Seagate 1200 SSD User Manual

Product Manual

Seagate® 1200 SSD

High Endurance Limited Warranty with Media Usage
2.5” models
Standard drives
ST400FM0093 ST200FM0093 ST100FM0093
Self-Encrypting drives
ST400FM0103 ST200FM0103 ST100FM0103
High Endurance Managed Life 2.5” models
Standard drives
ST400FM0113 ST200FM0113 ST100FM0113
High Endurance SED drives
ST400FM0123 ST200FM0123 ST100FM0123
2.5” models
Standard drives
ST800FM0043 ST400FM0053 ST200FM0053
Self-Encrypting drives
ST800FM0053 ST400FM0073 ST200FM0073
SED FIPS 140-2 Models (Review Pending)
ST800FM0063
Managed Life
2.5” models
Standard drives
ST800FM0013 ST400FM0013 ST200FM0013
Self-Encrypting drives
ST800FM0023 ST400FM0033 ST200FM0033
SED FIPS 140-2 Models (Review Pending)
ST800FM0033
1.8” models
Standard drives
ST400FM0063 ST200FM0063
Self-Encrypting drives
ST400FM0083 ST200FM0083
Managed Life
1.8” models
Standard drives
ST400FM0023 ST200FM0023
Self-Encrypting drives
ST400FM0043 ST200FM0043
100708406 Rev. A July 2013
Document Revision History
Revision Date Description of Change
Rev. A 07/09/2013 Initial release.
© 2012 Seagate Technology LLC. All rights reserved.
Publication number: 100708406, Rev. A July 2013
Seagate, Seagate Technology and the Wave logo are registered trademarks of Seagate Technology LLC in the United States and/or other countries. Seagate 1200 SSD and SeaTools are either trademarks or registered trademarks of Seagate Technology LLC or one of its affiliated companies in the United States and/or other countries. The FIPS logo is a certification mark of NIST, which does not imply product endorsement by NIST, the U.S., or Canadian governments. All other trademarks or registered trademarks are the prop­erty of their respective owners.
No part of this publication may be reproduced in any form without written permission of Seagate Technology LLC.
Call 877-PUB-TEK1 (877-782-8351) to request permission.
When referring to drive capacity, one gigabyte, or GB, equals one billion bytes and one terabyte, or TB, equals one trillion bytes. Your computer’s operating system may use a different standard of measurement and report a lower capacity. In addition, some of the listed capacity is used for formatting and other functions, and thus will not be available for data storage. Actual quantities will vary based on various factors, including file size, file format, features and application software. Actual data rates may vary depending on operating environment and other factors. The export or re-export of hardware or software containing encryption may be regulated by the U.S. Department of Commerce, Bureau of Industry and Security (for more information, visit www.bis.doc.gov), and controlled for import and use outside of the U.S. Seagate reserves the right to change, without notice, product offerings or specifications.
CONTENTS
SEAGATE TECHNOLOGY SUPPORT SERVICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.0 SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.0 APPLICABLE STANDARDS AND REFERENCE DOCUMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 STANDARDS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Electromagnetic compatibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Electromagnetic compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 European Union Restriction of Hazardous Substances (RoHS) . . . . . . . . . . . . . 4
2.1.4 China Restriction of Hazardous Substances (RoHS) Directive . . . . . . . . . . . . . . 4
2.2 REFERENCE DOCUMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.0 GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 STANDARD FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 MEDIA DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 PERFORMANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 RELIABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.5 FORMATTED CAPACITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.6 PROGRAMMABLE DRIVE CAPACITY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.7 FACTORY-INSTALLED OPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.8 THIN PROVISIONING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.8.1 Logical Block Provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.8.2 Thin Provisioning capabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.8.3 UNMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.8.4 FORMAT UNIT command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.8.5 Protection Information (PI) and Security (SED) . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.0 PERFORMANCE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1 INTERNAL DRIVE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 PERFORMANCE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2.1 Response time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2.2 FORMAT UNIT command execution time for 512-byte LBA’s (minutes) . . . . . . 11
4.2.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 START/STOP TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 CACHE CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4.1 Caching write data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4.2 Prefetch operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.0 RELIABILITY SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1 ERROR RATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.1 Unrecoverable Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.2 Interface errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 ENDURANCE MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.1 Wear Leveling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.2 Garbage Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.3 Write Amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.4 UNMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.5 Data Retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.6 Lifetime Endurance Management (Available on select models) . . . . . . . . . . . . 17
5.2.7 SSD Percentage Used Endurance Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 RELIABILITY AND SERVICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3.1 Annualized Failure Rate (AFR) and Mean Time Between Failure (MTBF) . . . . 17
5.3.2 Preventive maintenance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
SEAGATE 1200 SSD PRODUCT MANUAL, REV. A I
CONTENTS
