SEMTECH SC1112 Technical data

查询SC1112ASTR供应商
POWER MANAGEMENT
Description
SC1112
Triple Low Dropout
Regulator Controllers
Features
The SC1112 was designed for the latest high speed motherboards. It includes three low dropout regulator con­trollers. The controllers provide the power for the system AGTL bus Termination Voltage, Chipset, and clock circuitry.
An adjustable controller with a 1.2V reference is available, while two selectable outputs are provided for the VTT (1.25 V or 1.5V, SC1112) or (1.2V or 1.5V, SC1112A) and the AGP (1.5V or 3.3V). The SC1112 low dropout regulators are designed to track the 3.3V power supply as the VTTIN supply is cycled On and Off. A latched short circuit protection is also available for the VTT output.
Other features include an integrated charge pump that provides adequate gate drives for the external Mosfets, and a capacitive programable delay for the power good signal.
Typical Application Circuit
K Triple linear controllers K Selectable and Adjustable Output Voltages K LDOs track input voltage within 200mV (Function of
the Mosfets used) until regulation
K Integrated Charge Pump K Programmable Power Good delay Signal K Latched Over Current Protection (VTT)
Applications
K Pentium K Triple power supplies
®
III Motherboards
ADJ
C13
0.1u
C6 330u
C12 330u
VTT
1K
R1
POWER GOOD
Q2 C14
0.1u
C11
RA
RB
1u
22n
C10
C5
SC1112/A
5VSTBY
ADJGATE
ADJSEN
CAP- VTTGATE
CAP+
FC
DELAY
PWRGD
VTT SELECT Signal
GND
AGPGATE
AGPSEN
VTTSEN
AGPSEL
VTTSEL
VTTIN
C3
0.1u
C19 330u
AGP SELECT Signal
Q1
C8
330u
C2
C9
0.1u
C18
330u
Q3
C16 330u
330u
C1 10u
C17
0.1u
+3.3V
+5V STBY
AGP
VTT
1
www.semtech.com
POWER MANAGEMENT
Absolute Maximum Ratings
retemaraPlobmySmumixaMstinU
DNGotYBTSV5 7+ot3.0-V
DNGotNESTTV 5ot3.0-V
DNGotNESPGA 5ot3.0-V
DNGotNESJDA 5ot3.0-V
SC1112
egnaRerutarepmeTgnitarepOT
egnaRerutarepmeTnoitcnuJT egnaRerutarepmeTegarotST
.ceS01)gniredloS(erutarepmeTdaeLT
tneibmAotnoitcnuJecnatsiseRlamrehT
esaCotnoitcnuJecnadepmIlamrehT
)ledoMydoBnamuH(gnitaRDSEDSE2Vk
Electrical Characteristics
Unless specified: 5VSTBY=4.75V to 5.25V; VTTIN=3.3V ; TA = 25°C
retemaraPlobmySsnoitidnoCniMpyTxaMstinU
)YBTSV5(ylppuS
egatloVylppuS
tnerruCylppuS
noitcetorPtiucriCtrohSTTV
dlohserhTremiTyaleDtiucriCtrohSTTV
)4(
emiTyaleDtiucriCtrohSTTV
tnerruCecruoSyaleDtiucriCtrohSTTV
)4(
dlohserhTtiucriCtrohSTTV
dooGrewoPTTV
)5(
dlohserhTremiTyaleDDGRWP
)5(
dlohsaerhTDGRWP
)5(
dlohsaerhTDGRWP
)5(
emiTyaleDDGRWP
)5(
emiTyaleDDGRWP
)5(
tnerruCecruoSDGRWP
snoitceSraeniL
I
)4(
CS
CS
)4(
I
CS
GP
GP GP
GP GP
I
GP
A
J
GTS
L
θ
AJ
θ
CJ
YBTSV5
YBTSV5
hT
dt
YBTSV5V5=6 8 21Am
57.4552.5V
07+ot0C°
521+ot0C°
051+ot56-C° 003C° 031W/C°
03W/C°
5.1V CS*yaledC(
I/)
HT
CS
S
612282Aµ
CSTTV
hT
HT_yaleD
2.1_HT
5.1_HT
2.1_dt
5.1_dt
056007057Vm
054.1005.1055.1V
060.1580.1011.1V
033.1053.1093.1V GP*yaledC( GP*yaledC(
I/)
2.1_HT
GP
I/)
5.1_HT
GP
S S
612282Aµ
dlohserhTylppuStupnITTV
)3()1(
ecnereffiDgnikcarT
NITTV
HT
V
atleD
KCART
NI
I
O
,V03.3=
A0=
2 2001 Semtech Corp.
