Datasheet ACST4-7SFP, ACST4-7SB, ACST4-7CFP, ACST4-7CB Datasheet (SGS Thomson Microelectronics)

®
ASD™
AC Switch Family
MAIN APPLICATIONS
AC static switching in appliance control systems
Drive of low power high inductive or resistive
loads like
- spray pump in dishwashers
- fan in air-conditioners
FEATURES
Avalanche controlled : VCLtyp = 1100 V
Nominal conducting current : I
High surge current capability: 30A for 20ms full
DRM/VRRM
wave
Gate triggering current : I
Switch integrated driver
High noise immunity : static dV/dt >500V/µs
GT
BENEFITS
Enables equipment to meet IEC 61000-4-5
High off-state reliability with planar technology
No external overvoltage protection needed
Reduces the power component factor
Interfaces directly with the microcontroller
Direct interface with the microcontroller for the ACST4-7S (I
< 10mA)
GT
= +/-700V
=4A
T(RMS)
< 10 mA or 25mA
ACST4 Series
AC POWER SWITCH
OUT
DPAK
ACST4-7SB/CB
TO-220FPAB
ACST4-7SFP/CFP
FUNCTIONAL DIAGRAM
OUT
COM
G
OUT
COM
G
DESCRIPTION
The ACST4 belongs to the AC power switch family built around the ASD™ technology. This high per­formance device is adapted to home appliances or inductrial systems and drives loads up to 4 A.
The ACS™ switch embeds a Triac structure with a high voltage clamping device to absorb the induc­tive turn-off energy and withstand line transients suchasthosedescribedinthe IEC61000-4-5 stan­dards.
January 2003 - Ed: 3A
COM G
1/9
ACST4 Series
ABSOLUTE RATINGS (limiting values)
For either positive or negative polarity of pin OUT voltage in respect to pin COM voltage
Symbol Parameter Value Unit
V
DRM/VRRM
I
T(RMS)
I
TSM
2
I
t Fusing capability tp = 10ms 6.4 A²s
dI/dt Repetitiveon-state current critical rate
V
PP
Tstg Storagetemperature range - 40 to + 150 °C
Tj Operating junction temperature range - 30 to + 125 °C Tl Maximum lead soldering temperature during 10s 260 °C
Note 1: according to test described by IEC61000-4-5 standard & Figure B.
GATE CHARACTERISTICS (maximum values)
Symbol Parameter Value Unit
P
G (AV)
P
GM
I
GM
Repetitive peak off-state voltage Tj = -10 °C 700 V RMS on-state current full cycle sine
wave 50 to 60 Hz Non repetitive surge peak on-state current
Tj initial = 25°C, full cycle sine wave
of rise I
= 10mA (tr < 100ns)
G
Non repetitive line peak pulse voltage
DPAK Tc = 110 °C 4 A
TO-220FPAB Tc = 100 °C
F =50 Hz 30 A F =60 Hz 33 A
Tj = 125°C
F = 120 Hz 50 A/µs
note 1
2kV
Average gate power dissipation 0.1 W Peak gate power dissipation (tp = 20µs) 10 A Peak gate current (tp = 20µs) 1 V
THERMAL RESISTANCES
Symbol Parameter Value Unit
Rth (j-a) Junction to ambient S = 0.5cm² DPAK 70 °C/W
TO-220FPAB 60 °C/W
Rth (j-l) Junction to case for full cycle sine wave
conduction
S = Copper surface under Tab
DPAK 2.6 °C/W
TO-220FPAB 4.6 °C/W
2/9
PARAMETER DESCRIPTION
Parameter Symbol Parameter description
ACST4 Series
I
GT
V
GT
V
GD
I
H
I
L
V
TM
V
TO
Triggering gate current Triggering gate voltage Non-triggering gate voltage Holding current Latching current Peak on-state voltage drop
On state threshold voltage Rd On state dynamic resistance I
DRM/IRRM
Maximum forward or reverse leakage current dV/dt Critical rate of rise of off-state voltage (dV/dt)c Critical rate of rise of commutating off-state voltage (dI/dt)c Critical rate of decrease of commutating on-state current V
CL
I
CL
Clamping voltage
Clamping current
ELECTRICAL CHARACTERISTICS
For either positive or negative polarity of pin OUT voltage in respect to pin COM voltage.
