SGS Thomson Microelectronics L296-P, L296 Datasheet

L296
L296P
April1993
HIGH CURRENT SWITCHING REGULATORS
.4 A OUTPUT CURRENT
.5.1 V TO 40 V OUTPUT VOLTAGERANGE
.0 TO 100 % DUTY CYCLERANGE
.PRECISE(±2 %) ON-CHIPREFERENCE
.VERY HIGHEFFICIENCY(UPTO 90%)
.VERY FEWEXTERNAL COMPONENTS
.SOFT START
.RESETOUTPUT
.EXTERNALPROGRAMMABLE LIMITING
CURRENT (L296P)
.CONTROLCIRCUITFOR CROWBAR SCR
.INPUT FOR REMOTE INHIBIT AND
SYNCHRONUSPWM
.THERMALSHUTDOWN
DESCRIP TION
TheL296andL296Parestepdownpowerswitching regulatorsdelivering4 Aat a voltage variablefrom
5.1 Vto40 V. Featuresof thedevicesincludesoftstart,remotein-
hibit, thermal protection, a reset output for micro­processors and a PWM comparatorinput for syn­chronizationin multichip configurations.
TheL296Pincudesexternalprogrammablelimiting current.
TheL296 andL296Paremountedina15-leadMul­tiwattplasticpowerpackageandrequiresveryfew externalcomponents.
Efficient operation at switching frequencies up to 200 KHz allows a reductionin the size and costof external filter components. A voltage sense input and SCR drive output are provided for optional crowbar overvoltage protection with an external SCR.
Multiwatt
(15 lead)
ORDE RING NUM BERS :
L296 (Vertical) L296HT (Hor izontal) L296P ( Vertical) L296PHT ( H ori zont a l)
PIN CONNE CTION (top view)
1/21
PIN FUNCTIONS
N° Name Function
1 CROWBAR INPUT Voltage Sense Input for Crowbar Overvoltage Protection. Normally connected to the
feedback input thus triggering the SCR when V
out
exceeds nominal by 20 %. May also monitor the input and a voltage divider can be added to increase the threshold. Connected to ground when SCR not used.
2 OUTPUT Regulator Output 3 SUPPLY VOLTAGE Unrergulated Voltage Input. An internal Regulator Powers the L296s Internal Logic. 4 CURRENT LIMIT A resistor connected between this terminal and ground sets the current limiter
threshold. If this terminal is left unconnected the threshold is internally set (see electrical characteristics).
5 SOFT START Soft Start Time Constant. A capacitor is connected between this terminal and ground
to define the soft start time constant. This capacitor also determines the average short circuit output current.
6 INHIBIT INPUT TTL – Level Remote Inhibit. A logic high level on this input disables the device. 7 SYNC INPUT Multiple L296s are synchronized by connecting the pin 7 inputs together and omitting
the oscillator RC network on all but one device.
8 GROUND Common Ground Terminal 9 FREQUENCY
COMPENSATION
A series RC network connected between this terminal and ground determines the regulation loop gain characteristics.
10 FEEDBACK INPUT The Feedback Terminal on the Regulation Loop. The output is connected directly to
this terminal for 5.1V operation ; it is connected via a divider for higher voltages.
11 OSCILLATOR A parallel RC networki connected to this terminal determines the switching frequency.
This pin must be connected to pin 7 input when the internal oscillator is used.
12 RESET INPUT Input of the Reset Circuit. The threshold is roughly 5 V. It may be connected to the
feedback point or via a divider to the input.
13 RESET DELAY A capacitor connected between this terminal and ground determines the reset signal
delay time.
14 RESET OUTPUT Open collector reset signal output. This output is high when the supply is safe. 15 CROWBAR OUTPUT SCR gate drive output of the crowbar circuit.
BLOCK DIAGRAM
L296 - L296P
2/21
CIRCUIT OPERATION
(refer to the block diagram) The L296 and L296P are monolithic stepdown
switchingregulatorsprovidingoutputvoltagesfrom
5.1Vto40Vand delivering 4A. Theregulationloopconsistsofasawtoothoscillator,
erroramplifier,comparatorandtheoutputstage.An error signal is produced by comparing the output voltagewitha precise5.1Von-chipreference(zener zaptrimmedto± 2%).Thiserrorsignalis thencom­paredwiththesawtoothsignalto generatethefixed frequencypulsewidthmodulatedpulseswhichdrive theoutputstage.Thegainandfrequencystabilityof theloopcanbeadjustedbyan externalRC network connectedtopin9.Closingtheloopdirectlygivesan outputvoltageof5.1V.Highervoltagesareobtained byinsertinga voltagedivider.
Outputovercurrentsat switchon are preventedby the soft start function. The error amplifier outputis initially clampedby the externalcapacitorCss and allowedtorise, linearly,as thiscapacitorischarged bya constantcurrentsource.