54.125.155.1V 002Vm
www.semtech.com
POWER MANAGEMENT
Electrical Characteristics (Cont.)
Unless specified: 5VSTBY=4.75V to 5.25V; VTTIN=3.3V; TA = 25°C
retemaraPlobmySsnoitidnoCniMpyTxaMstinU
).tnoC(snoitceSraeniL
SC1112
TTVegatloVtuptuO)A2111CS(
TTV
2.1
TTV
52.1
TTV
5.1
PGAegatloVtuptuOPGA
5.1
PGA
3.3
JDAegatloVtuptuOJDAI
tnerruCsaiBNESTTV
saibI
I
O
I
)2111CS(
O
I
O
I
O
I
O
O
NESTTV
A2ot0=%2-)BR/AR+1(*2.1%2+V
WOL=LESTTV,A2ot0=671.1002.1422.1V
WOL=LESTTV,A2ot0=522.1052.1572.1
HGIH=LESTTV,A2ot0=074.1005.1035.1V
WOL=LESPGA,A2ot0=074.1005.1035.1V
HGIH=LESPGA,A2ot0=432.3003.3V
09021041Aµ
)2111CS(
tnerruCsaiBNESTTV
saibI
NESTTV
15Aµ
)A2111CS(
tnerruCsaiBNESPGAsaibI
tnerruCsaiBNESJDAsaibI
tnerruCetaGTTVecruosI
NESPGA
NESJDA
etagTTV
knisI
etagTTV
V0.3=etagV,V57.4=YBTSV5005Aµ
011051071Aµ
15Aµ
005Aµ
tnerruCetaGPGAecruosI
tnerruCetaGJDAecruosI
noitalugeRdaoLDAOL
noitalugeReniLENIL
etagPGA
knisI
etagPGA
etagJDA
knisI
etagJDA
GER
GER
I,V03.3=NITTV
O
V0.3=etagV,V57.4=YBTSV5005Aµ
005Aµ
V0.3=etagV,V57.4=YBTSV5005Aµ
005Aµ
A2ot0=3.0%
,V74.3otV31.3=NITTV
3.0%
A2=oI
)2(
)LOA(niaG
NIAG
ODL
ETAGottuptuOSODL05Bd
Notes:
(1) All electrical characteristics are for the application circuit on page 19. (2) Guaranteed by design (3) Tracking Difference is defined as the delta between 3.3V V in and the VTT , AGP, ADJ output voltages during the linear ramp up until regulation is achieved. The Tracking V oltage difference might vary depending on MOSFET s Rdson, and Load Conditions. (4) During power up, an internal short circuit glitch timer will start once the VTT Input Voltage exceeds the VTTINTH (1.5V). During the glitch timer immunity time, determined by the Delay capacitor (Delay time is approximately equal to (Cdelay*SCTH)/ISC), the short circuit protection is disabled to allow VTT output to rise above the trip threshold (0.7V). If the VTT output has not risen above the trip threshold after the immunity time has elapsed, the VTT output is latched off and will only be enabled again if either the VTT input voltage or the 5VSTBY is cycled. (5) PWRGD pin is kept low during the power up, until the VTT output has reached its PG source current I capacitor is charged above the PG
2001 Semtech Corp.
(20uA) is enabled and will start charging the external PWRGD delay capacitor connected to the DELAY pin. Once the
PG
(1.5V), the PWRGD pin is released from ground.
Delay_TH
3
td1.2
or PG
level. At that time the PWRGD
td1.5
www.semtech.com
POWER MANAGEMENT
Timing Diagrams
SC1112
NORMAL STARTUP CONDITION
The delay capacitor does not begin charging until VTTIN has reached 1.5V and VTT is above the powergood threshold of
1.08V. Once DELAY reaches 1.5V,
the PWRGD signal goes high. VTTGATE initially turns on
hard, until VTT reaches regulation. Then VTTGATE drops to its normal regulating level.
VTTIN
VTT
DELAY
PWRGD
VTTGATE
VTTIN=1.5V
DELAY=1.5V
SHORT-CIRCUIT STARTUP
VTTIN
VTT
The delay capacitor does not begin charging until VTTIN has reached 1.5V and VTT is below the short circuit threshold of
0.7V. VTTGATE initially turns on hard
and is latched off when DELAY reaches 1.5V and VTT is below
0.7V
DELAY
PWRGD
VTTGATE
VTTIN=1.5V
DELAY=1.5V
4 2001 Semtech Corp.
www.semtech.com
POWER MANAGEMENT
Timing Diagrams (Cont.)
Once VTT drops out of regulation, VTTGATE turns on harder to try and raise VTT.
