Datasheet L296PHT, L296HT Datasheet (SGS Thomson Microelectronics)

L2 96
HIGHCURRENT SWITCHING REGULATORS
4 A OUTPUT CURRENT
.
5.1 V TO40 V OUTPUTVOLTAGERANGE
.
0 TO 100 % DUTY CYCLERANGE
.
PRECISE(±2 %)ON-CHIP REFERENCE
.
SWITCHINGFREQUENCY UP TO 200KHz
.
VERYHIGH EFFICIENCY(UP TO90 %)
.
VERYFEW EXTERNALCOMPONENTS
.
SOFTSTART
.
RESETOUTPUT
.
EXTERNALPROGRAMMABLELIMITING
.
CURRENT(L296P) CONTROLCIRCUIT FORCROWBAR SCR
.
INPUTFORREMOTEINHIBITAND
.
SYNCHRONUSPWM THERMALSHUTDOWN
.
DESCRIP TION
TheL296andL296Parestepdownpowerswitching regulatorsdelivering4 A at a voltagevariable from
5.1V to 40V. Featuresof thedevicesincludesoftstart,remotein-
hibit, thermal protection, a reset output for micro­processors and a PWM comparatorinput for syn­chronizationin multichipconfigurations.
TheL296Pincudesexternalprogrammablelimiting current.
L296P
Multiwatt
(15 lead)
ORDERING NUMBERS :
L296 (Vert ic a l) L296HT (Hor i z ontal) L296P (Ver t ic al) L296PH T (Horizontal)
TheL296andL296Paremountedina 15-leadMul­tiwattplasticpowerpackageandrequiresveryfew externalcomponents.
Efficient operation at switching frequencies up to 200 KHz allows a reductionin the size and costof external filter components. A voltage sense input and SCR drive output are provided for optional crowbar overvoltage protection with an external SCR.
PIN C ONNE CTION (top view)
June 2000
1/22
L296 - L296P
PIN FUNCTIONS
N
°
1 CROWBAR INPUT Voltage Sense Input for Crowbar Overvoltage Protection. Normally connected to the
2 OUTPUT Regulator Output 3 SUPPLY VOLTAGE Unrergulated Voltage Input. An internal Regulator Powers the L296s Internal Logic. 4 CURRENT LIMIT A resistor connected between this terminal and ground sets the current limiter
5 SOFT START Soft Start Time Constant. A capacitor is connected between this terminal and ground
6 INHIBIT INPUT TTL – Level Remote Inhibit. A logic high level on this input disables the device. 7 SYNC INPUT Multiple L296s are synchronized by connecting the pin 7 inputs together and omitting
8 GROUND Common Ground Terminal 9 FREQUENCY
10 FEEDBACK INPUT The Feedback Terminal on the Regulation Loop. The output is connected directly to 11 OSCILLATOR A parallel RC networki connected to this terminal determines the switching frequency.
12 RESET INPUT Input of the Reset Circuit. The threshold is roughly 5 V. It may be connected to the
13 RESET DELAY A capacitor connected between this terminal and ground determines the reset signal 14 RESET OUTPUT Open collector reset signal output. This output is high when the supply is safe.
15 CROWBAR OUTPUT SCR gate drive output of the crowbar circuit.
Name Function
feedback input thus triggering the SCR when V also monitor the input and a voltage divider can be added to increase the threshold. Connected to ground when SCR not used.
threshold. If this terminal is left unconnected the threshold is internally set (see electrical characteristics).
to define the soft start time constant. This capacitor also determines the average short circuit output current.
the oscillator RC network on all but one device.
COMPENSATION
A series RC network connected between this terminal and ground determines the regulation loop gain characteristics.
this terminal for 5.1V operation ; it is connected via a divider for higher voltages. This pin must be connected to pin 7 input when the internal oscillator is used.
feedback point or via a divider to the input.
delay time.
exceeds nominal by 20 %. May
out
BLOCK DIAGRAM
2/22
L296 - L296P
CIRCUIT OPERATION
(refer to the block diagram) The L296 and L296P are monolithic stepdown
switchingregulatorsprovidingoutputvoltagesfrom
5.1Vto 40Vand delivering 4A. Theregulationloopconsistsofasawtoothoscillator,
erroramplifier,comparatorandtheoutputstage.An error signal is produced by comparing the output voltagewithaprecise5.1Von-chipreference(zener zaptrimmedto ±2%).Thiserrorsignalisthencom­paredwiththe sawtoothsignalto generatethefixed frequencypulsewidthmodulatedpulseswhichdrive theoutputstage.The gainandfrequencystabilityof theloopcanbeadjustedby anexternalRCnetwork connectedtopin9.Closingtheloopdirectlygivesan outputvoltageof5.1V.Highervoltagesareobtained by insertinga voltagedivider.