Symbol Test Conditions ACST4-7S ACST4-7C Unit
I
GT
V
GT
V
GD
I
H
I
L
V
TM
V
TO
Rd Tj=125°C MAX 100 m
I
DRM
I
RRM
dV/dt V
(dI/dt)c (dV/dt)c = 15V/µs Tj=125°C MIN 2.0 2.5 A/ms
V
CL
V
=12V (DC)
OUT
R
=33
L
V
=12V (DC)
OUT
R
=33
L
V
OUT=VDRMRL
I
= 100mA gate open Tj=25°C MAX 20 35 mA
OUT
QI - QII - QIII Tj=25°C MAX 10 25 mA
QI - QII - QIII Tj=25°C MAX 1 1.1 V
=3.3k Tj=125°C MIN 0.2 V
IG=2xIGtmax Tj=25°C MAX 40 60 mA I
= 5.6A tp=380µs Tj=25°C MAX 1.5 V
OUT
Tj=125°C MAX 0.90 V
/
V
= 700V Tj=25°C MAX 10 µA
OUT
Tj=125°C MAX 500
=460V gate open Tj=110°C MIN 200 500 V/µs
OUT
ICL= 1mA tp=1ms Tj=25°C TYP 1100 V
3/9
ACST4 Series
AC LINE SWITCH BASIC APPLICATION
The ACST4 device has been designed to switch on & off low power, but highly inductive or resistive loads such as dishwashers spray pumps, and air-conditioners fan.
Pin COM: Common drive reference to connect to the power line neutral Pin G: Switch Gate input to connect to the digital controller Pin OUT: Switch Output to connect to the load
ACST4-7S triggering current has to be sunk from the gate pin G.The switch can then be driven directly by logic level circuits through a resistor as shown on the typical application diagram ( Fig A ).
Thanks to its thermal and turn off commutation performances, the ACST4 switch is able to drive with no turn off additional snubber an inductive load up to 4 A.
TYPICAL APPLICATION DIAGRAM (Fig. A)
L
AC
MAINS
N
-Vcc
LOAD
L
R
OUT
COM G
M
OUT
ACST4
ST72 MCU
AC LINE TRANSIENT VOLTAGE RUGGEDNESS
TheACST4 switch is ableto sustain safely the ACline transient voltages eitherby clamping the low energy spikes or by breaking over under high energy shocks, even with high turn-on current rises.
The test circuit of the figure 2 is representative of the final ACST application and is also used to stress the ACST switch according to the IEC 61000-4-5 standard conditions. Thanks to the load, the ACST switch sustainsthe voltage spikesup to 2kV above the peakline voltage. Itwill break oversafely even onresistive load where the turn on current rate of rise, is as high as shownon figure 3. Such non-repetitive test can be done 10 times on each AC line voltage polarity.
4/9
ACST4 Series
Fig. B: Overvoltage ruggedness test circuit for re-
sistive and inductive loads according to IEC61000-4-5 standards. R = 150, L = 10µH, V
SURGEVOLTAGE
AC LINE & GENERATOR
PP
= 2kV.
R
V
+V
AC
L
OUT
ACST4
PP
COM
G
RG = 220
Fig. C: Current and Voltage of the ACST4 dur-
ing IEC61000-4-5 standard test with R,L&V
PP
.
Fig. 1: Maximum power dissipation versus RMS on-state current.
P(W)
5.0
α=180°
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
I (A)T(RMS)
180°
α
α
Fig. 2-1: RMS on-state current versus case temperature.
I (A)T(RMS)
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
α=180°
0.0 0 25 50 75 100 125
Tc(°C)
TO-220FPAB
DPAK
5/9
ACST4 Series
Fig. 2-2: RMS on-state current versus ambient
temperature.
I (A)T(RMS)
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0 0 25 50 75 100 125
Tamb(°C)
α=180°
Printed circuitboard FR4
Natural convection
S=0.5cm²
Fig. 4: Relative variation of gate trigger current, holding current and latching versus junction temperature (typical values).
I , I , I [Tj] / I , I , I [Tj = 25°C]GTHL GTHL
3.0
2.5
2.0
1.5
1.0
0.5
0.0
I
GT
IL& I
H
Tj(°C)
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130
Fig. 3: Relative variation of thermal impedance
versus pulse duration.
K = [Zth/Rth]
1.00
DPAK
Zth
(j-c)
TO-220FPAB
DPAK
Zth
0.10
(j-a)
TO-220FPAB
tp(s)
0.01
1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03
Fig. 5: Relative variation of static dV/dt versus
junction temperature.
dV/dt [Tj] / dV/dt [Tj = 125°C]
8
7
6
5
4
3
2
1
0
25 50 75 100 125
Tj(°C)
V
=460V
out
Fig. 6-1: Relative variation of critical rate of de­crease of main current versus reapplied dV/dt (typical values).
(dI/dt)c [(dV/dt)c] / Specified (dI/dt)c
1.2
1.0
0.8
0.6
0.4
0.2
ACST4-7C
0.0 0 102030405060708090100
(dV/dt)c(V/µs)
6/9
V
=300V
out
Fig. 6-2: Relative variation of critical rate of de­crease of main current versus reapplied dV/dt (typical values).
