SGS Thomson Microelectronics DTV82F, DTV82D, DTV64F, DTV64D, DTV56F Datasheet

...
®
MAIN PRODUCTS CHARACTE RISTICS
DTVseries
(CRT HORIZO N TAL DEF LEC T ION)
HIGH VOLTAGE DAMPER DIODE
I
F(AV)
V
RRM
V
F
5 A to 10 A
1500 V
1.3 V to 1.5 V
FEATURES AND BENEFITS
HIGH BREAKDOWN VOLTAGE CA PABILITY VERY FAST RECOVERY DIODE SPECIFIED TURN ON SWITCHING
CHARACTERISTICS LOW STATIC AND PE AK FORWARD VOLTAGE
DROP FOR LOW DISSIPATION SUITED TO 32-110kHz MONITORS AND
Insulating voltage = 2000V DC Capacitance = 12pF
PLANAR TECHNOLOGY ALLOWING HIGH QUALITY AND BEST ELECTRICAL CHARACTERISTICS
A
TO-220AC
DTVxxxD
A
K
ISOWATT220AC
DTVxxxF
K
DESCRIPTION
High voltage diode with high current capability dedicated to horizontal deflection. DTV16 is optimized to TV meanwhile DTV32 to DTV110 are covering the full range of monitors from the low end to the professional hi-definition SXGA CAD display units.
These devices are packaged either in TO220-AC or in ISOWATT220AC.
ABSOLUTE RATINGS
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
FSM
Repetitive peak reverse voltage 1500 V RMS forward current 15 A Surge non repetitive forward current
tp = 10ms half sine wave
DTV16 50 A DTV32 75 DTV56 80 DTV64 80 DTV82 80 DTV110 80
T
stg
T
j
August 1999 - Ed: 2B
Storage temperature range -65 to 150 ° C Maximum operating junction temperature 150 ° C
1/10
DTVseries
THERMAL RESISTANCES
Symbol Parameter
R
th(j-c)
Junction to case thermal resistanc e
STATIC ELECTRICAL CHARACTE RISTICS
Symbol Test Conditions
V
F *
I
R **
pulse test : * tp = 380 µs, δ < 2%
** tp = 5 ms, δ < 2%
IF = 5 A DTV16 1.6 1.0 1.5 V
= 6 A DTV32 1.5 1.1 1.35
I
F
= 6 A DTV56 1.8 1.1 1.5
I
F
= 6 A DTV64 1.7 1.1 1.4
I
F
= 6 A DTV82 1.8 1.0 1.3
I
F
= 10 A DTV110 2.3 1.15 1.5
I
F
VR = V
RRM
Value
TO-220AC ISOWATT220AC
Unit
DTV16 3 5.5 °C/W DTV32 2.5 4.75 DTV56 2 4 DTV64 1 .8 4 DTV82 1.6 3.7 DTV110 1.3 3.5
Value
UnitTj = 25°C Tj = 125°C
Typ Max Typ Max
DTV16 60 100 500
A
µ
DTV32 100 100 1000 DTV56 100 100 1000 DTV64 100 100 1000 DTV82 100 100 1000 DTV110 100 100 1000
2/10
DTVseries
RECOVERY CHARA CTERISTICS
Symbol Test Conditions Typ Max Unit
t
rr
t
rr
IF = 100m A I
= 100mA
R
I
= 10mA
RR
IF = 1 A dI
/dt =-50A/µs
F
V
=30V
R
TURN-ON SWITCHING CHARACT ERISTICS
Tj = 25°C DTV16 1500 ns
DTV32 850 DTV56 750 DTV64 750 DTV82 675 DTV110 625
Tj = 25°C DTV16 200 300 ns
DTV32 130 175 DTV56 110 135 DTV64 110 135 DTV82 105 125 DTV110 95 115
Symbol Test Conditions Typ Max Unit
t
fr
IF = 6 A dI
/dt = 80 A/µs
F
V
=3V
FR
Tj = 100°C DTV16 350 ns
DTV32 570 DTV56 350 DTV64 350 DTV82 270 DTV110 250
V
FP
IF = 6A dI
/dt = 80 A/µs
F
Tj = 100°C DTV16 25 34 V
DTV32 21 28 DTV56 19 26 DTV64 18 22 DTV82 14 18 DTV110 11 14
To evaluate the maximum conduction losses use the following equation : DTV16 P= 1.14 x I DTV32 P= 1.069 x I DTV56 P= 1.15 x I DTV64 P= 1.06 x I DTV82 P= 1.01 x I DTV110 P= 1.12 x I
F(AV)
F(AV) F(AV) F(AV) F(AV) F(AV)
+ 0.072 x I
+ 0.047 x I + 0.059 x I + 0.053 x I + 0.048 x I + 0.038 x I
F2(RMS)
F2(RMS) F2(RMS) F2(RMS) F2(RMS) F2(RMS)
3/10
DTVseries
Fig. 1-1:
Power dissipation versus peak forward
current (triangular waveform, δ=0.45).