Outputovercurrentsat switch on areprevented by the soft start function. The error amplifier output is initially clamped by the externalcapacitorCss and allowedto rise,linearly,as thiscapacitorischarged by a constantcurrent source.
Outputoverloadprotectionisprovidedintheformof a current limiter. The load current is sensed by an internalmetal resistor connected to a comparator. Whenthe load current exceedsa presetthreshold this comparator sets a flip flop which disables the outputstageanddischargesthesoftstartcapacitor. A second comparator resetsthe flip flop when the voltageacross the soft start capacitorhas fallen to
0.4V. The output stage is thus re-enabled and the output voltage rises under control of the soft start network.If the overloadconditionisstill presentthe limiterwill trigger againwhen the thresholdcurrent is reached.The averageshort circuitcurrent islim­itedto a safevalue bythe deadtime introducedby the softstart network.
The reset circuit generates an output signal when the supply voltage exceeds a threshold pro­grammed byan externaldivider.Thereset signalis generatedwitha delaytimeprogrammedby an ex­ternal capacitor. When the supply falls below the threshold the reset output goes low immediately. The resetoutput isan opencollector.
Thescrowbarcircuitsensestheoutputvoltage and the crowbar outputcan providea currentof 100mA toswitchonan externalSCR.ThisSCRistriggered when the output voltage exceeds the nominal by 20%. There is no internal connectionbetween the outputand crowbarsenseinputthereforethe crow­barcan monitoreitherthe inputor theoutput.
ATTL- levelinhibitinputis providedforapplications suchasremoteon/offcontrol.Thisinputis activated byhighlogiclevelanddisablescircuitoperation.Af­ter an inhibitthe L296 restartsunder controlof the softstart network.
The thermaloverloadcircuit disablescircuitopera­tion when the junction temperature reaches about 150°Candhas hysteresistopreventunstablecon­ditions.
Figure 1 :Reset OutputWaveforms
3/22
L296 - L296P
Figure 2 :Soft StartWaveforms
Figure 3 :CurrentLimiter Waveforms
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
V
i
V
i–V2
V
2
V
1,V12
V
15
,V5,V7,V9,V13Voltage at Pins 4, 5, 7, 9 and 13 5.5 V
V
4
,V
V
10
6
V
14
I
9
I
11
I
14
P
tot
,T
T
j
stg
4/22
Input Voltage (pin 3) 50 V Input to Output Voltage Difference 50 V Output DC Voltage
Output Peak Voltage at t = 0.1µsec f = 200KHz
–1
–7 Voltage at Pins 1, 12 10 V Voltage at Pin 15 15 V
Voltage at Pins 10 and 6 7 V Voltage at Pin 14 (I14≤ 1 mA) V
i
Pin 9 Sink Current 1 mA Pin 11 Source Current 20 mA Pin 14 Sink Current (V14< 5 V) 50 mA Power Dissipation at T
case
C20W
≤90°
Junction and Storage Temperature – 40 to 150
V V
C
°
L296 - L296P
THERMAL DATA
Symbol Parameter Value Unit
R
th j-case
R
th j-amb
ELECTRICAL CHARACTERISTICS
(refer to the test circuits T
Symbol Parameter Test Conditions Min. Typ. Max. Unit Fig.