Outputoverloadprotectionis providedintheformof a currentlimiter. The load currentis sensed by an internalmetal resistor connectedto a comparator. Whenthe load current exceedsa preset threshold this comparator sets a flip flop which disables the outputstageanddischargesthesoftstartcapacitor. A second comparator resets the flip flop when the voltageacrossthe soft startcapacitorhas fallen to
0.4V.The output stage is thus re-enabled and the output voltage rises under control of the soft start network.If theoverloadconditionis stillpresentthe limiterwill triggeragainwhen the thresholdcurrent isreached.The averageshort circuit current islim­itedtoa safe valueby the deadtimeintroduced by the softstart network.
The reset circuit generatesan output signal when the supply voltage exceeds a threshold pro­grammed byan externaldivider.The resetsignalis generatedwitha delay timeprogrammedby an ex­ternal capacitor. When the supply falls below the threshold the reset output goes low immediately. Theresetoutputis an opencollector.
Thescrowbarcircuit sensestheoutput voltageand the crowbaroutputcan providea currentof 100mA toswitchon anexternalSCR. ThisSCRis triggered when the output voltage exceeds the nominal by 20%. There is no internalconnection between the outputandcrowbarsense inputthereforethe crow­bar canmonitor eitherthe input or the output.
ATTL-levelinhibitinputisprovidedforapplications suchasremoteon/offcontrol.Thisinputisactivated byhigh logiclevelanddisablescircuitoperation.Af­ter an inhibit the L296 restartsunder controlof the soft startnetwork.
Thethermaloverloadcircuit disablescircuit opera­tion when the junctiontemperaturereachesabout 150 °Candhas hysteresisto preventunstablecon- ditions.
Figure 1 : ResetOutput Waveforms
L296 - L296P
3/21
Figure 2 : SoftStartWaveforms
Figure 3 : CurrentLimiter Waveforms
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
V
i
Input Voltage (pin 3) 50 V
V
i–V2
Input to Output Voltage Difference 50 V
V
2
Output DC Voltage Output Peak Voltage at t = 0.1 µsec f = 200KHz
–1
–7
V V
V
1,V12
Voltage at Pins 1, 12 10 V
V
15
Voltage at Pin 15 15 V
V
4,V5,V7,V9,V13
Voltage at Pins 4, 5, 7, 9 and 13 5.5 V
V
10,V6
Voltage at Pins 10 and 6 7 V
V
14
Voltage at Pin 14 (I14≤ 1 mA) V
i
I
9
Pin 9 Sink Current 1 mA
I
11
Pin 11 Source Current 20 mA
I
14
Pin 14 Sink Current (V14< 5 V) 50 mA
P
tot
Power Dissipation at T
case
90 °C20W
T
j
,T
stg
Junction and Storage Temperature – 40 to 150 °C
L296 - L296P
4/21
THERMAL DATA
Symbol Parameter Value Unit
R
th j-case
Thermal Resistance Junction-case Max. 3 °C/W
R
th j-amb
Thermal Resistance Junction-ambient Max. 35 °C/W
ELECTRICAL CHARACTERISTICS
(refer to the test circuits T
j
=25oC, Vi= 35V, unless otherwise specified)
Symbol Parameter Test Conditions Min. Typ. Max. Unit Fig.
DYNAMIC CHARACTERISTICS (pin 6 to GND unless otherwise specified)
V
o
Output Voltage Range Vi= 46V, Io=1A V
ref
40 V 4
V
i
Input Voltage Range Vo=V
ref
to 36V, Io≤ 3A 9 46 V 4
V
i
Input Voltage Range Note (1), Vo=V
REF
to 36V Io=4A 46 V 4
V
o
Line Regulation Vi=10V to 40V, Vo=V
ref,Io
=2A 15 50 mV 4
V
o
Load Regulation Vo=V
ref
Io=2Ato4A I
o
= 0.5A to 4A
101530
45
mV 4
V
ref
Internal Reference Voltage (pin 10) Vi= 9V to 46V, Io= 2A 5 5.1 5.2 V 4
V
ref
T
Average Temperature Coefficient of Reference Voltage
T
j
=0°C to 125°C, Io= 2A 0.4 mV/°C
V
d
Dropout Voltage Between Pin 2 and Pin 3
Io=4A I
o
=2A
2
1.3
3.2
2.1
V V
4 4
I
2L
Current Limiting Threshold (pin 2) L296 - Pin 4 Open,
V
i
= 9V to 40V, Vo=V
ref
to 36V
4.5 7.5 A 4
L296P - V
i
= 9V to 40V, Vo=V
ref
Pin 4 Open R
Iim
= 22k
5
2.5
7
4.5
A4
I
SH
Input Average Current Vi= 46V, Output Short-circuited 60 100 mA 4
η Efficiency I
o
=3A
V
o=Vref
Vo= 12V
75 85
%4
SVR Supply Voltage Ripple Rejection V
i
=2V
rms,fripple
= 100Hz
V
o=Vref,Io
=2A
50 56 dB 4
f Switching Frequency 85 100 115 kHz 4
f
V
i
Voltage Stability of Switching Frequency
Vi= 9V to 46V 0.5 % 4
f
T
j
Temperature Stability of Switching Frequency
Tj=0°C to 125°C1%4
f
max
Maximum Operating Switching Frequency
Vo=V
ref,Io
= 1A 200 kHz
T
sd
Thermal Shutdown Junction Temperature
Note (2) 135 145 °C–
DC CHARACTERISTICS
I
3Q
Quiescent Drain Current Vi= 46V, V7= 0V, S1 : B, S2 : B
V
6
=0V
V
6
=3V
66 30
85 40
mA
–I
2L
Output Leakage Current Vi= 46V, V6= 3V, S1 : B, S2 : A,
V
7
=0V
2mA
Note (1) : Using min. 7 A schottky diode.
