SGS Thomson Microelectronics ESM2030DV Datasheet

NPN DARLINGTON POWER MODULE
HIGH CURRENTPOWER BIPOLAR MODULE
VERY LOW R
SPECIFIEDACCIDENTAL OVERLOAD
AREAS
ISOLATEDCASE (2500V RMS)
EASY TO MOUNT
LOW INTERNAL PARASITIC INDUCTANCE
INDUSTRIALAPPLICATIONS:
MOTOR CONTROL
UPS
DC/DC & DC/AC CONVERTERS
JUNCTION CASE
th
ESM2030DV
ISOTOP
INTERNAL SCHEMATIC DIAGRAM
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
V
V
CEO(sus)
V
I
I P T
V
Collector-Emitter Voltage (VBE= -5 V) 400 V
CEV
Collector-Emitter Voltage (IB= 0) 300 V Emitter-Base Voltage (IC=0) 7 V
EBO
Collector Current 67 A
I
C
Collector Peak Current(tp= 10 ms) 100 A
CM
Base Current 3 A
I
B
Base Peak Current (tp=10ms) 6 A
BM
Tota l Dissipat io n at Tc=25oC 150 W
tot
Storage Temperature -55 to 150
stg
Max. OperatingJunctionTemperature 150
T
j
Insulation WithstandVoltage (AC-RMS) 2500
ISO
o
C
o
C
o
C
September1997
1/8
ESM2030DV
THERMAL DATA
R
thj-case
R
thj-case
R
thc-h
Thermal Resistance Ju nction-case (transistor) Max Thermal Resistance Ju nction-case (diode) Max Thermal Resistance Cas e-heatsinkWith Conductive Grease Applied Max
0.83
1.2
0.05
o
C/W
o
C/W
o
C/W
ELECTRICAL CHARACTERISTICS (T
=25oC unless otherwise specified)
case
Symbol Parameter Test Conditions Min. Typ. Max. Unit
I
# Collector Cut-off
CER
I
CEV
I
EBO
V
CEO(SUS)
Curren t (R
BE
=5Ω)
# Collector Cut-off
Curren t (V
BE
=-5V)
# Emitter Cut-off Current
(I
=0)
C
* Co lle cto r- Emitter
Sustaining Voltage
DC Current Gain IC=56A VCE= 5 V 300
h
FE
V
Collector-Emitter
CE(sat)
Saturation Voltage
V
Ba se -Emit ter
BE(sat )
Saturation Voltage
di
/dt RateofRiseof
C
On-state Collector
(3 µs)••Collector-Emitter
V
CE
Dynamic Voltage
(5 µs)•• C o lle c t o r -Emitter
V
CE
Dynamic Voltage Storage Time
s
Fall Time
t
f
Cross-over Time
c
Maximum Co llect or
V
t t
CEW
Emitter Voltage Without Snubber
Diode Forward Voltage IF=56A Tj=100oC1.151.6V
V
F
I
RM
Reverse Recovery Current
Pulsed:Pulse duration= 300µs, duty cycle1.5% # Seetestcircuit in databookintroduction Toevaluatethe conductionlosses ofthe diodeuse the followingequations: V
= 1.1+ 0.0045IFP =1.1I
F
F(AV)
+ 0.0045I
V
CE=VCEV
VCE=V V
CE=VCEV
VCE=V
=5V 1 mA
V
EB
IC=0.2A L=25mH V
= 300 V
clamp
IC=40A IB= 0.4 A I
=40A IB=0.4A Tj= 100oC
C
I
=56A IB= 1.6 A
C
I
=56A IB=1.6A Tj= 100oC
C
IC=56A IB= 1.6 A I
=56A IB=1.6A Tj= 100oC
C
VCC=300V RC=0 tp=3µs I
=0.6A Tj= 100oC
B1
VCC= 300 V RC=7.5 I
=0.6A Tj= 100oC
B1
VCC= 300 V RC=7.5 Ω I
=0.6A Tj= 100oC
B1
I
=40A VCC=50V
C
V
=-5V RBB=0.6 Ω
BB
V
= 300 V IB1=0.4A
clamp
L = 0.06 mH T I
=67A IB1=1.6A
CWo f f
V
=-5V VCC=50V
BB
L=0.037mH R T
=125oC
j
VCC=200V IF=56A di
/dt = -220 A/µsL<0.05µH
F
T
=100oC
j
2
F(RMS)
CEV
CEV
Tj= 100oC
Tj= 100oC
= 100oC
j
=0.6
BB
300 V
1.25
1.4
1.5
1.8
2.4
2.5 3
220 260 A/µs
36V
2.2 4 V
2
0.35
0.8
300 V
12 17 A
1.5 16
1
11
1.8
2.2
3
0.6
1.2
mA mA
mA mA
V V V V
V V
µs µs µs
2/8
ESM2030DV
Safe OperatingAreas
Derating Curve
Thermal Impedance
Collector-emitter Voltage Versus base-emitterResistance
CollectorEmitter Saturation Voltage
Base-Emitter SaturationVoltage
3/8
Loading...
+ 5 hidden pages