Datasheet HCF4047BM1, HCF4047BEY, HCF4047BC1, HCC4047BF Datasheet (SGS Thomson Microelectronics)

LOW-POWERMONOSTABLE/ASTABLE MULTIVIBRATOR
.LOW POWER CONSUMPTION : SPECIAL
COS/MOSOSCILLATOR CONFIGURATION
.MONOSTABLE(one-shot) OR ASTABLE (free-
running) OPERATION
.TRUE AND COMPLEMENTED BUFFERED
.ONLY ONEEXTERNAL R ANDC REQUIRED
.BUFFEREDINPUTS
.QUIESCENT CURRENT SPECIFIED TO 20V
FOR HCC DEVICE
.STANDARDIZED, SYMMETRICAL OUTPUT
CHARACTERISTICS
.5V, 10V, AND 15V PARAMETRIC RATINGS
.INPUT CURRENT OF 100nAAT18VAND 25°C
FOR HCC DEVICE
.100% TESTEDFOR QUIESCENTCURRENT
.MEETSALLREQUIREMENTSOFJEDECTEN-
TATIVESTANDARDN°13A,”STANDARDSPE­CIFICATIONS FOR DESCRIPTION OF ”B” SERIESCMOS DEVICES”
HCC/HCF4047B
EY
(PlasticPackage)F(Ceramic Frit Seal Package)
M1
(MicroPackage)
ORDER CODES :
HCC4047BF HCF4047BM1 HCF4047BEY HCF4047BC1
(PlasticChipCarrier)
C1
DESCRIPTI ON TheHCC4047B (extended temperature range) and
HCF4047B (intermediate temperature range) are
monolithic integrated circuits, available in 14-lead dual in-line plastic or ceramic package and plas­tic micropackage. The HCC/HCF4047B consists of a gatable astablemultivibrator with logictechniques incorporated to permit positive or negative edge­triggeredmonostablemultivibratoractionwithretrig­geringandexternal countingoptions. Inputsinclude +TRIGGER-TRIGGER,ASTABLE, ASTABLE, RE­TRIGGER,and EXTERNAL RESET. Buffered out­puts are Q, Q, and OSCILLATOR. In all modes of operation, anexternalcapacitor mustbeconnected betweenC-TimingandRC-Common terminals, and an externalresistormust be connectedbetweenthe R-TimingandRC-Commonterminals.Foroperating modes see functional terminal connections and ap­plication notes.
PIN CONNECTIONS
June1989
1/15
HCC/HCF4047B
BLOCK DI AGRAM
FUNCTIONAL TERMINAL CONNECTIONS
Terminal Connections
Function*
to V
DD
to V
SS
Astable Multivibrator : Free Running True Gating Complement Gating
4, 5, 6, 14
4, 6, 14
6, 14
7, 8, 9, 12 7, 8, 9, 12
5, 7, 8, 9 ,12
Monostable Multivibrator : Positive–Edge Trigger Negative–Edge Trigger Retriggerable External Countdown**
* In all cases external capacitor and resistor betweenpins, 1, 2 and 3 (see logic diagrams).
** Input pulse to Reset of External Counting Chip.
External Counting Chip Output to pin 4.
4, 14
4, 8, 14
4, 14
14
5, 6, 7, 9, 12
5, 7, 9, 12
5, 6, 7, 9
5, 6, 7, 8, 9, 12
Input
Pulse to
– 5 4
8 6
8, 12
Output
Pulse
From
10, 11, 13 10, 11, 13 10, 11, 13
10, 11 10, 11 10, 11 10, 11
Output Period
or
Pulse Width
t
(10, 11) = 4.40RC
A
t
(13) = 2.20RC
A
t
(10, 11) = 2.48RC
M
2/15
HCC/HCF4047B
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
V
* Supply Voltage : HCC Types
DD
HCF Types
V
Input Voltage – 0.5 to VDD+ 0.5 V
i
I
DC Input Current (any one input) ± 10 mA
I
P
Total Power Dissipation (per package)
tot
Dissipation per Output Transistor for T
= Full Package-temperature Range
op
T
Operating Temperature : HCC Types
op
HCF Types
T
Stresses above those listed under ”Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability. * All voltage values are referred to VSSpin voltage.