5.3.3 Hot plugging the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3.4 S.M.A.R.T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3.5 Thermal monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.6 Drive Self Test (DST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.7 Product warranty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.0 PHYSICAL/ELECTRICAL SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1 POWER SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1.1 Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2 AC POWER REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.3 DC POWER REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3.1 Conducted noise immunity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3.2 Power sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3.3 Current profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.4 POWER DISSIPATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.5 ENVIRONMENTAL LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.5.1 Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.5.2 Relative humidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.5.3 Effective altitude (sea level) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.5.4 Shock and vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.5.5 Air cleanliness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.5.6 Corrosive environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.5.7 Electromagnetic susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.6 MECHANICAL SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.0 ABOUT FIPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.0 ABOUT SELF-ENCRYPTING DRIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.1 DATA ENCRYPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.2 CONTROLLED ACCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.2.1 Admin SP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.2.2 Locking SP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.2.3 Default password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.3 RANDOM NUMBER GENERATOR (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.4 DRIVE LOCKING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.5 DATA BANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.6 CRYPTOGRAPHIC ERASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.7 AUTHENTICATED FIRMWARE DOWNLOAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.8 POWER REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.9 SUPPORTED COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.10 SANITIZE - CRYPTOGRAPHIC ERASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.11 REVERTSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.12 SANITIZE FEATURE SET ON SED DRIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.0 DEFECT AND ERROR MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.1 DRIVE INTERNAL DEFECTS/ERRORS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.2 DRIVE ERROR RECOVERY PROCEDURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.3 SAS SYSTEM ERRORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.4 AUTO-REALLOCATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.5 PROTECTION INFORMATION (PI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.5.1 Levels of PI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.5.2 Setting and determining the current Type Level. . . . . . . . . . . . . . . . . . . . . . . . . 49
9.5.3 Identifying a Protection Information drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
SEAGATE 1200 SSD PRODUCT MANUAL, REV. A II
CONTENTS
10.0 INSTALLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.1 DRIVE ORIENTATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.2 COOLING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.3 DRIVE MOUNTING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.4 GROUNDING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
11.0 INTERFACE REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
11.1 SAS FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
11.1.1 Task management functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
11.1.2 Task management responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
11.2 DUAL PORT SUPPORT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
11.3 SCSI COMMANDS SUPPORTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
11.3.1 INQUIRY data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
11.3.2 MODE SENSE data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
11.4 MISCELLANEOUS OPERATING FEATURES AND CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
11.4.1 SAS physical interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
11.4.2 Physical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
11.4.3 Connector requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
11.4.4 Electrical description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
11.4.5 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
11.4.6 SAS transmitters and receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
11.4.7 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
11.5 SIGNAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
11.5.1 Ready LED Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
11.5.2 Differential signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
11.6 SAS-3 SPECIFICATION COMPLIANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
11.7 ADDITIONAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
SEAGATE 1200 SSD PRODUCT MANUAL, REV. A III
FIGURES
Figure 1. Current profiles for 800GB standard and 400GB High Endurance models . . . . . . . . . . . . . . . 31
Figure 2. Current profiles for 400GB standard and 200GB high endurance models . . . . . . . . . . . . . . . 32
Figure 3. Current profiles for 200GB standard and 100GB high endurance models . . . . . . . . . . . . . . . 32
Figure 4. Current profiles for 400GB 1.8” models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 5. Current profiles for 200GB 1.8” models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 6. 800GB (at 6Gb) DC current and power vs. input/output operations per second . . . . . . . . . . . 34
Figure 7. 400GB (at 6Gb) DC current and power vs. input/output operations per second . . . . . . . . . . . 34
Figure 8. 200GB (at 6Gb) DC current and power vs. input/output operations per second . . . . . . . . . . . 35
Figure 9. 400GB (at 6Gb) DC current and power vs. input/output operations per second . . . . . . . . . . . 35
Figure 10. 200GB (at 6Gb) DC current and power vs. input/output operations per second . . . . . . . . . . . 36
Figure 11. 100GB (at 6Gb) DC current and power vs. input/output operations per second . . . . . . . . . . . 36
Figure 12. 400GB (at 6Gb) DC current and power vs. input/output operations per second . . . . . . . . . . . 37
Figure 13. 200GB (at 6Gb) DC current and power vs. input/output operations per second . . . . . . . . . . . 37
Figure 14. Temperature check point location - 1.8-inch drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 15. Temperature check point location - 2.5-inch drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 16. Recommended mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 17. Mounting configuration dimensions (2.5” models) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 18. Mounting configuration dimensions (1.8” models) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 19. Example of FIPS tamper evidence labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 20. Physical interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 21. Air flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 22. Physical interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 23. SAS device plug dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 24. SAS device plug dimensions (detail) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 25. Micro SAS device plug dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 26. Micro SAS device plug dimensions (detail) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 27. SAS transmitters and receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
SEAGATE 1200 SSD PRODUCT MANUAL, REV. A IV