When VTT drops below 1.08V, the delay capacitor is discharged and PWRGD goes low. When VTT drops below
0.7V, the delay capacitor begins charging.
If VTT is still below 0.7V when DELAY reaches 1.5V, VTTGATE is latched off.
VTTIN
VTT
DELAY
SHORT-CIRCUIT DURING NORMAL OPERATION
VTT=1.08V
VTT=0.7V
DELAY=1.5V
SC1112
PWRGD
VTTGATE
VTTIN
Once VTT drops out of regulation, VTTGATE turns on harder to try and raise VTT.
When VTT drops below 1.08V, the delay capacitor is discharged and PWRGD goes low. When VTT drops below 0.7V, the delay capacitor begins charging.
If VTT recovers above 0.7V before DELAY reaches 1.5V, DELAY is again discharged.
If VTT reaches 1.08V the delay capacitor begins charging and normal operation continues.
VTT
DELAY
VTT=1.08V
SHORT-CIRCUIT AND RECOVERY DURING NORMAL OPERATION
VTT=0.7V
VTT=1.08V
DELAY=1.5V
2001 Semtech Corp.
PWRGD
VTTGATE
5
www.semtech.com
POWER MANAGEMENT
SC1112
Pin Configuration
5VSTBY PWRGD
DELAY
VTTSEL
AGPSEL
ADJGATE
ADJSEN
CAP-
(16-Pin SOIC or TSSOP)
Pin Descriptions
#niPemaNniPnoitcnuFniP
1YBTSV5 .srellortnocTEFdnarotallicsO,pmuPegrahC,feRrofrewopseilppus,tupniybdnatSV5
Top View
16
1
15
2
14
3
13
4
12
5
11
6 7
10
8
9
GND VTTIN
VTTGATE VTTSEN AGPGATE AGPSEN FC CAP+
Ordering Information
)2()1(
rebmuNtraP
egakcaP
RTS2111CS
61-OSC°521ot°0
RTSA2111CS RTST2111CS
61-POSSTC°521ot°0
RTSTA2111CS
BVE2111CSdraoBnoitaulavE
Note: (1) Only available in tape and reel packaging. A reel contains 2500 devices. (2) Part Number (SO-16): SC1 1 12STR = 1.25V and SC1 1 12ASTR = 1.2V . Part Number (TSSOP-16): SC1 1 12TSTR = 1.25V and SC11 12ATSTR = 1.2V.
pmeT
)
T(egnaR
J
2DGRWP.tuptuoTTVrofgalFdooGrewoProtcellocnepO 3YALED TTVfogalFdooGrewoPehtrofyaledehtmargorplliwDNGotnipsihtmorfroticapacA
4LESTTV:egatlovtuptuoTTVehtsmargorptahtlangisLTT
5LESPGA:egatlovtuptuoPGAehtsmargorptahtlangisLTT
6ETAGJDA.PGAroftuptuoevirdetaG 7NESJDA.JDAroftupniesneS 8-PAC.roticapactsoobotnoitcennocevitageN 9+PAC.roticapactsoobotnoitcennocevitisoP
01CF .DNGotnipsihtmorfdetcennocebdluohspmupegrahclanretniehtrofroticapacretliF 11NESPGA.PGAroftupniesneS 21ETAGPGA.PGAroftuptuoevirdetaG 31NESTTV.TTVroftupniesneS
.emitytinummihctilgehtdnatuptuo
VX2.1=TTV,WOL=LESTTV
V5.1=TTV,HGIH=LESTTV
V5.1=PGA,WOL=LESPGA
V3.3=PGA,HGIH=LESPGA
41ETAGTTV.TTVroftuptuoevirdetaG 51NITTV.niV3.3ehtotdetcennocenilesnestiucrictrohS 61DNG.dnuorG
NOTE: (1) All logic level inputs and outputs are open collector TTL compatible.
6 2001 Semtech Corp.
www.semtech.com
POWER MANAGEMENT
Block Diagram
SC1112
VTTIN
DELAY
PWRGD
5VSTBY
Bandgap Reference
+
-
_ + _
1.5V
1.35V
1.2V
1.08V
0.7V
1.5V
+ _
+ _
+ _
0.7V
VTTSEN
Pwrgd Threshold
VTTSEL
Vref
FC
1.5V
+ _
S
Q
R
+ _
Vref
Oscillator
ChargePump
Disable1.5
1.2V
Disable1.2
1.5V
Disable1.5
Disable3.3
1.2V
+ _
VTTGATE
VTTSEN
+ _
FC
+
AGPGATE
AGPSEN
+ _
FC
+ _
ADJGATE
GND
AGPSEL
CAP+
ADJSEN
CAP-
2001 Semtech Corp.
7
www.semtech.com
POWER MANAGEMENT
Typical Characteristics
SC1112
1.5055
1.5050
1.5045
1.5040
(V)
1.5
1.5035
VTT
1.5030
1.5025
1.5020
1.5015 0 10203040506070
Ta (°C.)
