Seagate, Seagate Technology and the Wave logo are registered trademarks of Seagate Technology LLC in the United States and/or
other countries. Savvio and SeaTools are either trademarks or registered trademarks of Seagate Technology LLC or one of its affiliated companies in the United States and/or other countries. The FIPS logo is a certification mark of NIST, which does not imply product endorsement by NIST, the U.S., or Canadian governments. All other trademarks or registered trademarks are the property of their
respective owners.
No part of this publication may be reproduced in any form without written permission of Seagate Technology LLC.
Call 877-PUB-TEK1 (877-782-8351) to request permission.
When referring to drive capacity, one gigabyte, or GB, equals one billion bytes and one terabyte, or TB, equals one trillion bytes. Your
computer’s operating system may use a different standard of measurement and report a lower capacity. In addition, some of the listed
capacity is used for formatting and other functions, and thus will not be available for data storage. Actual quantities will vary based on
various factors, including file size, file format, features and application software. Actual data rates may vary depending on operating
environment and other factors. The export or re-export of hardware or software containing encryption may be regulated by the U.S.
Department of Commerce, Bureau of Industry and Security (for more information, visit www.bis.doc.gov), and controlled for import and
use outside of the U.S. Seagate reserves the right to change, without notice, product offerings or specifications.
This manual describes Seagate Technology® LLC, Savvio® 10K.6 SAS (Serial Attached SCSI) disk drives.
Savvio drives support the SAS Protocol specifications to the extent described in this manual. The SAS Interface Manual (part
number 100293071) describes the general SAS characteristics of this and other Seagate SAS drives. The Self-Encrypting
Drive Reference Manual, part number 100515636, describes the interface, general operation, and security features available
on Self-Encrypting Drive models.
Product data communicated in this manual is specific only to the model numbers listed in this manual. The data listed in this
manual may not be predictive of future generation specifications or requirements. If you are designing a system which will
use one of the models listed or future generation products and need further assistance, please contact your Field
Applications Engineer (FAE) or our global support services group as shown on See “Seagate Technology Support Services”
on page 1.
Unless otherwise stated, the information in this manual applies to standard and Self-Encrypting Drive models.
STANDARD MODELS
ST900MM0006ST900MM0026ST900MM0046ST900MM0036
ST600MM0006ST600MM0026ST600MM0046
ST450MM0006ST450MM0026ST450MM0046
ST300MM0006ST300MM0026ST300MM0046
1.Specific features may not be available in all models or countries -- contact Seagate for availability.
SELF-ENCRYPTING DRIVE
(SED)
SED-ISE D
(INSTANT SECURE ERASE)
RIVE
FIPS 140-2 LEVEL 2
1
Note.Previous generations of Seagate Self-Encrypting Drive models were called Full Disk Encryption (FDE) models
before a differentiation between drive-based encryption and other forms of encryption was necessary.
Note.The Self-Encrypting Drive models indicated on the cover of this product manual have provisions for “Security of
Data at Rest” based on the standards defined by the Trusted Computing Group
(see www.trustedcomputinggroup.org).
For more information on FIPS 140-2 Level 2 certification see Section 7.0 on page 36.
SAVVIO 10K.6 SAS PRODUCT MANUAL, REV. C 2
2.0APPLICABLE STANDARDS AND REFERENCE DOCUMENTATION
The drives documented in this manual have been developed as system peripherals to the highest standards of design and
construction. The drives depend on host equipment to provide adequate power and environment for optimum performance
and compliance with applicable industry and governmental regulations. Special attention must be given in the areas of
safety, power distribution, shielding, audible noise control, and temperature regulation. In particular, the drives must be
securely mounted to guarantee the specified performance characteristics. Mounting by bottom holes must meet the
requirements of Section 10.3.
2.1STANDARDS
The Savvio family complies with Seagate standards as noted in the appropriate sections of this manual and the Seagate
SAS Interface Manual, part number 100293071.
The drives are recognized in accordance with UL 60950-1 as tested by UL, CSA 60950-1 as tested by CSA, and EN60950-1
as tested by TUV.
The security features of Self-Encrypting Drive models are based on the “TCG Storage Architecture Core Specification” and
the “TCG Storage Workgroup Security Subsystem Class: Enterprise_A” specification with additional vendor-unique features
as noted in this product manual.
2.1.1Electromagnetic compatibility
The drive, as delivered, is designed for system integration and installation into a suitable enclosure prior to use. The drive is
supplied as a subassembly and is not subject to Subpart B of Part 15 of the FCC Rules and Regulations nor the Radio
Interference Regulations of the Canadian Department of Communications.
The design characteristics of the drive serve to minimize radiation when installed in an enclosure that provides reasonable
shielding. The drive is capable of meeting the Class B limits of the FCC Rules and Regulations of the Canadian Department
of Communications when properly packaged; however, it is the user’s responsibility to assure that the drive meets the
appropriate EMI requirements in their system. Shielded I/O cables may be required if the enclosure does not provide
adequate shielding. If the I/O cables are external to the enclosure, shielded cables should be used, with the shields
grounded to the enclosure and to the host controller.
