RS2= 0.5
D1 to D8 = 2 A Fast diodes
8/13
VF≤ 1.2 V @ I = 2 A
{
trr≤200 ns
Figure9 : SuggestedPrintedCircuitBoardLayout for the Circuitof fig.8 (1:1scale).
L298
Figure10 : Two PhaseBipolar StepperMotorControlCircuitby UsingtheCurrent ControllerL6506.
RRand R
depend from the load current
sense
9/13
L298
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A5
B 2.65 0.104 C 1.6 0.063 D 1 0.039
E 0.49 0.55 0.019 0.022
F 0.66 0.75 0.026 0.030 G 1.02 1.27 1.52 0.040 0.050 0.060
G1 17.53 17.78 18.03 0.690 0.700 0.710 H1 19.6 0.772 H2 20.2 0.795
L 21.9 22.2 22.5 0.862 0.874 0.886
L1 21.7 22.1 22.5 0.854 0.870 0.886 L2 17.65 18.1 0.695 L3 17.25 17.5 17.75 0.679 0.689 0.699 L4 10.3 10.7 10.9 0.406 0.421 0.429 L7 2.65 2.9 0.104 0.114
M 4.25 4.55 4.85 0.167 0.179 0.191
M1 4.63 5.08 5.53 0.182 0.200 0.218
S 1.9 2.6 0.075 0.102
S1 1.9 2.6 0.075 0.102
Dia1 3.65 3.85 0.144 0.152
mm inch
0.197
0.713
OUTLINEAND
MECHANICALDATA
Multiwatt15 V
10/13
L298
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A5 B 2.65 0.104
C 1.6 0.063
E 0.49 0.55 0.019 0.022 F 0.66 0.75 0.026 0.030
G 1.14 1.27 1.4 0.045 0.050 0.055
G1 17.57 17.78 17.91 0.692 0.700 0.705
H1 19.6 0.772 H2 20.2 0.795
L 20.57 0.810 L1 18.03 L2 2.54 L3 17.25 17.5 17.75 0.679 0.689 L4 10.3 10.7 10.9 0.406 0.421 0.429 L5 5.28 0.208 L6 2.38 L7 2.65 2.9 0.104 0.114
S 1.9 2.6 0.075 0.102
S1 1.9 2.6 0.075 0.102
Dia1 3.65 3.85 0.144 0.152
mm inch
0.197
0.710
0.100
0.699
0.094
OUTLINE AND
MECHANICAL DATA
Multiwatt15 H
11/13
L298
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
mm inch
A 3.6 0.142 a1 0.1 0.3 0.004 a2 3.3
0.012
0.130
a3 0 0.1 0.000 0.004
b 0.4 0.53 0.016 0.021 c 0.23 0.32 0.009 0.013
D (1) 15.8 16 0.622 0.630
D1 9.4 9.8 0.370 0.386
E 13.9 14.5 0.547 0.570
e 1.27 0.050
e3 11.43 0.450
E1 (1) 10.9 11.1 0.429 0.437
E2 2.9
0.114
E3 5.8 6.2 0.228 0.244
G 0 0.1 0.000 0.004
H 15.5 15.9 0.610 0.626
h 1.1
0.043
L 0.8 1.1 0.031 0.043 N10°(max.) S
8°(max.)
T 10 0.394
(1) ”D andF” donot include moldflash or protrusions.
- Moldflash orprotrusions shall not exceed0.15 mm (0.006”).
- Criticaldimensions: ”E”, ”G” and ”a3”
OUTLINE AND
MECHANICAL DATA
JEDEC MO-166
PowerSO20
E2
hx
45
DETAIL B
BOTTOM VIEW
R
a3
Gage Plane
lead
E
DETAIL B
0.35
S
D1
a1
L
c
DETAIL A
slug
-C-
SEATING PLANE
GC
(COPLANARITY)
E3
NN
a2
A
b
DETAIL A
e3
H
D
T
1
e
1120
E1
10
PSO20MEC
12/13
L298
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the conse­quences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMi­croelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -
The ST logo is a registered trademark of STMicroelectronics
2000 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
13/13
Loading...