(dI/dt)c [(dV/dt)c] / Specified (dI/dt)c
1.2
1.0
0.8
0.6
0.4
0.2
ACST4-7S
0.0 0 5 10 15 20 25 30 35 40 45 50
(dV/dt)c(V/µs)
V
=300V
out
ACST4 Series
Fig. 7: Relative variation of critical rate of decrease
of main current versus junction temperature.
(dI/dt)c [Tj] / (dI/dt)c [Tj = 125°C]
6
5
4
3
2
1
V
=300V
out
Tj(°C)
0
25 50 75 100 125
Fig. 9: Non repetitive surge peak on-state current
for a sinusoidal pulse with width tp < 10ms, and corresponding value of I²t.
I (A), I²t (A²s)TSM
1000
dI/dt limitation:
50A/µs
Tjinitial=25°C
Fig. 8: Surge peak on-statecurrent versus number of cycles.
I (A)TSM
35
30
25
20
15
10
5
Repetitive
=100°C
T
C
Non repetitive
initial=25°C
T
j
t=20ms
Number of cycles
0
1 10 100 1000
Fig. 10: On-state characteristics (maximum
values).
I (A)TM
100.00
Tj max. : V
= 0.90 V
to
= 100 m
R
d
100
10
I
TSM
I²t
tp(ms)
1
0.01 0.10 1.00 10.00
Fig. 11: Thermal resistance junction to ambient
versus copper surface under tab (printed circuit board FR4, copper thickness: 35µm)
Rth(j-a)(°C/W)
100
90 80 70 60 50 40 30 20 10
0
0 5 10 15 20 25 30 35 40
S(cm²)
DPAK
10.00
Tj=125°C
1.00
Tj=25°C
V (V)TM
0.10
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
7/9
ACST4 Series
ORDERING INFORMATION
ACST 4 - 7 X X
AC Switch
T(RMS)
I
4 = 4A
PACKAGE OUTLINE MECHANICAL DATA
DPAK
V
DRM
7 = 700V
Package B = DPAK FP = TO-220FPAB
Gate Sensitivity S= 10mA C = 25mA
DIMENSIONS
REF.
Millimeters Inches
Min. Max Min. Max.
A 2.20 2.40 0.086 0.094 A1 0.90 1.10 0.035 0.043 A2 0.03 0.23 0.001 0.009
B 0.64 0.90 0.025 0.035 B2 5.20 5.40 0.204 0.212
C 0.45 0.60 0.017 0.023 C2 0.48 0.60 0.018 0.023
D 6.00 6.20 0.236 0.244
E 6.40 6.60 0.251 0.259
G 4.40 4.60 0.173 0.181
H 9.35 10.10 0.368 0.397 L2 0.80 typ. 0.031 typ. L4 0.60 1.00 0.023 0.039 V2
FOOT PRINT
DPAK
8/9
6.7
6.7
3
3
1.61.6
2.32.3
PACKAGE OUTLINE MECHANICAL DATA
TO-220FPAB
ACST4 Series
DIMENSIONS
L3
L4
L2
G1
REF.
A
H
B
A 4.4 4.6 0.173 0.181
Millimeters Inches
Min. Max. Min. Max.
B 2.5 2.7 0.098 0.106
D 2.5 2.75 0.098 0.108
Dia
L6
L7
E 0.45 0.70 0.018 0.027
F 0.75 1 0.030 0.039 F1 1.15 1.70 0.045 0.067 F2 1.15 1.70 0.045 0.067
G 4.95 5.20 0.195 0.205
L5
D
F1
F2
G1 2.4 2.7 0.094 0.106
H 10 10.4 0.393 0.409 L2 16 Typ. 0.63 Typ. L3 28.6 30.6 1.126 1.205
F
E
L4 9.8 10.6 0.386 0.417 L5 2.9 3.6 0.114 0.142
G
L6 15.9 16.4 0.626 0.646 L7 9.00 9.30 0.354 0.366
OTHER INFORMATION
Ordering type Marking Package Weight Base qty Delivery mode
ACST4-7SB ACST47S DPAK 0.3 g 75 Tube
ACST4-7SB-TR ACST47S DPAK 0.3 g 2500 Tape & reel
ACST4-7SFP ACST47S TO-220FPAB 2.4g 50 Tube
ACST4-7CB ACST47C DPAK 0.3 g 75 Tube
ACST4-7CB-TR ACST47C DPAK 0.3 g 2500 Tape& reel
ACST4-7CFP ACST47C TO-220FPAB 2.4g 50 Tube
Epoxy meets UL94,V0
Informationfurnished is believed to be accurate and reliable. However, STMicroelectronicsassumesno responsibility for the consequences of useof such information nor for any infringement ofpatents or other rights of third parties whichmay result from its use. No license isgranted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written ap­proval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore
Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com
9/9
Loading...