Semikron SKM150GB125D Data Sheet

Absolute Maximum Ratings
GB
SEMITRANS 3
case
1)
= 25 °C
Symbol Conditions
CES
V
CGR
I
C
I
CM
V
GES
P
tot
Tj, (T V
isol
humidity climate
RGE = 20 k T
case
T
case
per IGBT, T
)
stg
AC, 1 min. DIN 40040 DIN IEC 68 T.1
= 25/80 °C = 25/80 °C; tp = 1 ms
Values
1200
1200 150 / 100 300 / 200
–40 ... +150 (125)
Class F
40/125/56
4)
4)
± 20
1040
2500
Inverse Diode
= –I
I
F
IFM = –I I
FSM
I2t
T
C
CM
= 25/80 °C
case
= 25/80 °C; tp = 1 ms
T
case
t
= 10 ms; sin.; Tj = 150 °C
p
= 10 ms; Tj = 150 °C
t
p
115 / 80
300 / 200
1000
5000
Characteristics
CESTj
= 600 V
= R
Goff
2)
2)
1)
= 125 °C
= 10
min. typ. max. Units
V
CES
4,5
– – – – –
51
– – – – –
3)
– – – – – –
– – –
2)
2)
– – –
– – –
5,5 0,2
9
– 5,4(4,2) 6,7(5,3)
11,7
1000
720
110
50
360
40 13
3
2,0(1,8)
2,25(2,1)
8
35(50)
5(14)
6,5
2 – 1
8(6,5)
– –
700
15,6 1600 1080
20
– – – – – –
2,5
1,2
11
– –
0,12
0,25
0,038
Symbol Conditions
V
(BR)CES
V
GE(th)
I
CES
I
GES
V
CEsat
V
CEsat
g
fs
C
CHC
C
ies
C
oes
C
res
L
CE
t
d(on)
t
r
t
d(off)
t
f
on
off
Inverse Diode VF = V
VF = V V
TO
r
t
I
RRM
Q
rr
Thermal ch aracteristics R
thjc
R
thjc
R
thch
5)
Not suitable for hard switching using PWM: Use range “SKM ... 123D “or “...124D“
VGE = 0, IC = 2 mA
= VCE, IC = 2 mA
V
GE
= 0 Tj = 25 °C
V
GE
V
= V
CE
= 20 V, VCE = 0
V
GE
= 100 A VGE = 15 V;
I
C
I
= 150 A Tj = 25 (125) °C
C
= 20 V, IC = 100 A
CE
per IGBT
V
= 0
GE
= 25 V
V
CE
f = 1 MHz
CC
= –15 V / +15 V
V
GE
IC = 100 A, ind. load R
Gon
Tj = 125 °C
8)
IF = 100 A VGE = 0 V;
EC
= 150 A Tj = 25 (125) °C
I
EC
F
T
= 125 °C
j
Tj = 125 °C IF = 100 A; Tj = 25 (125) °C IF = 100 A; Tj = 25 (125) °C
per IGBT per diode per module
Units
V V A A V
W
°C
V
A A A
A2s
V
V mA mA
µ
A V V S
pF nF pF pF nH
ns ns ns
ns mWs mWs
V V V
m
A
µ
C
°C/W °C/W °C/W
SEMITRANS® M Ultra Fast IGBT Modules
SKM 150 GB 125 D
Preliminary Data
Features
N channel, homogeneous Silicon structure (NPT- Non punch­through IGBT)
Ultra fast with heavy metal doping
Low inductance case
Almost no tail current
High short circuit capability,
4)
self limiting to 6 * I
Latch-up free
Fast & soft inverse CAL diodes
Isolated copper baseplate using DCB Direct Copper Bonding Technology
Large clearance (12 mm) and creepage distances (20 mm)
Typical Applications
Fast switching (not for linear use)
High frequency welding
Induction heating
Resonant inverters (CSI, ZV, ZC)
Uninterruptable power supplies > 20 kHz
1)
T
= 25 °C, unless otherwise
case
specified
2)
IF = – IC, VR = 600 V,
/dt = 1000 A/µs, VGE = 0 V
–di
F
3)
Use V
4)
GEoff
For paralleling use derating of 20 % because of neg. temp. coefficient of
, contact factory, Subject to
V
CEsat
change
8)
CAL = Controlled Axial Lifetime Technology.