PF(av)(W)
3.5
3.0
2.5
2.0
1.5
DTV16
DTV110
1.0
0.5
0.0 0246810
Fig. 1-3:
Power dissipation versus peak forward
Ip(A)
current (triangular waveform, δ=0.45).
PF(av)(W)
2.0
1.5
Fig. 1- 2:
Power dissipation versus peak forward
current (triangular waveform, δ=0.45).
PF(av)(W)
2.0
1.5
DTV32
1.0
0.5
0.0 0123456
DTV56
Ip(A)
DTV82
1.0
DTV64
0.5
Ip(A)
0.0 0123456
Fig. 2-1:
Average current versus case temperature
(δ=0.5) (TO-220AC).
IF(av)(A)
12 10
8
DTV64
DTV56
DTV32
6 4
T
DTV16
2
=tp/T
δ
0
0 25 50 75 100 125 150
tp
Tcase(°C)
DTV110
DTV82
Fig. 2-2:
Average current versus case temperature
(δ=0.5) (ISOWATT220AC).
IF(av)(A)
12 10
8
DTV32
DTV56
DTV64
6 4
T
DTV16
2
Tcase(°C)
=tp/T
δ
0
0 25 50 75 100 125 150
tp
DTV110
DTV82
4/10
DTVseries
Fig. 3-1:
Forward voltage drop versus forward
current (DTV16D/F).
IFM(A)
20.0
10.0
1.0
Typical Tj=125°C
Maximum Tj=125°C
Maximum Tj=25°C
VFM(V)
0.1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Fig. 3-3:
Forward voltage drop versus forward
current (DTV56D/F).
IFM(A)
20.0
10.0
1.0
Typical Tj=125°C
Maximum Tj=125°C
Maximum Tj=25°C
Fig. 3-2:
Forward voltage drop versus forward
current (DTV32D/F).
IFM(A)
20.0
10.0
1.0
0.1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Fig. 3-4:
Forward voltage drop versus forward
Maximum Tj=125°C
Typical Tj=125°C
Maximum Tj=25°C
VFM(V)
current (DTV64D/F).
IFM(A)
20.0
10.0
1.0
Maximum Tj=125°C
Typical Tj=125°C
Maximum Tj=25°C
0.1
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Fig. 3-5:
Forward voltage drop versus forward
VFM(V)
current (DTV82D/F).
IFM(A)
20.0
10.0
1.0
0.1
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Typical Tj=125°C
Maximum Tj=125°C
VFM(V)
Maximum Tj=25°C
0.1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Fig. 3-6:
Forward voltage drop versus forward
current (DTV110D/F).
IFM(A)
VFM(A)
20.0
10.0
1.0
0.1 0 0.5 1 1.5 2 2.5 3
Typical Tj=125°C
Maximum Tj=125°C
VFM(V)
Maximum Tj=25°C
5/10
DTVseries
Fig. 4-1:
Non repetitive surge peak forward current versus overload duration (TO-220AC) (DTV16D / DTV32D / DTV56D).
IM(A)
60 55 50 45
DTV32D & DTV56D
Tc=100°C
40 35 30
DTV16D
25 20 15
I
M
10
5 0
1E-3 1E-2 1E-1 1E+0
Fig. 4-3:
t
δ
=0.5
t(s)
Non repetitive surge peak forward current versus overload duration (TO-220AC) (DTV64D / DTV82D / DTV110D).