5V Stby = 5.25V 5V Stby = 5.00V 5V Stby = 4.75V
VTT(1.25V) Output Voltage @ Io = 0A vs Ta
1.2485
1.2480
1.2475
VTT(1.5V) Output Voltage @ Io = 0A vs Ta
VTT(1.5V) Output Voltage @ Io = 2A vs Ta
1.5035
1.5030
1.5025
1.5020
(V)
1.5
1.5015
VTT
1.5010
1.5005
1.5000
1.4995 0 1020304050 6070
Ta (°C.)
5V St by = 5.25V 5V St by = 5.00V 5V St by = 4.75V
VTT(1.5V) Output Voltage @ Io = 2A vs Ta
1.2465
1.2460
1.2455
1.2470
(V)
1.2
1.2465
VTT
1.2460
1.2455
1.2450
1.2445 0 10203040506070
Ta (°C.)
5V Stby = 5.25V 5V Stby = 5.00V 5V Stby = 4.75V
VTT Input Supply Threshold vs Ta
1.498
1.497
1.496
1.495
(V)
TH
VTTIN
1.494
1.493
1.492
5V Stby = 4.75V 5V Stby = 5.00V 5V Stby = 5.25V
1.2450
(V)
1.2
1.2445
VTT
1.2440
1.2435
1.2430
1.2425 0 10203040506070
Ta (°C.)
5V Stby = 5.25V 5V Stby = 5.00V 5V Stby = 4.75V
VTT Sense Bias current vs Ta
116
114
112
(uA)
110
VTTSEN
Ibias
108
106
5V Stby = 5.25V 5V Stby = 5.00V 5V Stby = 4.75V
1.491 0 10203040506070
Ta (°C.)
104
0 10203040506070
8 2001 Semtech Corp.
Ta (°C.)
www.semtech.com
POWER MANAGEMENT
Typical Characteristics (Cont.)
SC1112
VTT Gate Current @ Vgate = 3V, 5V Stby = 4.75V vs Ta
800
750
700
650
(uA)
600
VTT_Gate
I
550
500
450
400
0 10203040506070
Ta (°C.)
Source current Sink current
VTT Short circuit Delay source current vs Ta
23.60
23.40
23.20
23.00
22.80
22.60
(uA)
SC
I
22.40
22.20
22.00
21.80
21.60 0 10203040506070
Ta (°C.)
5V Stby = 5.25V 5V Stby = 5.00V 5V Stby = 4.75V
VTT Short circuit Delay Time (Cdelay = 0.1uF) vs Ta
8.40
8.30
8.20
8.10
(mS)
td
SC
8.00
7.90
7.80
7.70 0 10203040506070
Ta (°C.)
5V Stby = 4.75V 5V Stby = 5.00V 5V Stby = 5.25V
VTT Short circuit Delay Timer Threshold vs Ta
1.515
1.510
1.505
1.500
1.495
(V)
th
1.490
SC
1.485
1.480
1.475
1.470
1.465 0 10203040506070
Ta (°C.)
5V Stby = 4.75V 5V Stby = 5.00V 5V Stby = 5.25V
2001 Semtech Corp.
9
www.semtech.com
POWER MANAGEMENT
Typical Characteristics (Cont.)
VTT (1.25V) Power Good Threshold vs Ta
1.098
SC1112
VTT (1.25V) Power Good Delay Time vs Ta
8.40
1.096
1.094
1.092
1.090
(V)
TH_1.25
1.088
PG
1.086
1.084
1.082
1.080 0 10203040506070
Ta (°C.)
5V Stby = 5.25V 5V Stby = 5.00V 5V Stby = 4.75V
VTT (1.5V) Power Good Threshold vs Ta
1.361
1.360
1.359
1.358
1.357
1.356
(V)
TH_1.5
1.355
PG
1.354
1.353
1.352
1.351
1.350
0 10203040506070
Ta (°C.)
5V Stby = 5.25V 5V Stby = 5.00V 5V Stby = 4.75V
8.30
8.20
8.10
(mS)
td_1.25
PG
8.00
7.90
7.80
7.70 0 10203040506070
Ta (°C.)
5V Stby = 4.75V 5V Stby = 5.00V 5V Stby = 5.25V
VTT (1.5V) Power Good Delay Time vs Ta
8.40
8.30
8.20
8.10
(mS)
td_1.5
PG
8.00
7.90
7.80
7.70 0 10203040506070
Ta (°C.)