DYNAMIC CHARACTERISTICS (pin 6 to GND unless otherwise specified)
V
o
V
i
V
i
V
o
V
o
V
ref
V
ref
T
V
d
I
2L
I
SH
η Efficiency I
SVR Supply Voltage Ripple Rejection
f Switching Frequency 85 100 115 kHz 4
f
V
i
f
T
j
f
max
T
sd
DC CHARACTERISTICS
I
3Q
–I
2L
Thermal Resistance Junction-case Max. 3 °C/W Thermal Resistance Junction-ambient Max. 35
=25oC, Vi= 35V, unless otherwise specified)
j
Output Voltage Range Vi= 46V, Io=1A V Input Voltage Range Vo=V
to 36V, I
ref
Input Voltage Range Note (1), Vo=V Line Regulation Vi=10V to 40V, Vo=V Load Regulation Vo=V
ref
Io=2Ato4A
= 0.5A to 4A
I
o
3A 9 46 V 4
o
to 36V Io=4A 46 V 4
REF
=2A 15 50 mV 4
ref,Io
ref
40 V 4
101530
45
C/W
°
mV 4
Internal Reference Voltage (pin 10) Vi= 9V to 46V, Io= 2A 5 5.1 5.2 V 4 Average Temperature Coefficient
of Reference Voltage Dropout Voltage Between Pin 2
and Pin 3 Current Limiting Threshold (pin 2) L296 - Pin 4 Open,
T
=0°C to 125°C, Io= 2A 0.4 mV/°C
j
2
Io=4A
=2A
I
o
1.3
3.2
2.1
4.5 7.5 A 4
= 9V to 40V, Vo=V
V
i
L296P - V
= 9V to 40V, Vo=V
i
Pin 4 Open
= 22k
R
Iim
ref
to 36V
ref
5
2.5
7
4.5
V V
A4
Input Average Current Vi= 46V, Output Short-circuited 60 100 mA 4
Voltage Stability of Switching
=3A
o
V
o=Vref
Vo= 12V
=2V
V
i
V
o=Vref,Io
rms,fripple
=2A
= 100Hz
75 85
50 56 dB 4
Vi= 9V to 46V 0.5 % 4
%4
Frequency Temperature Stability of Switching
Tj=0°C to 125°C1%4
Frequency Maximum Operating Switching
Frequency Thermal Shutdown Junction
Vo=V
= 1A 200 kHz
ref,Io
Note (2) 135 145
C–
°
Temperature
Quiescent Drain Current Vi= 46V, V7= 0V, S1 : B, S2 : B
=0V
V
6
=3V
V
6
Output Leakage Current Vi= 46V, V6= 3V, S1 : B, S2 : A,
=0V
V
7
66 30
85 40
2mA
4 4
mA
Note (1): Using min.7 Aschottky diode.
(2):Guaranteed by design, not 100 % tested in production.
5/22
L296 - L296P
ELECTRICAL CHARACTERISTICS
(continued)
Symbol Parameter Test Conditions Min. Typ. Max. Unit Fig.
SOFT START
I
I
Source Current V6= 0V, V5= 3V 80 130 150
5so
Sink Current V6= 3V, V5= 3V 50 70 120
5si
A6b
µ
A6b
µ
INHIBIT
V
V
–I
–I
Input Voltage
6L
6H
Input Current with Input Voltage
6L
6H
Low Level High Level
Low Level High Level
= 9V to 46V, V7= 0V,
V
i
S1 : B, S2 : B – 0.3
2
= 9V to 46V, V7= 0V,
V
i
S1 : B, S2 : B
= 0.8V
V
6
=2V
V
6
0.8
5.5
10
3
V6a
A6a
µ
ERROR AMPLIFIER
V
V
I
–I
High Level Output Voltage V10= 4.7V, I9= 100µA,
9H
Low Level Output Voltage V10= 5.3V, I9= 100µA,
9L
Sink Output Current V10= 5.3V, S1 : A, S2 : B 100 150
9si
Source Output Current V10= 4.7V, S1 : A, S2 : D 100 150 µA6c
9so
Input Bias Current V10= 5.2V, S1 : B
I
10
DC Open Loop Gain V9= 1V to 3V, S1 : A, S2 : C 46 55 dB 6c
G
v
S1 : A, S2 : A
S1 : A, S2 : E
= 6.4V, S1 : B, L296P
V
10
3.5 V 6c
0.5 V 6c
2 2
10 10
A6c
µ
AµA6c
µ
OSCILLATOR AND PWM COMPARATOR
–I
–I
Input Bias Current of
7
PWM Comparator Oscillator Source Current V11= 2V, S1 : A, S2 : B 5 mA