2.1.1.1Electromagnetic susceptibility
As a component assembly, the drive is not required to meet any susceptibility performance requirements. It is the
responsibility of those integrating the drive within their systems to perform those tests required and design their system to
ensure that equipment operating in the same system as the drive or external to the system does not adversely affect the
performance of the drive. See Tables 1 through 4, DC power requirements.
2.1.2Electromagnetic compliance
Seagate uses an independent laboratory to confirm compliance with the directives/standards for CE Marking and C-Tick
Marking. The drive was tested in a representative system for typical applications and comply with the Electromagnetic
Interference/Electromagnetic Susceptibility (EMI/EMS) for Class B products. The selected system represents the most
popular characteristics for test platforms. The system configurations include:
• Typical current use microprocessor
• Keyboard
• Monitor/display
• Printer
• Mouse
Although the test system with this Seagate model complies with the directives/standards, we cannot guarantee that all
systems will comply. The computer manufacturer or system integrator shall confirm EMC compliance and provide the
appropriate marking for their product.
Electromagnetic compliance for the European Union
If this model has the CE Marking it complies with the European Union requirements of the Electromagnetic Compatibility
Directive 2004/108/EC as put into place on 20 July 2007.
SAVVIO 10K.6 SAS PRODUCT MANUAL, REV. C 3
Australian C-Tick
If this model has the C-Tick Marking it complies with the Australia/New Zealand Standard AS/NZ CISPR22 and meets the
Electromagnetic Compatibility (EMC) Framework requirements of Australia’s Spectrum Management Agency (SMA).
Korean KCC
If these drives have the Korean Communications Commission (KCC) logo, they comply with KN22, KN 24, and KN61000.
Taiwanese BSMI
If this model has the Taiwanese certification mark then it complies with Chinese National Standard, CNS13438.
2.1.3European Union Restriction of Hazardous Substances (RoHS)
The European Union Restriction of Hazardous Substances (RoHS) Directive restricts the presence of chemical substances,
including Lead (Pb), in electronic products effective July 2006.
A number of parts and materials in Seagate products are procured from external suppliers. We rely on the representations of
suppliers regarding the presence of RoHS substances in these parts and materials. Our supplier contracts require
our
compliance with our chemical substance restrictions, and our suppliers document their compliance with our requirements by
providing material content declarations for all parts and materials for the disk drives documented in this publication. Current
supplier declarations include disclosure of the inclusion of any RoHS-regulated substance in such parts or materials.
Seagate also has internal systems in place to ensure ongoing compliance with the RoHS Directive and all laws and
regulations which restrict chemical content in electronic products. These systems include standard operating procedures that
ensure that restricted substances are not utilized in our manufacturing operations, laboratory analytical validation testing,
and an internal auditing process to ensure that all standard operating procedures are complied with.
2.1.4China Restriction of Hazardous Substances (RoHS) Directive
This product has an Environmental Protection Use Period (EPUP) of 20 years. The following table contains
information mandated by China's "Marking Requirements for Control of Pollution Caused by Electronic
Information Products" Standard.
"O" indicates the hazardous and toxic substance content of the part (at the homogenous material level) is lower than the
threshold defined by the China RoHS MCV Standard.
"X" indicates the hazardous and toxic substance content of the part (at the homogenous material level) is over the threshold
defined by the China RoHS MCV Standard.
SAVVIO 10K.6 SAS PRODUCT MANUAL, REV. C 4
2.2REFERENCE DOCUMENTS
SCSI Commands Reference ManualSeagate part number: 100293068
SAS Interface ManualSeagate part number: 100293071
ANSI SAS Documents
SFF-82232.5” Drive Form Factor with Serial Connector
SFF-8460HSS Backplane Design Guidelines
SFF-8470Multi Lane Copper Connector
SFF-8482SAS Plug Connector
ANSI INCITS.xxx Serial Attached SCSI (SAS-2) Standard (T10/1760-D)
ISO/IEC 14776-xxxSCSI Architecture Model-3 (SAM-4) Standard (T10/1683-D)
ISO/IEC 14776-xxxSCSI Primary Commands-3 (SPC-3) Standard (T10/1416-D)
ISO/IEC 14776-xxxSCSI Block Commands-3 (SBC-2) Standard (T10/1417-D)
ANSI Small Computer System Interface (SCSI) Documents
X3.270-1996(SCSI-3) Architecture Model
Trusted Computing Group (TCG) Documents (apply to Self-Encrypting Drive models only)
Self-Encrypting Drives Reference ManualSeagate part number: 100515636
In case of conflict between this document and any referenced document, this document takes precedence.
SAVVIO 10K.6 SAS PRODUCT MANUAL, REV. C 5
3.0GENERAL DESCRIPTION
Savvio drives provide high performance, high capacity data storage for a variety of systems including engineering
workstations, network servers, mainframes, and supercomputers. The Serial Attached SCSI interface is designed to meet
next-generation computing demands for performance, scalability, flexibility and high-density storage requirements.