5V Stby = 4.75V 5V Stby = 5.00V 5V Stby = 5.25V
VTT Power Good Source current vs Ta
23.60
23.40
23.20
23.00
22.80
22.60
(uA)
PG
I
22.40
22.20
22.00
21.80
21.60
21.40 0 10203040506070
Ta (°C.)
10 2001 Semtech Corp.
5V Stby = 5.25V 5V Stby = 5.00V 5V Stby = 4.75V
www.semtech.com
POWER MANAGEMENT
Typical Characteristics (Cont.)
SC1112
AGP (1.5V) Output Voltage @ Io = 0A vs Ta
1.5055
1.5050
1.5045
1.5040
1.5035
(V)
1.5
1.5030
AGP
1.5025
1.5020
1.5015
1.5010
1.5005 0 10203040506070
Ta (°C.)
5V Stby = 5.25V 5V Stby = 5.00V 5V Stby = 4.75V
AGP (3.3V) Output Voltage @ Io = 0A vs Ta
3.2900
3.2890
3.2880
3.2870
(V)
3.3
3.2860
AGP
3.2850
AGP (1.5V) Output Voltage @ Io = 2A vs Ta
1.5035
1.5030
1.5025
1.5020
1.5015
(V)
1.5
1.5010
AGP
1.5005
1.5000
1.4995
1.4990
1.4985 0 10203040506070
Ta (°C.)
5V Stby = 5.25V 5V Stby = 5.00V 5V Stby = 4.75V
AGP (3.3V) Output Voltage @ Io = 2A vs Ta
3.2900
3.2890
3.2880
3.2870
(V)
3.3
3.2860
AGP
3.2850
3.2840
3.2830
3.2820 0 10203040506070
Ta (°C.)
5V Stby = 5.25V 5V Stby = 5.00V 5V Stby = 4.75V
AGP Sense Bias current vs Ta
142
140
138
136
(uA)
AGPSEN
134
Ibias
132
130
128
0 10203040506070
Ta (°C.)
5V Stby = 5.25V 5V Stby = 5.00V 5V Stby = 4.75V
3.2840
3.2830
3.2820 0 10203040506070
Ta (°C.)
5V Stby = 5.25V 5V Stby = 5.00V 5V Stby = 4.75V
AGP Gate Current @ Vgate = 3V, 5V Stby = 4.75 vs Ta
900
850
800
(uA)
750
AGP_Gate
I
700
650
600
0 10203040506070
Ta (°C.)
Sink cu rrent
Source current
2001 Semtech Corp.
11
www.semtech.com
POWER MANAGEMENT
Typical Characteristics (Cont.)
SC1112
ADJ (1.2V) Output Voltage @ Io = 0A vs Ta
1.2020
1.2010
1.2000
1.1990
(V)
1.2
ADJ
1.1980
1.1970
1.1960
1.1950 0 10203040506070
Ta (°C.)
5V Stby = 5.25V 5V Stby = 5.00V 5V Stby = 4.75V
ADJ Sense Bias current vs Ta
350
330
310
290
270
(uA)
250
ADJSEN
230
Ibias
210
190
170
150
0 10203040506070
Ta (°C.)
5V Stby = 4.75V 5V Stby = 5.00V 5V Stby = 5.25V
ADJ (1.2V) Output Voltage @ Io = 2A vs Ta
1.1955
1.1950
1.1945
1.1940
(V)
1.2
1.1935
ADJ
1.1930
1.1925
1.1920
1.1915 0 10203040506070
Ta (°C.)
5V Stby = 5.25V 5V Stby = 5.00V 5V Stby = 4.75V
ADJ Gate Current @ Vgate = 3V, 5V Stby = 4.75V vs Ta
900
850
800
(uA)
750
ADJ_Gate
I
700
650
600
0 10203040506070
Ta (°C.)
Sink current
Source current
12 2001 Semtech Corp.
www.semtech.com
POWER MANAGEMENT
Typical Characteristics (Cont.)
SC1112
I 5V Stby vs Ta
7.50
7.30
7.10
6.90
6.70
6.50
I5vstby (mA)
6.30
6.10
5.90
5.70
5.50 0 10203040506070
Ta (°C.)
5V Stby = 5.25V 5V Stby = 5.00V 5V Stby = 4.75V
Line Regulation VTTIN = 3.13V to 3.47V Io = 2A vs Ta
160.0E-3
140.0E-3
120.0E-3
Output Select Threshold vs Ta
1.60
1.55
1.50
1.45
1.40
1.35
Output Select Threshold (V)
1.30
1.25
1.20 0 10203040506070
Ta (°C.)