11
V7= 0.5V to 3.5V 5
A6a
µ
RESET
V
12 R
V
12 F
V
13 D
V
13 H
V
14 S
I
–I
I
13 si
I
Rising Threshold Voltage
= 9V to 46V,
V
i
Falling Threshold Voltage 4.75 V
S1 : B, S2 : B
Delay Thershold Voltage
V
= 5.3V, S1 : A, S2 : B
Delay Threshold Voltage
12
V
ref
-150mV
4.3 4.5 4.7 V 6d
V
ref
-100mV
ref
-150mV
100 mV 6d
Hysteresis Output Saturation Voltage I14= 16mA, V12= 4.7V, S1, S2 : B 0.4 V 6d Input Bias Current V12=0VtoV
12
= 3V, S1 : A, S2 : B
V
Delay Source Current
13 so
Delay Sink Current Output Leakage Current Vi= 46V, V12= 5.3V, S1 : B, S2 : A 100 µA6d
14
13
V
12
V
12
, S1 : B, S2 : B 1 3
ref
= 5.3V = 4.7V
70 10
110 140
V
ref
-50mV V
ref
-100mV
V6d
V6d
A6d
µ
A
µ
mA
CROWBAR
V
Input Threshold Voltage S1 : B 5.5 6 6.4 V 6b
1
V
–I
Output Saturation Voltage Vi= 9V to 46V, Vi= 5.4V,
15
I
Input Bias Current V1= 6V, S1 : B 10
1
Output Source Current Vi= 9V to 46V, V1= 6.5V,
15
= 5mA, S1 : A
I
15
= 2V, S1 : B
V
15
70 100 mA 6b
0.2 0.4 V 6b
A6b
µ
6c
6d
6/22
Figure4 : DynamicTest Circuit
C7, C8 : EKR (ROE) L1 : L = 300µH at8 A Core type : MAGNETICS 58930 - A2 MPP
N°turns: 43 Wire Gauge : 1mm (18 AWG) COGEMA946044
(*)Minimum suggested value (10 µF) to avoid oscillations.Rippleconsideration leads to typicalvalue of 1000 µF or higher.
L296 - L296P
Figure 5 : PC. Boardand ComponentLayoutof the Circuitof Figure4 (1:1scale)
7/22
L296 - L296P
Figure 6 :DC TestCircuits. Figure 6a. Figure6b.
Figure 6c.
1 - Set V10FORV9=1V 2 - Change V
3-G
V
DV
9
=
V
10
toobtain V9=3V
10
=
Figure 6d.
8/22
2V
V
10
L296 - L296P
Figure 7 : QuienscentDrain Currentvs. Supply
Voltage(0 % DutyCycle - seefig. 6a).
Figure 9 :
QuiescentDrain Currentvs. Junction
Temperature(0 % Duty Cycle-
seefig. 6a).
Figure 8 : QuienscentDrain Currentvs. Supply
Voltage(100 % DutyCyclesee fig. 6a).
Figure 10 :
QuiescentDrain Current vs.Junction
Temperature(100 % Duty Cycle ­seefig. 6a).
Figure 11 : ReferenceVoltage(pin 10) vs.V
(seefig. 4).
I
Figure12 : ReferenceVoltage(pin10) vs.Junction
Temperature(see fig. 4).
9/22
L296 - L296P
Figure 13 : OpenLoop Frequencyand Phase
Responseof ErrorAmplifier (seefig. 6c).
Figure15 : SwitchingFrequencyvs. Junction
Temperature(see fig. 4).
Figure 14 : SwitchingFrequencyvs.Input
Voltage(seefig. 4).
Figure16 : SwitchingFrequencyvs. R1
(seefig. 4).
Figure17 : LineTransient Response(see fig. 4). Figure18 : Load TransientResponse(see fig.4).
10/22
L296 - L296P
Figure 19 : SupplyVoltageRipple Rejectionvs.
Frequency(seefig. 4).
Figure 21 : DropoutVoltageBetweenPin 3 and
Pin2 vs. JunctionTemperature.
Figure 20 : DropoutVoltageBetweenPin 3 and
Pin2 vs. Currentat Pin 2.
Figure 22 : PowerDissipationDeratingCurve.
Figure 23 : PowerDissipation(deviceonly) vs.
InputVoltage.
Figure 24 : PowerDissipation(deviceonly) vs.
Inputvoltage.
11/22
L296 - L296P
Figure 25 : PowerDissipation(deviceonly) vs.