Savvio drives are random access storage devices designed to support the Serial Attached SCSI Protocol as described in the
ANSI specifications, this document, and the SAS Interface Manual (part number 100293071) which describes the general
interface characteristics of this drive. Savvio drives are classified as intelligent peripherals and provide level 2 conformance
(highest level) with the ANSI SCSI-1 standard. The SAS connectors, cables and electrical interface are compatible with
Serial ATA (SATA), giving future users the choice of populating their systems with either SAS or SATA hard disk drives. This
allows you to continue to leverage your existing investment in SCSI while gaining a 6Gb/s serial data transfer rate.
Note.Never disassemble the HDA and do not attempt to service items in the sealed enclosure (heads, media, actuator,
etc.) as this requires special facilities. The drive does not contain user-replaceable parts. Opening the HDA for
any reason voids your warranty.
Savvio drives use a dedicated load/unload zone at the outermost radius of the media to eliminate the possibility of destroying
or degrading data by landing in the data zone. The heads automatically go to the ramp load/unload when power is removed
from the drive.
An automatic shipping lock prevents potential damage to the heads and discs that results from movement during shipping
and handling. The shipping lock disengages and the head load process begins when power is applied to the drive.
The drives also use a high-performance actuator assembly with a low-inertia, balanced, patented, straight arm design that
provides excellent performance with minimal power dissipation.
3.1STANDARD FEATURES
Savvio® 10K.6 SAS drives have the following standard features:
• Integrated dual port SAS controller supporting the SCSI protocol
• Support for SAS expanders and fanout adapters
• Firmware downloadable using the SAS interface
• 128 - deep task set (queue)
• Supports up to 16 initiators
• Jumperless configuration
• User-selectable logical block size (512, 520, 524 or 528 bytes per logical block)
• Industry standard SFF 2.5-inch dimensions
• Programmable logical block reallocation scheme
• Flawed logical block reallocation at format time
• Programmable auto write and read reallocation
• Reallocation of defects on command (Post Format)
• ECC maximum burst correction length of 530 bits
• No preventive maintenance or adjustments required
• Dedicated head load/unload zone and automatic shipping lock
• Embedded servo design
• Self diagnostics performed when power is applied to the drive
• Zone bit recording (ZBR)
• Vertical, horizontal, or top down mounting
• Dynamic spindle brake
• 64MB data buffer (see Section 4.5)
• Drive Self Test (DST)
• Background Media Scan (BMS)
• Idle Read After Write (IRAW)
• Power Choice
• RAID Rebuild ™
SAVVIO 10K.6 SAS PRODUCT MANUAL, REV. C 6
®
Savvio
10K.6 SAS Self-Encrypting Drive models have the following additional features:
• Automatic data encryption/decryption
• Controlled access
• Random number generator
• Drive locking
• 16 independent data bands
• Cryptographic erase of user data for a drive that will be repurposed or scrapped
• Authenticated firmware download
3.2MEDIA DESCRIPTION
The media used on the drive has an glass substrate coated with a thin film magnetic material, overcoated with a proprietary
protective layer for improved durability and environmental protection.
3.3PERFORMANCE
• Programmable multi-segmentable cache buffer
• 600MB/s maximum instantaneous data transfers.
• 10K RPM spindle. Average latency = 2.9ms
• Background processing of queue
• Supports start and stop commands (spindle stops spinning)
Note.There is no significant performance difference between Self-Encrypting Drive and standard (non-Self-Encrypting
Drive) models.
3.4RELIABILITY
• Annualized Failure Rate (AFR) of 0.44%
• Mean time between failures (MTBF) of 2,000,000 hours
• Balanced low mass rotary voice coil actuator
• Incorporates industry-standard Self-Monitoring Analysis and Reporting Technology (S.M.A.R.T.)
• 5-year warranty
3.5FORMATTED CAPACITIES
Standard OEM models are formatted to 512 bytes per block. The block size is selectable at format time. Supported block
sizes are 512, 520, 524, and 528. Users having the necessary equipment may modify the data block size before issuing a
format command and obtain different formatted capacities than those listed.
To provide a stable target capacity environment and at the same time provide users with flexibility if they choose, Seagate
recommends product planning in one of two modes:
Seagate designs specify capacity points at certain block sizes that Seagate guarantees current and future products will
meet. We recommend customers use this capacity in their project planning, as it ensures a stable operating point with
backward and forward compatibility from generation to generation. The current guaranteed operating points for this product
are shown below.
Using the Mode Select command, the drive can change its capacity to something less than maximum. See the Mode Select
(6) parameter list table in the SAS Interface Manual, part number 100293071. A value of zero in the Number of Blocks field
indicates that the drive will not change the capacity it is currently formatted to have. A number other than zero and less than
the maximum number of LBAs in the Number of Blocks field changes the total drive capacity to the value in the Number of
Blocks field. A value greater than the maximum number of LBAs is rounded down to the maximum capacity.