Storage Temperature – 65 to + 150 °C
stg
RECOMMENDED OPERATING CONDITIONS
Symbol Parameter Value Unit
V
T
Supply Voltage :HCC Types
DD
HCF Types
V
Input Voltage 0 to V
I
Operating Temperature : HCC Types
op
HCF Types
– 0.5 to + 20 – 0.5 to + 18
200 100
– 55 to + 125
–40to+85
3to18 3to15
DD
– 55 to + 125
–40to+85
V V
mW mW
°C °C
V V
V
°C °C
LOGI C DIAGRAM
3/15
HCC/HCF4047B
Detail for Flip-flopsFF1 and FF3(a) and for Flip-flops FF2 and FF4 (b).
STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)
Test Conditions Value
Symbol Parameter
Quiescent
I
L
Current
HCC Types
HCF Types
V
OH
Output High Voltage
V
OL
Output Low Voltage
V
IH
Input High Voltage
*T
=–55°CforHCC device : – 40°CforHCF device.
Low
*T
= + 125°CforHCC device : + 85°CforHCF device.
High
The Noise Margin for both ”1” and ”0” level is : 1V min. with VDD= 5V, 2V min. with VDD= 10V, 2.5V min. with VDD= 15V.
V
V
I
(V) (V) (µA) (V)
O
|IO|V
DD
T
* 25°CT
Low
High
*
Min. Max. Min. Typ. Max. Min. Max.
0/ 5 5 1 0.02 1 30 0/10 10 2 0.02 2 60 0/15 15 4 0.02 4 120 0/20 20 20 0.04 20 600
0/ 5 5 4 0.02 4 30 0/10 10 8 0.02 8 60 0/15 15 16 0.02 16 120
0/ 5 < 1 5 4.95 4.95 4.95 0/10 < 1 10 9.95 9.95 9.95 0/15 < 1 15 14.95 14.95 14.95
5/0 < 1 5 0.05 0.05 0.05 10/0 < 1 10 0.05 0.05 0.05 15/0 < 1 15 0.05 0.05 0.05
0.5/4.5 < 1 5 3.5 3.5 3.5 1/9 < 1 10 7 7 7
1.5/13.5 < 1 15 11 11 11
Unit
µA
V
V
V
4/15
HCC/HCF4047B
STATIC ELECTRICAL CHARACTERISTICS (continued)
Test Conditions Value
Symbol Parameter
V
IL
Input Low Voltage
I
OH
Output Drive Current
HCC Types
HCF Types
I
OL
Output Sink Current
HCC Types
HCF Types
I
IH,IIL
Input leakage Curent
HCC Types
HCF Types
C
Input Capacitance Any Input 5 7.5 pF
I
*T
=–55°C for HCC device : – 40°C for HCF device.
Low
*T
=+125°C for HCC device : + 85°C for HCF device.
High
The Noise Margin for both ”1” and ”0” level is : 1V min. with VDD= 5V, 2V min. with VDD= 10V, 2.5V min. with VDD= 15V.
V
V
I
(V) (V) (µA) (V)
O
|IO|V
DD
T
* 25°CT
Low
Min. Max. Min. Typ. Max. Min. Max.
