SGS Thomson Microelectronics L298HN, L298P, L298N Datasheet

.TOTALDC CURRENT UP TO 4 A
.
LOWSATURATIONVOLTAGE
.OVERTEMPERATUREPROTECTION
.
LOGICAL ”0” INPUT VOLTAGE UP TO 1.5 V (HIGHNOISE IMMUNITY)
L298
DUALFULL-BRIDGE DRIVER
DESCRIPTION
TheL298isan integratedmonolithiccircuitin a 15­lead Multiwatt and PowerSO20 packages. It is a highvoltage,highcurrentdualfull-bridgedriver de­signedtoacceptstandardTTLlogiclevelsanddrive inductiveloads such as relays, solenoids, DC and steppingmotors.Twoenableinputsare providedto enableordisablethedeviceindependentlyofthein­put signals.The emittersof thelowertransistorsof each bridgeareconnectedtogetherand the corre­spondingexternalterminalcan beusedforthecon-
BLOCK DIAGRAM
Multiwatt15
ORDERING NUMBERS : L298N (M ultiwatt Vert.)
L298HN (Mult iwat t H oriz .)
L298P (PowerSO20)
nectionofanexternalsensingresistor.Anadditional supplyinputis providedso that the logicworksat a lowervoltage.
PowerSO20
Jenuary 2000
1/13
L298
ABSOLUTEMAXIMUM RATINGS
Symbol Parame t er Value Unit
V
V
V
I,Ven
V
P T
T
stg,Tj
I
sens
Power Supply 50 V
S
LogicSupply Voltage 7 V
SS
Inputand Enable Voltage –0.3 to 7 V Peak OutputCurrent (each Channel)
O
– Non Repetitive (t = 100µs) –Repetitive (80% on –20% off; t –DC Operation
= 10ms)
on
3
2.5 2
Sensing Voltage –1 to 2.3 V
tot TotalPower Dissipation (T
JunctionOperating Temperature –25 to 130 °
op
case
=75°C)
25 W
Storageand JunctionTemperature –40 to 150
A A A
C
°C
PIN CONNECTIONS
(top view)
Multiwatt15
TAB CONNECTED TO PIN 8
GND
Sense A
N.C. Out 1 Out 2
V
S
Input 1
Enable A
Input 2
GND 10
1 2 3 4
PowerSO20
5 6 7 8 9
15 14 13 12 11 10
9 8 7 6 5 4 3 2 1
D95IN239
D95IN240A
20 19 18 17 16 15 14 13 12 11
CURRENT SENSING B OUTPUT 4 OUTPUT 3 INPUT 4 ENABLE B INPUT 3 LOGIC SUPPLY VOLTAGE V GND INPUT 2 ENABLE A INPUT 1 SUPPLY VOLTAGE V OUTPUT 2 OUTPUT 1 CURRENT SENSING A
GND Sense B N.C. Out 4 Out 3 Input 4 Enable B Input 3 VSS GND
S
SS
THERMAL DATA
Symbol Parameter PowerSO20 Multiwatt15 Unit
R
th j-case
R
th j-amb
(*) Mountedon aluminumsubstrate
2/13
Thermal Resistance Junction-case Max. 3 Thermal Resistance Junction-ambient Max. 13 (*) 35 °
°C/W
C/W
PIN FUNCTIONS(referto the block diagram)
MW .15 PowerSO Name Function
1;15 2;19 Sense A; Sense B Between this pin and ground is connected the sense resistorto
control thecurrent of the load.
2;3 4;5 Out 1; Out2 Outputs ofthe Bridge A; the currentthat flows throughthe load
connected between these two pins is monitored at pin 1.
46 V
S
Supply Voltage for the Power Output Stages. A non-inductive 100nFcapacitor must be connected between this pin and ground.
5;7 7;9 Input 1; Input 2 TTL CompatibleInputs of the BridgeA.
6;11 8;14 EnableA; Enable B TTL CompatibleEnable Input: theL statedisables the bridge A
(enable A) and/or the bridgeB (enable B). 8 1,10,11,20 GND Ground. 9 12 VSS Supply Voltage forthe Logic Blocks. A100nF capacitor must be
connected between this pin and ground.