IM(A)
100
90 80 70
DTV110D
DTV82D
60 50
DTV64D
40 30
I
M
20 10
0
1E-3 1E-2 1E-1 1E+0
t
δ
=0.5
t(s)
Tc=100°C
Fig. 4-2:
Non repetitive surge peak forward current versus overload duration (ISOWATT220AC) (DTV16F / DTV32F / DTV56F).
IM(A)
45 40 35
DTV32F & DTV56F
Tc=100°C
30 25
DTV16F
20 15
I
M
10
5 0
1E-3 1E-2 1E-1 1E+0
Fig. 4-4:
t
δ
=0.5
t(s)
Non repetitive surge peak forward current versus overload duration (ISOWATT220AC) (DTV64F / DTV82F / DTV110F).
IM(A)
60 55 50 45
DTV110F
DTV82F
40 35 30 25
DTV64F
20 15
I
M
10
5 0
1E-3 1E-2 1E-1 1E+0
t
δ
=0.5
t(s)
Tc=100°C
Fig. 5.1:
Reverse recovery charges versus dIF/dt
(DTV16D/F).
Qrr(µC)
2.4
IF=Ip
2.2
90% confidence
2.0
Tj=125°C
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.1 0.2 0.5 1.0 2.0 5.0
6/10
dIF/dt(A/µs)
Fig. 5.2:
Reverse recovery charges versus dIF/dt.
Qrr(nc)
1200 1000
800 600
IF=Ip
90% confidence
Tj=125°C
DTV64
DTV32
DTV82
400 200
dIF/dt(A/µs)
0
0.1 0.2 0.5 1 2 5
DTVseries
Fig. 5.3:
Reverse recovery charges versus dIF/dt.
Qrr(nc)
1200 1000
IF=Ip
90% confidence
Tj=125°C
DTV56
800 600
DTV110
400 200
dIF/dt(A/µs)
0
0.1 0.2 0.5 1 2 5
Fig. 6.2:
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
Reverse rec overy curr ent ver sus dIF/dt.
IRM(A)
IF=Ip 90% confidence Tj=125°C
DTV64
DTV110
0.6
0.4
0.2
0.0
0.1 0.2 0.5 1 2 5
dIF/dt(A/µs)
Fig. 6.1:
3.0
2.7
2.4
Reverse recovery current versus dIF/dt.
IRM(A)
IF=Ip 90% confidence Tj=125°C
2.1
1.8
DTV16
1.5
1.2
DTV32
0.9
0.6
0.3
0.0
0.1 0.2 0.5 1 2 5
Fig. 6.3:
2.2
2.0
1.8
Reverse rec overy curr ent ver sus dIF/dt.
IRM(A)
IF=Ip 90% confidence Tj=125°C
dIF/dt(A/µs)
1.6
1.4
1.2
DTV56
1.0
0.8
0.6
DTV82
0.4
0.2
0.0
0.1 0.2 0.5 1 2 5
dIF/dt(A/µs)
Fig. 7-1:
Transient peak forward voltage versus
dIF/dt.
VFP(V)
45
IF=Ip
40
90% confidence Tj=125°C
35 30
DTV32
25 20 15 10
5 0
0 20 40 60 80 100 120 140
DTV16DTV16DTV16
DTV56
dIF/dt(A/µs)
Fig. 7.2:
Transient peak forward voltage versus
dIF/dt.
VFP(V)
30
IF=Ip 90% confidence
25
Tj=125°C
20
DTV82
15 10
5 0
0 20 40 60 80 100 120 140
DTV64
DTV110
dIF/dt(A/µs)
7/10
DTVseries
Fig. 8.1:
Forward recovery time versus dIF/dt.
tfr(ns)
800 750
IF=Ip 90% confidence Tj=125°C
700 650
DTV32
600 550 500 450 400
Fig. 9:
DTV16DTV16DTV16
dIF/dt(A/µs)
0 20 40 60 80 100 120 140
Dynamic parameters versus junction
DTV64
temperature.
VFP,IRM,Qrr[Tj]/VFP,IRM,Qrr[Tj=125°C]
1.2
1.0
Fig. 8-2:
700 650
Forward recov ery time versu s dIF/d t.
tfr(ns)
IF=Ip 90% confidence Tj=125°C
600 550 500 450 400 350 300
Fig. 10:
DTV110
dIF/dt(A/µs)
0 20 40 60 80 100 120 140
Junction capacitance versus reverse
DTV56
DTV82
voltage applied (typical values).