3.7FACTORY-INSTALLED OPTIONS
You may order the following items which are incorporated at the manufacturing facility during production or packaged before
shipping. Some of the options available are (not an exhaustive list of possible options):
• Other capacities can be ordered depending on sparing scheme and sector size requested.
• Single-unit shipping pack. The drive is normally shipped in bulk packaging to provide maximum protection against transit
damage. Units shipped individually require additional protection as provided by the single unit shipping pack. Users planning single unit distribution should specify this option.
• The Safety and Regulatory Agency Specifications, part number 75789512, is usually included with each standard OEM
drive shipped, but extra copies may be ordered.
SAVVIO 10K.6 SAS PRODUCT MANUAL, REV. C 8
4.0PERFORMANCE CHARACTERISTICS
This section provides detailed information concerning performance-related characteristics and features of Savvio drives.
Drive capacity900600450300GB (formatted, rounded off value)
Read/write data heads6432
Bytes per track997.9997.9997.9997.9KBytes (avg, rounded off values)
Bytes per surface151,674151,674151,674151,674MB (unformatted, rounded off value)
Tracks per surface (total)152152152152KTracks (user accessible)
Tracks per inch279279279279KTPI (average)
Peak bits per inch1925192519251925KBPI
Areal density538538538538Gb/in2
Disk rotation speed10K10K10K10Krpm
Avg rotational latency2.92.92.92.9ms
4.2PERFORMANCE CHARACTERISTICS
See Section 11.4.1, "SAS physical interface" on page 58 and the SAS In ter fac e Man ual (part number 100293071) for
additional timing details.
4.2.1Format command execution time for 512-byte sectors (minutes)
900GB models600GB models450GB models300GB models
Maximum (with verify)
Maximum (without verify)
1841229161
91614631
Execution time measured from receipt of the last byte of the Command Descriptor Block (CDB) to the request for a Status
Byte Transfer to the Initiator (excluding connect/disconnect).
When changing sector sizes, the format times shown above may need to be increased by 30 minutes.
4.2.2General performance characteristics
Minimum sector interleave1 to 1
Data buffer to/from disk media (one 512-byte logical block)*1.44 to 2.35 Gb/s
Sustained transfer rate119 to 195 MiB/s **
SAS Interface maximum instantaneous transfer rate600 MB/s* per port
Logical block sizes
512 (default), 520, 524 or 528.
Read/write consecutive sectors on a trackYes
Flaw reallocation performance impact (for flaws reallocated at format time using the
spare sectors per sparing zone reallocation scheme.)
Average rotational latency2.9ms
125 to 204 MB/s
(dual port = 1200 MB/s*)
Negligible
*Assumes no errors and no relocated logical blocks. Rate measured from the start of the first logical block transfer to or
from the host.
** MiB/s x 1.048 = MB/s
SAVVIO 10K.6 SAS PRODUCT MANUAL, REV. C 9
4.3START/STOP TIME
The drive accepts the commands listed in the SAS Interface Manual less than 3 seconds after DC power has been applied.
If the drive receives a NOTIFY (ENABLE SPINUP) primitive through either port and has not received a START STOP UNIT
command with the START bit equal to 0, the drive becomes ready for normal operations within 20 seconds (excluding the
error recovery procedure).
If the drive receives a START STOP UNIT command with the START bit equal to 0 before receiving a NOTIFY (ENABLE
SPINUP) primitive, the drive waits for a START STOP UNIT command with the START bit equal to 1. After receiving a
START STOP UNIT command with the START bit equal to 1, the drive waits for a NOTIFY (ENABLE SPINUP) primitive.
After receiving a NOTIFY (ENABLE SPINUP) primitive through either port, the drive becomes ready for normal operations
within 20 seconds (excluding the error recovery procedure).
If the drive receives a START STOP UNIT command with the START bit and IMMED bit equal to 1 and does not receive a
NOTIFY (ENABLE SPINUP) primitive within 5 seconds, the drive fails the START STOP UNIT command.
The START STOP UNIT command may be used to command the drive to stop the spindle. Stop time is 20 seconds
(maximum) from removal of DC power. SCSI stop time is 20 seconds. There is no power control switch on the drive.
4.4PREFETCH/MULTI-SEGMENTED CACHE CONTROL
The drive provides a prefetch (read look-ahead) and multi-segmented cache control algorithms that in many cases can
enhance system performance. Cache refers to the drive buffer storage space when it is used in cache operations. To select
this feature, the host sends the Mode Select command with the proper values in the applicable bytes in page 08h. Prefetch
and cache operations are independent features from the standpoint that each is enabled and disabled independently using
the Mode Select command; however, in actual operation, the prefetch feature overlaps cache operation somewhat as
described in sections 4.5.1 and 4.5.2.
All default cache and prefetch mode parameter values (Mode Page 08h) for standard OEM versions of this drive family are
given in Table 11.
4.5CACHE OPERATION
Note.Refer to the SAS Interface Manual for more detail concerning the cache bits.