Cases and mech. data
B 6 – 286
5)
cnom
= –5... –15 V
8)
© by SEMIKRON 0898 B 6 – 281
SKM 150 GB 125 D
1000
W 800
600
400
200 P
tot
0
0 20 40 60 80 100 120 140 160
T
C
Fig. 1 Rated power dissipation P
40
mWs
30
M151GB12.XLS-1
°
C
= f (TC) Fig. 2 Turn-on /-off energy = f (IC)
tot
M151GB12.XLS-3
= 125 °C
T
j
V
= 600 V
CE
= + 15 V
V
GE
I
= 100 A
E
on
C
40
mWs
30
20
10
E
0
0 50 100 150 200
I
C
1000
A
100
M151GB12.XLS-2
E
on
E
off
A
M151GB12.XLS-4
tp=10µs
100µs
1ms
T
= 125 °C
j
= 600 V
V
CE
= + 15 V
V
GE
R
= 10
G
1 pulse
= 25 °C
T
C
Tj
150 °C
20
10
E
0
0 1020304050
R
G
E
off
10
1
I
C
0,1
1 10 100 1000 10000
V
CE
10ms
Not for linear use!
V
Fig. 3 Turn-on /-off ener gy = f (RG) Fig. 4 Maximum safe operat ing area (SOA) IC = f (VCE)
2,5
2
1,5
1
0,5
puls/IC
0
0 200 400 600 800 1000 1200 1400
V
CE
M151GB12.XLS-5
V
Tj
150 °C
= 15 V
V
GE
R
= 10
Goff
IC = 100 A
12
10
8
6
4
2
I
CSC/IC
0
0 200 400 600 800 1000 1200 1400
V
CE
Note: *Allowed numbers of short circuits: <1000 *Time between short circuits: >1s
Fig. 5 Turn-off safe operating area (RBSOA) Fig. 6 Safe operating area at short circuit I
M151GB12.XLS-6
V
Tj
150 °C
= ± 15 V
V
GE
tsc
10 µs
L < 25 nH I
= 100 A
C
Use active gate clamping by Zene r diod e 16 V R
= 6,8
Gmin
= f (VCE)
C
0898
© by SEMIKRONB 6 – 282
M151GB12.XLS-8
160
A
140
120
100
80
60
40
I
20
C
0
0 20 40 60 80 100 120 140 160
T
C
°C
T
= 150 °C
j
≥ 15V
V
GE
300
A
270 240 210 180 150 120
90 60 30
I
C
0
17V 15V 13V 11V 9V 7V
0246810
V
CE
M151GB12.XLS-9
V
Fig. 8 Rated current vs. temperature I
300
A
270 240 210 180 150 120
90 60 30
I
C
0
17V 15V 13V 11V 9V 7V
0246810
V
CE
= f (TC)
C
M151GB12.XLS-10
V
Fig. 9 Typ. output character istic, tp = 80 µs; 25 °C Fig. 10 Typ. output characteristic, tp = 80 µs; 125 °C
M151GB12.XLS-12
P
= V
cond(t)
V
V
typ.: r max.: r
= V
CEsat(t)
CE(TO)(Tj)
CE(Tj)
CE(Tj)
valid for V
· I
CEsat(t)
CE(TO)(Tj)
C(t)
+ r
CE(Tj)
· I
C(t)
≤ 3,2 – 0,007 (Tj –25) [V]
= 0,020 + 0,00007 (Tj –25) [Ω]
≤ 0,047 – 0,00008 (Tj –25) [Ω]
= + 15 [V]; IC > 0,3 I
GE
+2 –1
Cnom
300
A
270 240 210 180 150 120
90 60 30
I
C
0
02468101214
V
GE
V
Fig. 11 Saturation characteristic (IGBT)
Calculation elements and equations Fig. 12 Typ. transfer characteristic, t
© by SEMIKRON B 6 – 2830898
= 80 µs; VCE = 20 V
p
SKM 150 GB 125 D
20 V
18 16 14 12 10
8 6 4 2
V
GE
0
0 200 400 600 800
Q
Gate
600V
M151GB12.XLS-13
800V
nC
I
Cpuls
= 100 A
100
nF
10
1
C
0,1
0 102030
V
CE
Fig. 13 Typ. gate charge characteristic Fig. 14 Typ. capacitances vs.V
M151GB12.XLS-15
1000
ns
100
= 125 °C
T
j
= 600 V
V
CE
V
= ± 15 V
GE
= 10
R
t
doff
t
don
t
r
t
f
t
Gon
R
Goff
induct. load
= 10
10000
ns
1000
100
t
M151GB12.XLS-14
V
CE
M151GB12.XLS-16
C
ies
C
oes
C
res
t
doff
t
don
t
r
t
f
VGE = 0 V f = 1 MHz
T
= 125 °C
j
V
= 600 V
CE