VTTSEL AGPSEL
Load Regulation VTTIN = 3.3V Io = 0 to 2A vs Ta
180.0E-3
170.0E-3
160.0E-3
100.0E-3
80.0E-3
Line Regulation(%)
60.0E-3
40.0E-3
20.0E-3
000.0E+0 0 10203040506070
Ta (°C.)
VTT 1.25V AGP 1.25V
Charge Pump Output Voltage vs Ta
9.32
9.31
9.30
9.29
9.28
9.27
9.26
V Charge Pump(V)
9.25
9.24
9.23
9.22
9.21 0 10203040506070
Ta (°C.)
V Charge Pump
150.0E-3
140.0E-3
Load Regulation(%)
130.0E-3
120.0E-3
110.0E-3
100.0E-3 0 10203040506070
Ta (°C.)
VTT 1.25V AGP 1.25V
Charge Pump Frequency vs Ta
375
Charge Pump Frequency
370
365
360
355
Charge Pump Frequency (kHz)
350
345
0 10203040506070
Ta (°C.)
2001 Semtech Corp.
13
www.semtech.com
POWER MANAGEMENT
Typical Gain & Phase Margin
SC1112
SC1112 Gain / Phase VTT = 1.25V @ 2A
60
50
40
30
20
Gain (dB)
10
0
-10
-20
-30 10 100 1000 10000 100000 1000000
Phase
Gain
Freq (Hz)
Gain Phase ( d eg )
SC1112 Gain / Phase ADJ = 1.2V @ 2A
50
40
Gain Phase (deg)
Gain
30
20
10
Gain (dB)
0
-10
-20
-30 10 100 1000 10000 100000 1000000
Phase
Freq (Hz)
200
180
160
140
120
100
80
60
40
20
0
200
180
160
140
120
100
80
60
40
20
0
Phase (deg)
Phase (deg)
SC1112 Gain / Phase VTT = 1.5V @ 2A
60
50
40
30
20
10
Gain (dB)
0
-10
-20
-30 10 100 1000 10000 100000 1000000
Phase
Gain
Freq (Hz)
Gain Phase (deg)
SC1112 Gain / Phase AGP = 1.5V @ 2A
50
40
30
20
Gain (dB)
10
0
-10
-20
10 100 1000 10000 100000 1000000
Phase
Gain
Freq (Hz)
Gain Phase (deg)
200
180
160
140
120
100
80
60
40
20
0
200
180
160
140
120
100
80
60
40
20
0
Phase (deg)
Phase (deg)
14 2001 Semtech Corp.
www.semtech.com
POWER MANAGEMENT
Applications Infomation
Theory Of Operation
SC1112
The SC1112 was designed for the latest high speed mother boards requiring a controled power up sequencing of the Outputs, and a programable delay for the Power good sig­nal.
Three Linear controllers have been incorperated into the SC1112. The VTT output can be programmed to either a
1.250V or a 1.500V by applying a LOW or a HIGH control signal to the VTTSEL pin. AGP output can also be prgorammed via AGPSEL pin to a 1.50V or a 3.30V. The SC1112 also provides an Adjustable output which utilizes a resistive voltage divider.
The +5VSTBY supply will power the internal Reference, Charge Pump, Oscillator, and the Fet controllers. After the +5VSTBy has been established, LDO outputs will track the VTTIN (3.30V) supply as it is applied.
An external capaitor connected to the Delay pin will pro­gram the VTT short circuit delay time (SCtd), and the PWRGD delay time (PGtd).
During power up, an internal short circuit glitch timer will start once the VTT Input Voltage exceeds the VTTIN
(1.5V).
TH
During the glitch timer immunity time, determined by the Delay capacitor (Delay time is approximately equal to (Cdelay*SCTH)/ISC), the short circuit protection is disabled to allow VTT output to rise above the trip threashold (0.7V).
If the VTT output has not risen above the trip threashold after the immunity time has elapsed, the VTT output is latched off and will only be enabled again if either the VTT input voltage or the 5VSTBY is cycled.
PWRGD pin is kept low during the power up, until the VTT output has reached its PG
td1.25
the PWRGD source current I
or PG
(20uA) is enabled and will
PG
level. At that time
td1.5
start charging the external PWRGD delay capacitor connected to the DELAY pin. Once the capacitor is charged above the PG
(1.5V), the PWRGD pin is released from
Delay_TH
ground. A detailed timing diagram is shown on pages 4 to
5.
Also included is an overcurrent protection circuit that moni­tors the VTT voltage. If the output voltage drops below 700mV, as would occur during an overcurrent or short condition, the device will pull the drive pin low and latch off the output.