Of the 64MB physical buffer space in the drive, approximately 30,000KB are available as a data cache. The remaining buffer
space is reserved for internal drive use.
The drive keeps track of the logical block addresses of the data stored in each segment of the buffer. If the cache is enabled
(see RCD bit in the SAS Interface Manual ), data requested by the host with a read command is retrieved from the buffer, if
possible, before any disk access is initiated. If cache operation is not enabled, the buffer is still used, but only as circular
buffer segments during disk medium read operations (disregarding Prefetch operation for the moment). That is, the drive
does not check in the buffer segments for the requested read data, but goes directly to the medium to retrieve it. The
retrieved data merely passes through some buffer segment on the way to the host. All data transfers to the host are in
accordance with buffer-full ratio rules. See the explanation provided with the information about Mode Page 02h (disconnect/
reconnect control) in the SAS Interface Manual.
The following is a simplified description of the prefetch/cache operation:
Case A—read command is received and all of the requested logical blocks are already in the cache:
1. Drive transfers the requested logical blocks to the initiator.
Case B—A Read command requests data, and at least one requested logical block is not in any segment of the cache:
1. The drive fetches the requested logical blocks from the disk and transfers them into a segment, and then from there to
the host in accordance with the Mode Select Disconnect/Reconnect parameters, page 02h.
2. If the prefetch feature is enabled, refer to section 4.5.2 for operation from this point.
Each cache segment is actually a self-contained circular buffer whose length is an integer number of logical blocks. The
drive dynamically creates and removes segments based on the workload. The wrap-around capability of the individual
segments greatly enhances the cache’s overall performance.
SAVVIO 10K.6 SAS PRODUCT MANUAL, REV. C 10
Note.The size of each segment is not reported by Mode Sense command page 08h, bytes 14 and 15. The value
0XFFFF is always reported regardless of the actual size of the segment. Sending a size specification using the
Mode Select command (bytes 14 and 15) does not set up a new segment size. If the STRICT bit in Mode page
00h (byte 2, bit 1) is set to one, the drive responds as it does for any attempt to change an unchangeable parameter.
4.5.1Caching write data
Write caching is a write operation by the drive that makes use of a drive buffer storage area where the data to be written to
the medium is stored while the drive performs the Write command.
If read caching is enabled (RCD=0), then data written to the medium is retained in the cache to be made available for future
read cache hits. The same buffer space and segmentation is used as set up for read functions. The buffer segmentation
scheme is set up or changed independently, having nothing to do with the state of RCD. When a write command is issued, if
RCD=0, the cache is first checked to see if any logical blocks that are to be written are already stored in the cache from a
previous read or write command. If there are, the respective cache segments are cleared. The new data is cached for
subsequent Read commands.
If the number of write data logical blocks exceed the size of the segment being written into, when the end of the segment is
reached, the data is written into the beginning of the same cache segment, overwriting the data that was written there at the
beginning of the operation; however, the drive does not overwrite data that has not yet been written to the medium.
If write caching is enabled (WCE=1), then the drive may return Good status on a write command after the data has been
transferred into the cache, but before the data has been written to the medium. If an error occurs while writing the data to the
medium, and Good status has already been returned, a deferred error will be generated.
The Synchronize Cache command may be used to force the drive to write all cached write data to the medium. Upon
completion of a Synchronize Cache command, all data received from previous write commands will have been written to the
medium. Tables 10, 11, 12 and 13 show the mode default settings for the drive.
4.5.2Prefetch operation
If the Prefetch feature is enabled, data in contiguous logical blocks on the disk immediately beyond that which was requested
by a Read command are retrieved and stored in the buffer for immediate transfer from the buffer to the host on subsequent
Read commands that request those logical blocks (this is true even if cache operation is disabled). Though the prefetch
operation uses the buffer as a cache, finding the requested data in the buffer is a prefetch hit, not a cache operation hit.
To enable Prefetch, use Mode Select page 08h, byte 12, bit 5 (Disable Read Ahead - DRA bit). DRA bit = 0 enables prefetch.
The drive does not use the Max Prefetch field (bytes 8 and 9) or the Prefetch Ceiling field (bytes 10 and 11).
When prefetch (read look-ahead) is enabled (enabled by DRA = 0), the drive enables prefetch of contiguous blocks from the
disk when it senses that a prefetch hit will likely occur. The drive disables prefetch when it decides that a prefetch hit is not
likely to occur.
SAVVIO 10K.6 SAS PRODUCT MANUAL, REV. C 11
5.0RELIABILITY SPECIFICATIONS
The following reliability specifications assume correct host and drive operational interface, including all interface timings,
power supply voltages, environmental requirements and drive mounting constraints.
8
Seek error rate:Less than 10 errors in 10
Read Error Rates
1
Recovered DataLess than 10 error in 1012 bits transferred (OEM default settings)
Unrecovered DataLess than 1 sector in 1016 bits transferred
Miscorrected DataLess than 1 sector in 10
Interface error rate:Less than 1 error in 10
Mean Time Between Failure (MTBF):2,000,000 hours
Annualized Failure Rate (AFR):0.44%
Preventive maintenance:None required
1.Error rate specified with automatic retries and data correction with ECC enabled and all flaws reallocated.