OutputVoltage (seefig. 4).
Figure27: VoltageandCurrentWaveformsatPin2
(seefig. 4).
Figure 26 : PowerDissipation(deviceonly) vs.
OutputVoltage(see fig. 4).
Figure 28 : Efficiencyvs. OutputCurrent.
Figure 29 : Efficiencyvs. Output Voltage. Figure 30 : Efficiencyvs. OutputVoltage.
12/22
L296 - L296P
Figure 31 : CurrentLimitingThresholdvs.R
(L296Ponly).
Figure 33 : CurrentLimitingThresholdvs.
SupplyVoltage.
pin4
Figure 32 : CurrentLimitingThresholdvs.Junction
Temperature.
13/22
L296 - L296P
APPLICATION INFORMATION Figure 34 : TypicalApplicationCircuit.
(*)Minimumvalue(10 µF) toavoidoscillations; rippleconsideration leads to typicalvalue of 1000 µF or higher L1 : 58930- MPP COGEMA
946044 ; GUP 20 COGEMA946045
SUGGESTEDINDUCTOR
Magnetics 58930 – A2MPP 43 1.0 mm – Thomson GUP 20 x 16 x 7 65 0.8 mm 1 mm Siemens EC 35/17/10 (B6633& – G0500 – X127) 40 2 x 0.8 mm – VOGT 250µH Toroidal Coil, Part Number 5730501800
V
0
12 V 15 V 18 V 24 V
(L1)
Core Type No Turns Wire Gauge Air Gap
Resistor Values for Standard Output Voltages
R8 R7
4.7 K
4.7 K
4.7 K
4.7 K
Ω Ω Ω
6.2 K
9.1 K 12 K
18 K
14/22
Figure 35 : P.C.Board and ComponentLayoutof theCircuitof fig.34 (1:1 scale)
L296 - L296P
SELECTIONOF COMPONENT VALUES (see fig. 34)
Component
R1 R2
Recommended
Value
100 k
Purpose
Set Input Voltage Threshold for Reset.
R3 4.3 k Sets Switching Frequency 1 k 100k R4 10 k Pull-down Resistor 22k May be omitted and pin 6 grounded
R5 15 k
Frequency Compensation 10k
R6 Collector Load For Reset
Output
R
R7 R8
iim
4.7 k
Divider to Set Output Voltage
Sets Current Limit Level 7.5k If R
C1 10µF Stability 2.2µF C2 2.2µF Sets Reset Delay Omitted if reset function not used. C3 2.2 nF Sets Switching Frequency 1 nF 3.3nF C4 2.2 µF Soft Start 1 µF Also determines average short
C5 33 nF Frequency Compensation C6 390 pF High Frequency
Compensation
C7, C8
L1
100µF 300µH
Output Filter
Q1 Crowbar Protection The SCR must be able to withstand
D1 Recirculation Diode 7A Schottky or 35 ns t
Allowed Rage
Min. Max.
220k
R1/R2
Notes
V
i min
1
5 If output voltage is sensed R1 and R2 may be limited and pin 12 connected to pin 10.
if inhibit not used.
V
O
Omitted if reset function not used.
0.05A
– –
R7/R8 =
1k
iim
the current limit is internally fixed.
circuit current.
Not required for 5 V operation.
100µH
the peak discharge current of the output capacitor and the short circuit current of the device.
V
V
O
REF
REF
-
V
is omitted and pin 4 left open
Diode.
rr
15/22
L296 - L296P
Figure 36 : AMinimal5.1 V FixedRegulator.VeryFew Componentsare Required.
Figure 37 : 12V/10 A PowerSupply.
16/22
Figure38 : ProgrammablePower Supply.
Vo= 5.1to 15 V I
= 4 A max. (min.load current= 100 mA)
o
ripple 20 mV loadregulation (1 A to4 A) = 10 mV (V line regulation(220 V ± 15 % and toI
= 5.1V)
o
= 3 A) = 15 mV (Vo= 5.1 V)
o
L296 - L296P
Figure 39 :
Preregulatorfor Distributed Supplies.
(*)L2 and C2 are necessary to reducethe switching frequency spikes.
17/22
L296 - L296P
Figure 40 : InMultipleSuppliesSeveralL296s
Figure 41 : VoltageSensingforRemote Load.
canbe SynchronizedAs Shown.