C(pF)
200 100
DTV110
DTV82
Tj=25°C F=1MHz
0.8
0.6
VFP
0.4
IRM
0.2
0.0
Fig. 11-1:
Qrr
Tj(°C)
0 20 40 60 80 100 120 140
Relative variation of thermal impedance junction to case versus pulse duration (ISOWATT220AC).
K=[Zth(j-c)/Rth(j-c)]
1.0
δ = 0.5
0.5
δ = 0.2
δ = 0.1
0.2
Single pulse
tp(s)
0.1
1E-2 1E-1 1E+0 1E+1
δ
=tp/T
T
tp
DTV16DTV16DTV16
10
1
1
Fig. 12-2:
Relative variation of thermal impedance
DTV32
DTV56
DTV64
VR(V)
10 100 200
junction to case versus pulse duration (TO-220AC).
K=[Zth(j-c)/Rth(j-c)]
1.0
δ = 0.5
0.5
δ = 0.2
δ = 0.1
0.2
Single pulse
tp(s)
0.1 1E-3 1E-2 1E-1 1E+0
δ
=tp/T
T
tp
8/10
PACKAGE DAT A
TO-220AC (plastic) (JE DEC outline)
H2
L5
Ø I
L6
L2
L9
F1
L4
F
G
DTVseries
DIMENSIONS
REF.
A
C
A 4. 40 4.60 0.173 0.181 C 1.23 1.32 0.048 0.051
L7
D 2.40 2.72 0.094 0.107 E 0. 49 0.70 0.019 0.027 F 0.61 0.88 0.024 0.034
F1 1.14 1.70 0.044 0.066
D
G 4.95 5.15 0.194 0.202
H2 10.00 10.40 0.393 0.409
L2 16.40 typ. 0.645 typ.
M
E
L4 13.00 14.00 0.511 0.551 L5 2.65 2.95 0.104 0.116 L6 15.25 15.75 0.600 0.620 L7 6.20 6.60 0.244 0.259 L9 3.50 3.93 0.137 0.154
M 2.6 typ. 0.102 typ.
Diam. I 3.75 3.85 0.147 0.151
Millimeters Inches
Min. Max. Min. Max.
Cooling method : c. Torque value : 0.55 m.N typ (0.70 m.N max).
9/10
DTVseries
PACKAGE DATA
ISOWATT220AC (plastic)
H
L6
L2
L3
F1
F
G
A
B
Diam
D E
Cooling method : C. Torque value : 0.55 m.N typ (0.70 m.N max).
DIMENSIONS
REF.
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 4.40 4.60 0.173 0.181 B 2.50 2.70 0.098 0.106
D 2.40 2.75 0.094 0.108
L7
E 0.40 0.70 0.016 0.028 F 0.75 1.00 0.030 0.039
F1 1.15 1.70 0.045 0.067
G 4.95 5.20 0.195 0.205
H 10.00 10.40 0.394 0.409 L2 16.00 0.630 L3 28.60 30.60 1.125 1.205 L6 15.90 16.40 0.626 0.646 L7 9.00 9.30 0.354 0.366
Diam 3.00 3.20 0.118 0.126
Electrical isolation : 2000V DC Capacitance : 12 pF
Ordering code Marking Package Weight Base qty Delivery mode
DTV16D DTV32D DTV56D DTV64D DTV82D
DTV110D
DTV16F DTV32F DTV56F DTV64F DTV82F
DTV110F
DTV16D DTV32D DTV56D DTV64D DTV82D
DTV110D
DTV16F DTV32F DTV56F DTV64F DTV82F
DTV110F
TO-220AC 1.86g 50 Tube
ISOWATT220AC 2g 50 Tube
Epoxy meets UL94, V0
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwi se un der any pat ent or patent rights of STMic roelec tronics. S pecifications ment ioned in t his publ ication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products ar e not authorized for use as critical components in l i fe s upport devices or systems without express written ap­proval of STMicroelectronics.
The ST logo is a registered trademark of STMicroe lectronics
© 1999 STMicroelectronics - Printed in Italy - All rights reser ved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
10/10
Loading...