5.1ERROR RATES
The error rates stated in this manual assume the following:
• The drive is operated in accordance with this manual using DC power as defined in paragraph 6.3, "DC power requirements."
• Errors caused by host system failures are excluded from error rate computations.
• Assume random data.
• Default OEM error recovery settings are applied. This includes AWRE, ARRE, full read retries, full write retries and full retry
time.
seeks
21
bits transferred
12
bits transferred
5.1.1Recoverable Errors
Recoverable errors are those detected and corrected by the drive, and do not require user intervention.
Recoverable Data errors will use Error Correction when needed.
Recovered Data error rate is determined using read bits transferred for recoverable errors occurring during a read, and using
write bits transferred for recoverable errors occurring during a write.
5.1.2Unrecoverable Errors
An unrecoverable data error is defined as a failure of the drive to recover data from the media. These errors occur due to
head/media or write problems. Unrecoverable data errors are only detected during read operations, but not caused by the
read. If an unrecoverable data error is detected, a MEDIUM ERROR (03h) in the Sense Key will be reported. Multiple
unrecoverable data errors resulting from the same cause are treated as 1 error.
5.1.3Seek errors
A seek error is defined as a failure of the drive to position the heads to the addressed track. After detecting an initial seek
error, the drive automatically performs an error recovery process. If the error recovery process fails, a seek positioning error
(Error code = 15h or 02h) will be reported with a Hardware error (04h) in the Sense Key. Recoverable seek errors are
specified at Less than 10 errors in 108 seeks. Unrecoverable seek errors (Sense Key = 04h) are classified as drive failures.
5.1.4Interface errors
An interface error is defined as a failure of the receiver on a port to recover the data as transmitted by the device port
connected to the receiver. The error may be detected as a running disparity error, illegal code, loss of word sync, or CRC
error.
SAVVIO 10K.6 SAS PRODUCT MANUAL, REV. C 12
5.2RELIABILITY AND SERVICE
You can enhance the reliability of Savvio disk drives by ensuring that the drive receives adequate cooling. Section 6.0
provides temperature measurements and other information that may be used to enhance the service life of the drive. Section
10.2 provides recommended air-flow information.
5.2.1Annualized Failure Rate (AFR) and Mean Time Between Failure (MTBF)
The production disk drive shall achieve an AFR of 0.44% (MTBF of 2,000,000 hours) when operated in an environment that
ensures the HDA case temperatures do not exceed the values specified in Section 6.5. Operation at case temperatures
outside the specifications in Section 6.5 may increase the product AFR (decrease the MTBF). The AFR (MTBF) is a
population statistic not relevant to individual units.
The AFR (MTBF) specification is based on the following assumptions for Enterprise Storage System environments:
• 8760 power-on hours per year.
• 250 average on/off cycles per year.
• Operations at nominal voltages.
• Systems will provide adequate cooling to ensure the case temperatures specified in Section 6.5 are not exceeded. Temperatures outside the specifications in Section 6.5 will increase the product AFR and decrease the MTBF.
5.2.2Preventive maintenance
No routine scheduled preventive maintenance is required.
5.2.3Hot plugging the drive
When a disk is powered on by switching the power or hot plugged, the drive runs a self test before attempting to
communicate on its’ interfaces. When the self test completes successfully, the drive initiates a Link Reset starting with OOB.
An attached device should respond to the link reset. If the link reset attempt fails, or any time the drive looses sync, the drive
initiated link reset. The drive will initiate link reset once per second but alternates between port A and B. Therefore each port
will attempt a link reset once per 2 seconds assuming both ports are out of sync.
If the self-test fails, the drive does not respond to link reset on the failing port.
Note.It is the responsibility of the systems integrator to assure that no temperature, energy, voltage hazard, or ESD
potential hazard is presented during the hot connect/disconnect operation. Discharge the static electricity from
the drive carrier prior to inserting it into the system.
Caution. The drive motor must come to a complete stop prior to changing the plane of operation. This time is required to
insure data integrity.
5.2.4S.M.A.R.T.
S.M.A.R.T. is an acronym for Self-Monitoring Analysis and Reporting Technology. This technology is intended to recognize
conditions that indicate imminent drive failure and is designed to provide sufficient warning of a failure to allow you to back up
the data before an actual failure occurs.
Note.The drive’s firmware monitors specific attributes for degradation over time but can’t predict instantaneous drive
failures.
Each monitored attribute has been selected to monitor a specific set of failure conditions in the operating performance of the
drive and the thresholds are optimized to minimize “false” and “failed” predictions.
SAVVIO 10K.6 SAS PRODUCT MANUAL, REV. C 13
Controlling S.M.A.R.T.