4.5/0.5 < 1 5 1.5 1.5 1.5 9/1 < 1 10 3 3 3
13.5/1.5 < 1 15 4 4 4 0/ 5 2.5 5 – 2 – 1.6 – 3.2 – 1.15 0/ 5 4.6 5 – 0.64 – 0.51 – 1 – 0.36
0/10 9.5 10 – 1.6 – 1.3 – 2.6 – 0.9 0/15 13.5 15 – 4.2 – 3.4 – 6.8 – 2.4
0/ 5 2.5 5 – 1.53 – 1.36 – 3.2 – 1.1 0/ 5 4.6 5 – 0.52 – 0.44 – 1 – 0.36
0/10 9.5 10 – 1.3 – 1.1 – 2.6 – 0.9 0/15 13.5 15 – 3.6 – 3.0 – 6.8 – 2.4
0/ 5 0.4 5 0.64 0.51 1 0.36
0/10 0.5 10 1.6 1.3 2.6 0.9 0/15 1.5 15 4.2 3.4 6.8 2.4
0/ 5 0.4 5 0.52 0.44 1 0.36
0/10 0.5 10 1.3 1.1 2.6 0.9 0/15 1.5 15 3.6 3.0 6.8 2.4
0/18
18
± 0.1 ±10
–5
± 0.1
Any Input
0/15
15 ± 0.3 ±10
–5
± 0.3 ± 1
High
*
± 1
Unit
V
mA
mA
µA
DYNAMIC ELECTRICAL CHARACTERISTICS (T
=25°C, CL= 50pF, RL= 200k,
amb
typical temperature coefficient for all VDDvalues is 0.3%/°C, all input rise and fall times = 20ns)
Symbol Parameter
t
PLH,tPHL
Propagation Delay Time
Astable, Astable to osc. out
Astable, Astable to Q, Q
+ or – Trigger to Q, Q
Test Conditions
(V) Min. Typ. Max.
V
DD
5 200 400 10 100 200 15 80 160
5 350 700 10 175 350 15 125 250
5 500 1000 10 225 450 15 150 300
Value
Unit
ns
5/15
HCC/HCF4047B
DYNAMIC ELECTRICAL CHARACTERISTICS (continued)
Symbol Parameter
t
PLH,tPHL
Propagation
Retrigger to Q, Q 5 300 600
Delay Time
External Reset to Q, Q
t
THL,tTLH
t
w
Transition Time Osc. Out Q, Q 5 100 200
Input Pulse Width :
t
r,tf
Input Rise and Fall Time All Inputs 5
Q or Q Deviation from 50% Duty Factor
Test Conditions
(V) Min. Typ. Max.
V
DD
Value
10 150 300 15 100 200
5 250 500 10 100 200 15 70 140
10 50 100 15 40 80
+ Trigger, – Trigger
5 200 400 10 80 160 15 50 100
Reset 5 100 200
10 50 100 15 30 60
Retrigger 5 300 600
10 115 230 15 75 150
10
Unlimited µs
15
5 ± 0.5 ± 1 10 ± 0.5 ± 1 15 ± 0.1 ± 0.5
Unit
ns
%
Typical Output Low (sink)Current Charac­teristics.
6/15
Minimum Output Low (sink)Current Charac­teristics.
HCC/HCF4047B
Typical Output High (source) Current Charac­teristics.
APPLICATION INFORMATION
1 - CIRCUIT DESCRIPTION Astableoperation is enabled by a high level on the
ASTABLE input. The periodof thesquare wave at the Q and Q Outputs in thismode of operation is a function of the external components employed. ”True” inputpulseson the ASTABLEinputor ”Com­plement”pulsesontheASTABLEinputallowthe cir­cuit to be used as a gatable multivibrator. The OSCILLATORoutputperiodwillbehalf of theQter­minaloutput in the astable mode. However, a 50% duty cycle is not guaranteed at this output. In the monostable mode, positive-edge triggering is ac­complished by application of a leading-edge pulse to the +TRIGGERinput and a low levelto the –TRI­GGER input. For negative-edge triggering, a trail­ing-edge pulse is applied to the –TRIGGER and a highlevelis applied tothe+TRIGGER.Input pulses may be of any duration relative to the outputpulse. The multivibratorcan be retriggered (on the leading edge only) by applying a common pulse to both the RETRIGGERand +TRIGGER inputs. In this mode
Minimum Output High (source) Current Charac­teristics.
the output pulse remains high as long as the input pulse period is shorter than the period determined by theRC components. An external countdown op­tion can be implementedby coupling ”Q” to an ex­ternal”N” counter andresettingthecounter with the trigger pulse. The counter output pulse is fed back to the ASTABLE input and has a duration equal to N times the period of the multivibrator. A high level on the EXTERNAL RESETinputassures no output pulse during an ”ON” power condition. This input can also be activated to terminate the output pulse at anytime. Inthemonostable mode, a high-level or power-on reset pulse, must be applied to the EX­TERNALRESET whenever VDDis applied.