Fixed Output Voltage Options (VTT, AGP)
Please refer to the Application Circuit on Page 1. The VTT and the AGP fixed output voltage can be programed from a Control logic signal. Table below shows the possible Volt­ages:
LESTTVLESPGATTVPGA
00 V52.1V05.1
01 V52.1V03.3
10 V05.1V05.1
11 V05.1V03.3
Once the VTTSEL or the AGPSEL signal is established, an internal resistive divider is used to compare the bandgap reference voltage with the feed back output voltage. The drive pin voltage is then adjusted to maintain the output voltage set by the internal resistor divider. Referring to the block diagram on page 7.
It is possible to adjust the output voltage of the VTT or AGP, by applying an external resistor divider to the sense pin (please refer to Figure 1 on Page 11). Since the sense pin sinks a nominal 100µA, the resistor values should be selected to allow 10mA to flow through the divider. This will ensure that variations in this current do not adversely affect output voltage regulation. Thus a target value for R2 (maximum) can be calculated:
V
2R
The output voltage can only be adjusted upwards from the fixed output voltage, and can be calculated using the following equation:
)FIXED(OUT
mA10
1R
 
)FIXED(OUT)ADJUSTED(OUT
+=
1VV
2R
VoltsA1001R
µ+
2001 Semtech Corp.
15
www.semtech.com
POWER MANAGEMENT
Applications Infomation (Cont.)
SC1112
5VSTBY
ADJGATE
ADJSEN
CAP- VTTGATE
CAP+
FC
DELAY
PWRGD
GND
AGPGATE
AGPSEN
VTTSEN
AGPSEL
VTTSEL
VTTIN
C3
0.1u
C19 330u
Q1
330u
C8
C9
0.1u
C2
C18
330u
Q3
C16 330u
R1
C14 330u
C1 10u
C17
0.1u
SC1112
+3.3V
+5V STBY
AGP
VTT
VTT SELECT Signal
AGP SELECT Signal
Figure 1: Adjusting The Output Voltage of VTT or AGP
Adjustable Output Voltage Option
The adjustable output voltage option does not have an internal resistor divider. The adjust pin connects directly to the inverting input of the error amplifier, and the output voltage is set using external resistors (please refer to Figure 2). In this case, the adjust pin sources a nominal 0.5µA, so the resistor values should be selected to allow 50µA to flow through the divider. Again, a target value for RB (maximum) can be calculated:
RB
V200.1
A50
µ
The output voltage can be calculated as follows:
RA
OUT
 
1200.1V
+µ
RB
RAA5.0
C13
0.1u
R2
C6 330u
C12 330u
RA
RB
Q2
1K
R1
VTT
POWER GOOD
0.1u
C11
1u
C10
22n
C5
SC11
5VSTBY
ADJGATE
ADJSEN
CAP­CAP+
FC
DELAY
PWRGD
The maximum output voltage that can be obtained from the adjustable option is determined by the input supply voltage and the R
and gate threshold voltage of the
DS(ON)
external MOSFET. Assuming that the MOSFET gate threshold voltage is sufficiently low for the output voltage chosen and a worst-case drive voltage of 9V, V
OUT(MAX)
is given by:
=
RIVTTINV
)MAX)(ON(DS)MAX(OUT)MIN()MAX(OUT
Figure 2
16 2001 Semtech Corp.
www.semtech.com
POWER MANAGEMENT
Applications Infomation (Cont.)
SC1112
Short Circuit Protection
The VTT short circuit protection feature of the SC1112 is implemented by using the R
of the MOSFET. As the
DS(ON)
output current increases, the regulation loop maintains the output voltage by turning the FET on more and more. Eventually, as the R
limit is reached, the MOSFET will
DS(ON)
be unable to turn on any further, and the output voltage will start to fall. When the VTT output voltage falls to approximately 700mV, the LDO controller is latched off, setting output voltage to 0V. Power must be cycled to re­set the latch.
To prevent false latching due to capacitor inrush currents or low supply rails, the current limit latch is initially disabled. It is enabled once the short circuit delay time has elapsed. Timing diagram on pages 4 to 5 will show a detailed operation of the Short circuit protection circuitry.
To be most effective, the MOSFET R
should not be
DS(ON)
selected artificially low. The MOSFET should be chosen so that at maximum required current, it is almost fully turned on. If, for example, a supply of 1.5V at 4A is required from a 3.3V ± 5% rail, the maximum allowable R
would be:
DS(ON)
Layout Guidelines
One of the advantages of using the SC1112 to drive an external MOSFET is that the bandgap reference and control circuitry do not need to be located right next to the power device, thus a very accurate output voltage can be obtained since heating effects will be minimal.