10; 12 13;15 Input3; Input 4 TTL CompatibleInputs of the BridgeB. 13; 14 16;17 Out 3; Out 4 Outputs of the BridgeB. The current that flows throughthe load
connected between these two pins is monitored at pin 15. – 3;18 N.C. NotConnected
ELECTRICALCHARACTERISTICS (VS= 42V; VSS=5V,Tj=25°C;unlessotherwise specified)
L298
Symb o l Parameter Test Co n d ition s Min. Typ. Max. Unit
Supply Voltage(pin 4) Operative Condition VIH+2.5 46 V
V
S
V
Logic SupplyVoltage (pin 9) 4.5 5 7 V
SS
Quiescent SupplyCurrent (pin 4) Ven=H; IL=0 Vi=L
I
S
=L Vi=X 4 mA
V
en
Quiescent Current from VSS(pin 9) Ven=H; IL=0 Vi=L
I
SS
=L Vi=X 6 mA
V
en
Input Low Voltage
V
iL
V
V
i
i
=H
=H
–0.3 1.5 V
13 50
24
7
22 70
36 12
mA mA
mA mA
(pins 5, 7, 10, 12)
V
Input High Voltage
iH
2.3 VSS V
(pins 5, 7, 10, 12)
I
Low Voltage Input Current
iL
Vi= L –10
A
µ
(pins 5, 7, 10, 12)
I
High Voltage Input Current
iH
Vi = H≤V
(pins 5, 7, 10, 12)
V
= L EnableLow Voltage (pins 6,11) –0.3 1.5 V
en
= H Enable High Voltage (pins 6, 11) 2.3 V
V
en
=L Low VoltageEnable Current
I
en
Ven= L –10
SS
–0.6V
30 100 µ
SS
A
V
A
µ
(pins 6, 11)
I
=H HighVoltage Enable Current
en
(pins 6, 11)
V
CEsat(H)
V
CEsat(L)
V
V
Source Saturation Voltage IL=1A
Sink SaturationVoltage IL= 1A (5)
TotalDrop IL= 1A (5)
CEsat
SensingVoltage (pins 1, 15) –1 (1) 2 V
sens
=H≤VSS–0.6V
V
en
I
=2A
L
I
= 2A (5)
L
I
= 2A (5)
L
0.95 1.35
0.85 1.2
1.80 3.2
30 100 µ
1.7
2
2.7
1.6
1.7
2.3
4.9
A
V V
V V
V V
3/13
L298
ELECTRICALCHARACTERISTICS (continued)
Symb o l Param et er Test Co n d ition s Min . T yp. Max. U n it
T
) SourceCurrent Turn-off Delay 0.5Vito 0.9IL(2);(4) 1.5
1(Vi
T
) SourceCurrent Fall Time 0.9 ILto 0.1 IL(2);(4) 0.2
2(Vi
) SourceCurrent Turn-on Delay 0.5Vito 0.1IL(2);(4) 2
T
3(Vi
T
) SourceCurrent Rise Time 0.1 ILto 0.9 IL(2);(4) 0.7
4(Vi
T5(Vi) Sink Current Turn-offDelay 0.5Vito 0.9IL(3);(4) 0.7 T6(Vi) Sink Current Fall Time 0.9ILto 0.1 IL(3);(4) 0.25 T7(Vi) Sink Current Turn-onDelay 0.5Vito 0.9IL(3);(4) 1.6 T8(Vi) Sink Current Rise Time 0.1 ILto 0.9 IL(3);(4) 0.2
fc (Vi) Commutation Frequency IL= 2A 25 40 KHz
T
) SourceCurrent Turn-off Delay 0.5Vento 0.9 IL(2); (4) 3
1(Ven
T2(Ven) SourceCurrent Fall Time 0.9 ILto 0.1 IL(2);(4) 1 T3(Ven) SourceCurrent Turn-on Delay 0.5Vento 0.1 IL(2); (4) 0.3 T
) SourceCurrent Rise Time 0.1ILto 0.9 IL(2);(4) 0.4
4(Ven
) Sink Current Turn-off Delay 0.5Vento 0.9 IL(3); (4) 2.2
T
5(Ven
T
) Sink Current Fall Time 0.9 ILto 0.1 IL(3);(4) 0.35
6(Ven
T7(Ven) Sink Current Turn-on Delay 0.5Vento 0.9 IL(3); (4) 0.25 T8(Ven) Sink Current Rise Time 0.1 ILto 0.9 IL(3);(4) 0.1
µs µ µs µ µ µ µ µs
µs µ µs µ µs µ µ µ
s
s s s s
s
s
s s s
1) 1)Sensingvoltage canbe –1V for t≤50µsec; insteady stateV
2) See fig.2.
3) See fig.4.
4) The loadmust be a pureresistor.
Figure1 : Typical SaturationVoltagevs.Output
Current.
min≥–0.5 V.
sens
Figure2 : SwitchingTimes TestCircuits.
4/13
Note : For INPUT Switching,set EN = H
For ENABLESwitching, set IN = H
Loading...
+ 9 hidden pages