The operating mode of S.M.A.R.T. is controlled by the DEXCPT and PERF bits on the Informational Exceptions Control
mode page (1Ch). Use the DEXCPT bit to enable or disable the S.M.A.R.T. feature. Setting the DEXCPT bit disables all
S.M.A.R.T. functions. When enabled, S.M.A.R.T. collects on-line data as the drive performs normal read and write
operations. When the PERF bit is set, the drive is considered to be in “On-line Mode Only” and will not perform off-line
functions.
You can measure off-line attributes and force the drive to save the data by using the Rezero Unit command. Forcing
S.M.A.R.T. resets the timer so that the next scheduled interrupt is in one hour.
You can interrogate the drive through the host to determine the time remaining before the next scheduled measurement and
data logging process occurs. To accomplish this, issue a Log Sense command to log page 0x3E. This allows you to control
when S.M.A.R.T. interruptions occur. Forcing S.M.A.R.T. with the RTZ command resets the timer.
Performance impact
S.M.A.R.T. attribute data is saved to the disk so that the events that caused a predictive failure can be recreated. The drive
measures and saves parameters once every hour subject to an idle period on the drive interfaces. The process of measuring
off-line attribute data and saving data to the disk is interruptable. The maximum on-line only processing delay is summarized
below
Maximum processing delay
Fully-enabled delay
DEXCPT = 0
S.M.A.R.T. delay times75 ms
Reporting control
Reporting is controlled by the MRIE bits in the Informational Exceptions Control mode page (1Ch). Subject to the reporting
method. For example, if the MRIE is set to one, the firmware will issue to the host an 01-5D00 sense code. The FRU field
contains the type of predictive failure that occurred. The error code is preserved through bus resets and power cycles.
Determining rate
S.M.A.R.T. monitors the rate at which errors occur and signals a predictive failure if the rate of degraded errors increases to
an unacceptable level. To determine rate, error events are logged and compared to the number of total operations for a given
attribute. The interval defines the number of operations over which to measure the rate. The counter that keeps track of the
current number of operations is referred to as the Interval Counter.
S.M.A.R.T. measures error rates. All errors for each monitored attribute are recorded. A counter keeps track of the number of
errors for the current interval. This counter is referred to as the Failure Counter.
Error rate is the number of errors per operation. The algorithm that S.M.A.R.T. uses to record rates of error is to set
thresholds for the number of errors and their interval. If the number of errors exceeds the threshold before the interval
expires, the error rate is considered to be unacceptable. If the number of errors does not exceed the threshold before the
interval expires, the error rate is considered to be acceptable. In either case, the interval and failure counters are reset and
the process starts over.
Predictive failures
S.M.A.R.T. signals predictive failures when the drive is performing unacceptably for a period of time. The firmware keeps a
running count of the number of times the error rate for each attribute is unacceptable. To accomplish this, a counter is
incremented each time the error rate is unacceptable and decremented (not to exceed zero) whenever the error rate is
acceptable. If the counter continually increments such that it reaches the predictive threshold, a predictive failure is signaled.
This counter is referred to as the Failure History Counter. There is a separate Failure History Counter for each attribute.
SAVVIO 10K.6 SAS PRODUCT MANUAL, REV. C 14
5.2.5Thermal monitor
Savvio drives implement a temperature warning system which:
1. Signals the host if the temperature exceeds a value which would threaten the drive.
2. Saves a S.M.A.R.T. data frame on the drive which exceeds the threatening temperature value.
A temperature sensor monitors the drive temperature and issues a warning over the interface when the temperature
exceeds a set threshold. The temperature is measured at power-up and then at ten-minute intervals after power-up.
The thermal monitor system generates a warning code of 01-0B01 when the temperature exceeds the specified limit in
compliance with the SCSI standard.
This feature is controlled by the Enable Warning (EWasc) bit, and the reporting mechanism is controlled by the Method of
Reporting Informational Exceptions field (MRIE) on the Informational Exceptions Control (IEC) mode page (1Ch).
5.2.6Drive Self Test (DST)
Drive Self Test (DST) is a technology designed to recognize drive fault conditions that qualify the drive as a failed unit. DST
validates the functionality of the drive at a system level.
There are two test coverage options implemented in DST:
1. Extended test
2. Short test
The most thorough option is the extended test that performs various tests on the drive and scans every logical block address
(LBA) of the drive. The short test is time-restricted and limited in length—it does not scan the entire media surface, but does
some fundamental tests and scans portions of the media.
If DST encounters an error during either of these tests, it reports a fault condition. If the drive fails the test, remove it from
service and return it to Seagate for service.
5.2.6.1DST failure definition
The drive will present a “diagnostic failed” condition through the self-tests results value of the diagnostic log page if a
functional failure is encountered during DST. The channel and servo parameters are not modified to test the drive more
stringently, and the number of retries are not reduced. All retries and recovery processes are enabled during the test. If data
is recoverable, no failure condition will be reported regardless of the number of retries required to recover the data.
The following conditions are considered DST failure conditions:
• Seek error after retries are exhausted
• Track-follow error after retries are exhausted
• Read error after retries are exhausted
• Write error after retries are exhausted
Recovered errors will not be reported as diagnostic failures.