Figure 42 : A5.1 V/15 V/24 V MultipleSupply.Note the Synchronizationof theThree L296s.
18/22
L296 - L296P
Figure 43 : 5.1V/2APowerSupply usingExternal
LimitingCurrentResistorand Crow­barProtectionon the SupplyVoltage (L296Ponly)
SOFT-START AND REPETITIVE POWER-ON
Whenthedeviceisrepetitivelypowered-on,thesoft­start capacitor, C
, mustbe dischargedrapidlyto
SS
ensurethateachstartis”soft”.Thiscanbeachieved economicallyusingtheresetcircuit,asshowninFig­ure44.
Inthis circuitthe dividerR1, R2 connectedto pin12 determines the minimum supply voltage, below whichthe opencollectortransistorat thepin14out­put dischargesC
SS
.
Figure 44
sistor may be added,as shown in Figure 45 ; with this circuit discharge times of a few microseconds maybe obtained.
Figure 45
HOW TO OBTAIN BOTH RESET AND POWER FAIL
Figure46illustrateshowit ispossibleto obtainat the same time both the power fail and reset functions simplybyaddingonediode(D)andoneresistor(R).
In this case the Resetdelay time (pin 13) can only startwhenthe outputvoltageis V
V
O
REF
- 100mV
andthe voltageaccrossR2 is higher than4.5V. Withthehysteresisresistoritis possibletofixthein-
put pin 12 hysteresisin order to increaseimmunity tothe 100Hzripple presenton the supply voltage.
Moreover, the power fail and reset delay time are automaticallylockedtothesoft-start.Soft-startand delayedresetare thus two sequentialfunctions.
The hysteresisresistor should be In the range of aboit100kand thepull-up resistor of 1 to 2.2kΩ.
Theapproximatedischargetimesobtainedwiththis circuitare :
CSS (µF) tDIS (µs)
2.2
4.7 10
200 300 600
Ifthesetimesare stilltoolong,anexternalPNPtran-
Figure 46
19/22
L296 - L296P
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A5 B 2.65 0.104 C 1.6 0.063 D 1 0.039 E 0.49 0.55 0.019 0.022 F 0.66 0.75 0.026 0.030
G 1.02 1.27 1.52 0.040 0.050 0.060 G1 17.53 17.78 18.03 0.690 0.700 0.710 H1 19.6 0.772 H2 20.2 0.795
L 21.9 22.2 22.5 0.862 0.874 0.886 L1 21.7 22.1 22.5 0.854 0.870 L2 17.65 18.1 0.695 L3 17.25 17.5 17.75 0.679 0.689 0.699 L4 10.3 10.7 10.9 0.406 0.421 0.429 L7 2.65 2.9 0.104 0.114
M 4.25 4.55 4.85 0.167 0.179 0.191
M1 4.63 5.08 5.53 0.182 0.200 0.218
S 1.9 2.6 0.075 0.102
S1 1.9 2.6 0.075 0.102
Dia1 3.65 3.85 0.144 0.152
mm inch
0.197
0.886
0.713
OUTLINE AND
MECHANICAL DATA
Multiwatt15 V
20/22
L296 - L296P
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A5 B 2.65 0.104 C 1.6 0.063 E 0.49 0.55 0.019 0.022 F 0.66 0.75 0.026 0.030
G 1.14 1.27 1.4 0.045 0.050 0.055 G1 17.57 17.78 17.91 0.692 0.700 0.705 H1 19.6 H2 20.2 0.795
L 20.57 0.810 L1 18.03 L2 2.54 L3 17.25 17.5 17.75 0.679 0.689 L4 10.3 10.7 10.9 0.406 0.421 0.429 L5 5.28 0.208 L6 2.38 L7 2.65 2.9 0.104 0.114
S 1.9 2.6 0.075 0.102
S1 1.9 2.6 0.075 0.102
Dia1 3.65 3.85 0.144 0.152
mm inch
0.197
0.772
0.710
0.100
0.699
0.094
OUTLINE AND
MECHANICAL DATA
Multiwatt15 H
21/22
L296 - L296P
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the conse­quences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMi­croelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -
The ST logo is a registeredtrademark of STMicroelectronics
2000 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
22/22
Loading...