2 - ASTABLE MODE The following analysis presents worst-case vari-
ationsfromunit-to-unit asafunctionoftransfer-volt­age (VTR) shift (33% – 67% VDD) for free-running (astable)operation.
7/15
HCC/HCF4047B
ASTABLE MODE WAVEFORMS.
V
t1= – RC In
t2= – RC In
TR
VDD+V
VDD–V
2VDD–V
tA=2(t1+t2)= –2 RC In
TR
TR
TR
(VTR)(VDD–VTR)
(VDD+VTR)(2VDD–VTR)
Typ : VTR=0.5 VDDtA= 4.40 RC Min : VTR=0.33 VDDtA= 4.62 RC Max : VTR= 0.67 VDDtA= 4.62 RC thus if tA=4.40 RC is used, the maximumvari-
ationwill be(+ 5.0%, – 0.0%) Inaddition tovariations fromunit-to-unit, theastable
MONOSTABLEWAVEFORMS.
Where tM= monostable mode pulse width. Values for tMareas follows :
Typ : VTR=0.5 VDDtM=2.48 RC Min : VTR=0.33 VDDtM= 2.71 RC Max : VTR= 0.67 VDDtM= 2.48 RC Thus if tM=2.48 RC is used, the maximum vari-
ationwill be(+ 9.3%, – 0.0%). Note : In the astable mode, the first positive half
cyclehasa duration of TM;succeedingdur­ations are tA/2.
In addition to variations from unit to unit, the mono­stable pulse width may vary as a function of fre­quencywith respect to VDDand temperature.
period may vary as a function of frequency withre­spectto VDDandtemperature.
3 - MONOSTABLEMODE The following analysis presents worst-case vari-
ationsfromunit-to-unit asafunctionoftransfer-volt­age (VTR) shift (33% – 67% VDD) for one-shot (monostable) operation.
V
t1=– RC In
t2=– RC In
tM=(t1+t2)=–RCIn
TR
2V
DD
VDD–V
TR
2VDD–V
TR
(VTR)(VDD–VTR)
(2 VDD–VTR)(2VDD)
modetoextendtheoutput-pulse duration,ortocom­parethe frequency of an input signal withthat ofthe internal oscillator. In the retrigger mode the input pulseisapplied to terminals8and12,andtheoutput is taken from terminal 10 or 11. As shown in fig. A normalmonostable actionis obtainedwhen one re­trigger pulse is applied. Extended pulse duration is obtained when morethan one pulse is applied. For two input pulses, tRE=t1’+t1+2t2. For more than two pulses, tRE(Q OUTPUT) terminates at some variable time tDafter the termination of the last re­trigger pulse. tDis variable because tRE(Q OUT­PUT) terminates after the second positive edge of the oscillator output appears at flip-flop 4 (see logic diagram).
4 - RETRIGGER MODE The HCC/HCF4047B can be used in the retrigger
8/15
Figure A : Retrigger-mode Waveforms.
HCC/HCF4047B
5 - EXTERNAL COUNTER OPTION TimetMcanbeextended byanyamountwiththeuse
of external counting circuitry. Advantages include digitallycontrolledpulseduration,smalltimingcapa­citors for long time periods, and extremely fast re­coverytime.
Figure B : Implementation of External Counter Option.
6 - POWER CONSUMPTION In the standby mode (Monostable or Astable),
power dissipation will be a function of leakage cur­rent in the circuit, as shown in the static electrical characteristics. For dynamic operation, the power needed to charge the external timing capacitor C is givenby the following formula :
AstableMode : P = 2CV2f. (Outputat Pin 13)
P= 4CV2f. (OutputatPin10and11)
Monostable Mode : P=
(2.9CV2) (Duty Cycle)
T (Output at Pin 10 and 11) The circuit is designed so that most of the total
power is consumed in the externalcomponents. In practice,the lowerthe valuesof frequency and volt-
A typical implementation is shown in fig. B. The pulseduration at the output is
t
=(N–1)(tA)+(tM+tA/2)
ext
Where t
=pulse duration of the circuitry,and N is
ext
the number ofcounts used.
ageused,theclosertheactualpowerdissipationwill be to the calculated value.