= ± 15 V
V
GE
I
= 100 A
C
induct. load
10
0 50 100 150 200 250
I
C
Fig. 15 Typ. switching times vs. I
200
A
T
=125°C Tj=25°C
150
100
50
I
F
0
01234
V
j
F
A
C
M151GB12.XLS-17
V
10
0 204060
R
G
Fig. 16 Typ. switching times vs. gate resistor R
8
mJ
6
4
2
E
offD
0
0 50 100 150 200
I
F
M150GB12.XLS-18
RG=
5
8
13
25
50 Ω
A
G
V
V
CC
CC
= 125 °C
= 125 °C
T
T
j
j
V
V
GE
GE
Fig. 17 Typ. CAL diode forward characteristic Fig. 18 Diode turn-off energy dissipation per pulse
= 600 V
= 600 V = ± 15 V
= ± 15 V
0898
© by SEMIKRONB 6 – 284
A
K/W
1
M151GB12.XLS-19
1
K/W
M151GB12.XLS-20
0,1
D=0,50
0,01
0,001
t
p
single pulse
Z
thJC
0,0001
1E-05 0,0001 0,001 0,01 0,1 1 10
0,20 0,10
0,05 0,02 0,01
s
Fig. 19 Transient thermal impedance of IGBT
= f (tp); D = tp / tc = tp · f
Z
thJC
150
A
100
M150GB12.XLS-22
RG=
5
8
V
= 600 V
CC
T
= 125 °C
j
= ± 15 V
V
GE
0,1
D=0,5
0,01
0,001
single pulse
Z
thJC
0,0001
1E-05 0,0001 0,001 0,01 0,1 1 10
t
p
Fig. 20 Transient thermal impedance of
inverse CAL diodes Z
150
A
100
= f (tp); D = tp / tc = tp · f
thJC
M150GB12.XLS-23
8
0,2 0,1
0,05 0,02 0,01
R
G
5
s
= 600 V
V
CC
T
= 125 °C
j
=
= ± 15 V
V
GE
I
= 100A
F
13
50
25
I
RR
0
0 50 100 150 200
I
F
50 Ω
A
Fig. 22 Typ. CAL diode peak reverse recov ery
current I
= f (IF; RG)
RR
Typical Applications include
Switched mode power supplies Inverters for high frequency Inductive heating UPS Uninterruptable power supplies Electronic (also po rtable) welders Pulse frequencies above 20 kHz ... 100kHz Resona nt in ve rter s Zero voltage switching (ZVS) Zero current switching (ZCS)
13
50
I
RR
0
0 1000 2000 3000 4000
di
dt
/
F
50
25
A/µs
Fig. 23 Typ. CAL diode peak reverse recovery
current IRR = f (diF/dt)
30
µC
20
50 Ω
10
Q
rr
0
0 1000 2000 3000 4000
diF/dt
25
13 Ω
8 Ω
25 A
Fig. 24 Typ. CAL diode recovered charge Q
M150GB12.XLS-24
RG= 5
75 A
50 A
A/µs
I F = 150
100
rr
= 600 V
V
CC
= 125 °C
T
j
V
= ± 15 V
GE
= f (di/dt)
© by SEMIKRON B 6 – 2850898
SKM 150 GB 125 D
SEMITRANS 3
Case D 56 UL Recognized File no. E 63 532
SKM 150 GB 125 D
Dimensions in mm
Case outline and circuit diagram
Mechanical Data
Symbol Conditions
M
1
M
2
a w
to heatsink, SI Units (M6) to heatsink, US Units for terminals, SI Units (M6) for terminals, US Units
Values Units
min. typ. max.
3
27
2,5
22
– –
– – – – – –
5
44
5
44
5x9,81
325
0898
Nm
lb.in.
Nm lb.in. m/s
g
This is an electrostatic discharge sensitive device (ESDS). Please observe the international standard IEC 747-1, Chapter IX.
Three devices are supplied in one SEM IB O X B w i thout mount ing hardware, which can be ordered
2
separately under Ident No. 33321100 (for 10 SEMITRANS 3). Larger packing units of 12 and 20 pieces are used if suitable Accessories
SEM IB O X
B 6 - 4.
C - 1.
© by SEMIKRONB 6 – 286
Loading...