The 0.1µF bypass capacitor should be located close to the +5VSTBY supply pin, and connected directly to the ground plane. The ground pin of the device should also be con­nected directly to the ground plane. The sense or adjust pin does not need to be close to the output voltage plane, but should be routed to avoid noisy traces if at all pos­sible.
Power dissipation within the device is practically negligible, requiring no special consideration during layout.
()
R
=
)MAX)(ON(DS
025.15.13.395.0
4
m400
To allow for temperature effects 200m would be a suitable room temperature maximum, allowing a peak short circuit current of approximately 15A for a short time before shutdown.
Capacitor Selection
Output Capacitors: low ESR aluminum electrolytic or tan-
talum capacitors are recommended for bulk capacitance, with ceramic bypass capacitors for decoupling high frequency transients.
Input Capacitors: placement of low ESR aluminum electrolytic or tantalum capacitors at the input to the MOSFET (VTTIN) will help to hold up the power supply during fast load changes, thus improving overall transient response. The +5VSTBY supply should be bypassed with a 10µF ceramic capacitor.
2001 Semtech Corp.
17
www.semtech.com
POWER MANAGEMENT
Evaluation Board Gerbers
SC1112
Board Layout Assembly Top
Board Layout Assembly Bottom
Board Layout T op Board Layout Bottom
18 2001 Semtech Corp.
www.semtech.com
POWER MANAGEMENT
Evaluation Board Schematic
SC1112
+5VSTBY
J1
+5VSTBY
C1
10uF
GND J2
+3.3V
J3
+3.3V
+3.3V
GND J5
J4
C18
330uF
+
C2
330uF
+
C4
0.1uF
C3
0.1uF
VTT
POWER GOOD
GND J7
16
GND
U1 SC1112CS
5VSTBY
1
R1
1k
J6
Q1
IRFR120N
15
VTTIN
VTTGATE
PWRGD
DELAY
3
2
C5 22nF
VTT
J8
VTT
131114
VTTSEN
VTTSEL
4
100k
R2
VTT
J10
J9
C19
330uF
+
C8
330uF
+
C9
0.1uF
12
AGPGATE
AGPSEL
5
6
100k
R3
GND
GND
J12
C10
98
AGPSEN
ADJGATE
ADJSEN FC
7 10
C14
330uF
+
C15
0.1uF
Q3
1uF
CAP+CAP-
C11 0.1uF
J14
J15
VTT SELECT Signal
AGP SELECT Signal
AGP
J18
AGP
IRFR120N
JP2
*
1 1
*
JP1
AGP
GND
GND
J20
J21
J19
C16
330uF
+
C17
0.1uF
JP1 = SHORT, VTT = 1.25 V
JP1 = OPEN, VTT = 1.5 V
JP2 = OPEN, AGP = 3.3 V
JP2 = SHORT, AGP = 1.5 V
*
*
*
*
2 2
2001 Semtech Corp.
C7
0.1uF
+
C6
330uF
Q2
IRFR120N
ADJ
J11
ADJ
19
**
J13
ADJ
RA
C13
+
C12
RB
**
0.1uF
330uF
J16
ADJ = 1.2*(1+RA/RB) **
GND
J17
GND
www.semtech.com
POWER MANAGEMENT
Evaluation Board Bill of Materials
metI.ytQecnerefeRtraPtnirPtooF
111CFu016021 28 91C,81C,61C,41C,21C,8C,6C,2CFu033130./001.SL/57.2.D/LYCPC 38 71C,51C,31C,11C,9C,7C,4C,3CFu1.05080 415CFn225080 5101CFu15080 62 2PJ,1PJ2PTP2/AIV 711JYBTSV5+2505DE 89 12J,02J,71J,61J,21J,01J,7J,5J,2JDNG2505DE 92 4J,3JV3.3+2505DE
SC1112
0116JdooGrewoP2505DE 112 9J,8JTTV2505DE 212 21J,11JJDA2505DE 31141JlangiSTCELESTTV2505DE 41151JlangiSTCELESPGA2505DE 512 91J,81JPGA2505DE 613 3Q,2Q,1QN021RFRITEFKAPD 713 BR,AR,1Rk15080 812 3R,2Rk0015080 9111URTS2111CS61-OS
Outline Drawing - TSSOP-16
20 2001 Semtech Corp.
www.semtech.com
POWER MANAGEMENT
Outline Drawing - SO-16
SC1112
Land Pattern - SO-16
Contact Information
2001 Semtech Corp.
Semtech Corporation
Power Management Products Division
652 Mitchell Rd., Newbury Park, CA 91320
Phone: (805)498-2111 FAX (805)498-3804
21
www.semtech.com
Loading...