Becausethe powerdissipationdoes notdepend on R, adesignforminimum power dissipationwouldbe a smallvalue of C.The valueofR woulddepend on the desired period (within the limitations discussed above).
7 - TIMING-COMPONENTLIMITATIONS The capacitor used in the circuit shouldbe non-po-
larized andhavelowleakage(i.e.theparallel resist­ance of the capacitor should be an order of magnitude greater than the external resistorused). Threeisnoupper orlowerlimitforeitherRorCvalue to maintain oscillation.
However, in consideration of accuracy, C must be much larger than the inherent stray capacitance in
9/15
HCC/HCF4047B
the system (unless this capacitance can be measured andtakenintoaccount). R must bemuch largerthan the COS/MOS”ON” resistance inseries with it,which typically is hundreds of ohms. In addi­tion,with verylarge valuesof R, some short-term in­stability with respectto time may be noted.
C 100pF, up to any practical value, for astable modes;
C 1000pF, up to any practical value, for mono­stable modes.
10KR 1M.
The recommended values for these componentsto maintain agreement with previously calculated for­mulas without trimming should be :
TEST CIRCUITS
QuiescentDevice Current. Input Voltage.
Input Current.
10/15
Plastic DIP14 MECHANICAL DATA
HCC/HCF4047B
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
a1 0.51 0.020
B 1.39 1.65 0.055 0.065
b 0.5 0.020
b1 0.25 0.010
D 20 0.787 E 8.5 0.335
e 2.54 0.100
e3 15.24 0.600
F 7.1 0.280
I 5.1 0.201 L 3.3 0.130 Z 1.27 2.54 0.050 0.100
mm inch
P001A
11/15
HCC/HCF4047B
Ceramic DIP14/1 MECHANICAL DATA
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A 20 0.787 B 7.0 0.276 D 3.3 0.130 E 0.38 0.015
e3 15.24 0.600
F 2.29 2.79 0.090 0.110
G 0.4 0.55 0.016 0.022 H 1.17 1.52 0.046 0.060
L 0.22 0.31 0.009 0.012
M 1.52 2.54 0.060 0.100
N 10.3 0.406 P 7.8 8.05 0.307 0.317
Q 5.08 0.200
mm inch
12/15
P053C
SO14 MECHANICAL DATA
HCC/HCF4047B
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A 1.75 0.068 a1 0.1 0.2 0.003 0.007 a2 1.65 0.064
b 0.35 0.46 0.013 0.018
b1 0.19 0.25 0.007 0.010
C 0.5 0.019 c1 45° (typ.)
D 8.55 8.75 0.336 0.344
E 5.8 6.2 0.228 0.244
e 1.27 0.050
e3 7.62 0.300
F 3.8 4.0 0.149 0.157
G 4.6 5.3 0.181 0.208
L 0.5 1.27 0.019 0.050
M 0.68 0.026
S8°(max.)
mm inch
P013G
13/15
HCC/HCF4047B
PLCC20 MECHANICAL DATA
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A 9.78 10.03 0.385 0.395
B 8.89 9.04 0.350 0.356
D 4.2 4.57 0.165 0.180 d1 2.54 0.100 d2 0.56 0.022
E 7.37 8.38 0.290 0.330
e 1.27 0.050
e3 5.08 0.200
F 0.38 0.015 G 0.101 0.004 M 1.27 0.050
M1 1.14 0.045
mm inch
14/15
P027A
HCC/HCF4047B
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise underany patent or patent rights of SGS-THOMSON Microelectronics. Specificationsmentioned in this publication are subject to changewithout notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronicsproductsare notauthorized for use ascritical componentsinlife supportdevices or systemswithout express written approval of SGS-THOMSON Microelectonics.
1994 SGS-THOMSON Microelectronics - All Rights Reserved
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - UnitedKingdom - U.S.A
SGS-THOMSON Microelectronics GROUP OF COMPANIES
15/15
Loading...