(2) :Guaranteed by design,not 100% tested inproduction.
L296 - L296P
5/21
ELECTRICAL CHARACTERISTICS (continued)
Symbol Parameter Test Conditions Min. Typ. Max. Unit Fig.
SOFT START
I
5so
Source Current V6= 0V, V5= 3V 80 130 150 µA6b
I
5si
Sink Current V6= 3V, V5= 3V 50 70 120 µA6b
INHIBIT
V
6L
V
6H
Input Voltage
Low Level High Level
V
i
= 9V to 46V, V7= 0V,
S1 : B, S2 : B – 0.3
2
0.8
5.5
V6a
–I
6L
–I
6H
Input Current with Input Voltage
Low Level High Level
V
i
= 9V to 46V, V7= 0V,
S1 : B, S2 : B
V
6
= 0.8V
V
6
=2V
10
3
µA6a
ERROR AMPLIFIER
V
9H
High Level Output Voltage V10= 4.7V, I9= 100µA,
S1 : A, S2 : A
3.5 V 6c
V
9L
Low Level Output Voltage V10= 5.3V, I9= 100µA,
S1 : A, S2 : E
0.5 V 6c
I
9si
Sink Output Current V10= 5.3V, S1 : A, S2 : B 100 150 µA6c
–I
9so
Source Output Current V10= 4.7V, S1 : A, S2 : D 100 150 µA6c
I
10
Input Bias Current V10= 5.2V, S1 : B
V
10
= 6.4V, S1 : B, L296P
2 2
10 10
µAµA6c
6c
G
v
DC Open Loop Gain V9= 1V to 3V, S1 : A, S2 : C 46 55 dB 6c
OSCILLATOR AND PWM COMPARATOR
–I
7
Input Bias Current of PWM Comparator
V7= 0.5V to 3.5V 5 µA6a
–I
11
Oscillator Source Current V11= 2V, S1 : A, S2 : B 5 mA
RESET
V
12 R
Rising Threshold Voltage
V
i
= 9V to 46V,
S1 : B, S2 : B
V
ref
-150mV
V
ref
-100mV
V
ref
-50mV
V6d
V
12 F
Falling Threshold Voltage 4.75 V
ref
-150mV
V
ref
-100mV
V6d
V
13 D
Delay Thershold Voltage
V
12
= 5.3V, S1 : A, S2 : B
4.3 4.5 4.7 V 6d
V
13 H
Delay Threshold Voltage Hysteresis
100 mV 6d
V
14 S
Output Saturation Voltage I14= 16mA, V12= 4.7V, S1, S2 : B 0.4 V 6d
I
12
Input Bias Current V12=0VtoV
ref
,S1:B,S2:B 1 3 µA6d
–I
13 so
I
13 si
Delay Source Current Delay Sink Current
V
13
= 3V, S1 : A, S2 : B
V
12
= 5.3V
V
12
= 4.7V
70 10
110 140 µA
mA
6d
I
14
Output Leakage Current Vi= 46V, V12= 5.3V, S1 : B, S2 : A 100 µA6d
CROWBAR
V
1
Input Threshold Voltage S1 : B 5.5 6 6.4 V 6b
V
15
Output Saturation Voltage Vi= 9V to 46V, Vi= 5.4V,
I
15
= 5mA, S1 : A
0.2 0.4 V 6b
I
1
Input Bias Current V1= 6V, S1 : B 10 µA6b
–I
15
Output Source Current Vi= 9V to 46V, V1= 6.5V,
V
15
= 2V, S1 : B
70 100 mA 6b
L296 - L296P
6/21
Figure 4 : DynamicTest Circuit
C7,C8 : EKR(ROE) L1 :L = 300 µH at8 A Coretype : MAGNETICS 58930 - A2 MPP
N°turns : 43 Wire Gauge :1 mm (18 AWG) COGEMA 946044
(*) Minimumsuggested value(10 µF) to avoid oscillations.Ripple consideration leads to typicalvalueof 1000 µF or higher.
Figure 5 : PC.Board and Component Layoutof the Circuit of Figure 4 (1:1scale)
L296 - L296P
7/21
Loading...
+ 14 hidden pages