5.2.6.2Implementation
This section provides all of the information necessary to implement the DST function on this drive.
SAVVIO 10K.6 SAS PRODUCT MANUAL, REV. C 15
5.2.6.2.1State of the drive prior to testing
The drive must be in a ready state before issuing the Send Diagnostic command. There are multiple reasons why a drive
may not be ready, some of which are valid conditions, and not errors. For example, a drive may be in process of doing a
format, or another DST. It is the responsibility of the host application to determine the “not ready” cause.
While not technically part of DST, a Not Ready condition also qualifies the drive to be returned to Seagate as a failed drive.
A Drive Not Ready condition is reported by the drive under the following conditions:
• Motor will not spin
• Motor will not lock to speed
• Servo will not lock on track
• Drive cannot read configuration tables from the disk
In these conditions, the drive responds to a Test Unit Ready command with an 02/04/00 or 02/04/03 code.
5.2.6.2.2Invoking DST
To invoke DST, submit the Send Diagnostic command with the appropriate Function Code (001b for the short test or 010b for
the extended test) in bytes 1, bits 5, 6, and 7.
5.2.6.2.3Short and extended tests
DST has two testing options:
1. short
2. extended
These testing options are described in the following two subsections.
Each test consists of three segments: an electrical test segment, a servo test segment, and a read/verify scan segment.
Short test (Function Code: 001b)
The purpose of the short test is to provide a time-limited test that tests as much of the drive as possible within 120 seconds.
The short test does not scan the entire media surface, but does some fundamental tests and scans portions of the media. A
complete read/verify scan is not performed and only factual failures will report a fault condition. This option provides a quick
confidence test of the drive.
Extended test (Function Code: 010b)
The objective of the extended test option is to empirically test critical drive components. For example, the seek tests and ontrack operations test the positioning mechanism. The read operation tests the read head element and the media surface.
The write element is tested through read/write/read operations. The integrity of the media is checked through a read/verify
scan of the media. Motor functionality is tested by default as a part of these tests.
The anticipated length of the Extended test is reported through the Control Mode page.
5.2.6.2.4Log page entries
When the drive begins DST, it creates a new entry in the Self-test Results Log page. The new entry is created by inserting a
new self-test parameter block at the beginning of the self-test results log parameter section of the log page. Existing data will
be moved to make room for the new parameter block. The drive reports 20 parameter blocks in the log page. If there are
more than 20 parameter blocks, the least recent parameter block will be deleted. The new parameter block will be initialized
as follows:
1. The Function Code field is set to the same value as sent in the DST command
2. The Self-Test Results Value field is set to Fh
3. The drive will store the log page to non-volatile memory
After a self-test is complete or has been aborted, the drive updates the Self-Test Results Value field in its Self-Test Results
Log page in non-volatile memory. The host may use Log Sense to read the results from up to the last 20 self-tests performed
by the drive. The self-test results value is a 4-bit field that reports the results of the test. If the field is set to zero, the drive
passed with no errors detected by the DST. If the field is not set to zero, the test failed for the reason reported in the field.
SAVVIO 10K.6 SAS PRODUCT MANUAL, REV. C 16
The drive will report the failure condition and LBA (if applicable) in the Self-test Results Log parameter. The Sense key, ASC,
ASCQ, and FRU are used to report the failure condition.
5.2.6.2.5Abort
There are several ways to abort a diagnostic. You can use a SCSI Bus Reset or a Bus Device Reset message to abort the
diagnostic.
You can abort a DST executing in background mode by using the abort code in the DST Function Code field. This will cause
a 01 (self-test aborted by the application client) code to appear in the self-test results values log. All other abort mechanisms
will be reported as a 02 (self-test routine was interrupted by a reset condition).
5.2.7Product warranty
See “Seagate Technology Support Services” on page 1 for warranty contact information.
Shipping
When transporting or shipping a drive, use only a Seagate-approved container. Keep your original box. Seagate approved
containers are easily identified by the Seagate Approved Package label. Shipping a drive in a non-approved container voids
the drive warranty.
Seagate repair centers may refuse receipt of components improperly packaged or obviously damaged in transit. Contact
your authorized Seagate distributor to purchase additional boxes. Seagate recommends shipping by an air-ride carrier
experienced in handling computer equipment.
Storage
The maximum recommended storage period for the drive in a non-operational environment is 90 days. Drives should be
stored in the original unopened Seagate shipping packaging when ever possible. Once the drive is removed from the
Seagate original packaging the recommended maximum period between drive operation cycles is 30 days. During any
storage period the drive non-operational temperature, humidity, wet bulb, atmospheric conditions, shock, vibration, magnetic
and electrical field specifications should be followed.
Product repair and return information
Seagate customer service centers are the only facilities authorized to service Seagate drives. Seagate does not sanction
any third-party repair facilities. Any unauthorized repair or tampering with the factory seal voids the warranty.
SAVVIO 10K.6 SAS PRODUCT MANUAL, REV. C 17
Loading...
+ 51 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.