Seagate Technology Support Services

For information regarding online support and services, visit
Available services include:
Presales & Technical support
Global Support Services telephone numbers & business hours
Authorized Service Centers
Warranty terms will vary based on type of warranty chosen: “Managed Life” or “Limited Warranty with Media Usage”.
Consult the Seagate sales representative for warranty terms and conditions.
For information regarding data recovery services, visit http://www.seagate.com/services-software/data-recovery-services/
For Seagate OEM and Distribution partner portal, visit:
For Seagate reseller portal, visit:
http://www.seagate.com/partners/my-spp-dashboard/
http://www.seagate.com/about/contact-us/technical-support/
http://www.seagate.com/partners/
Seagate 1200 SSD Product Manual, Rev. A 1

1.0 SCOPE

This manual describes Seagate Technology® LLC, Seagate® 1200 SSD (Serial Attached SCSI) drives.
Seagate 1200 SSD drives support the SAS Protocol specifications to the extent described in this manual. The SAS Interface Manual (part number 100293071) describes the general SAS characteristics of this and other Seagate SAS drives. The Self-
Encrypting Drive Reference Manual, part number 100515636, describes the interface, general operation, and security features available on Self-Encrypting Drive models.
Product data communicated in this manual is specific only to the model numbers listed in this manual. The data listed in this manual may not be predictive of future generation specifications or requirements. If designing a system which will use one of the models listed or future generation products and need further assistance, please contact the Field Applications Engineer (FAE) or our global support services group as shown in See “Seagate Technology Support Services” on page 1
Unless otherwise stated, the information in this manual applies to standard and Self-Encrypting Drive models.
2.5” Models - Limited Warranty with Media Usage 2.5” Models - Managed Life Standard Self-Encrypting SED FIPS 140-2 Standard Self-Encrypting SED FIPS 140-2
ST800FM0043 ST800FM0053 ST800FM0063 ST800FM0013 ST800FM0023 ST800FM0033
ST400FM0053 ST400FM0073 ST400FM0013 ST400FM0033
ST200FM0053 ST200FM0073 ST200FM0013 ST200FM0033
1.8” Models -
Limited Warranty with Media Usage
Standard Self-Encrypting Standard Self-Encrypting
ST400FM0063 ST400FM0083 ST400FM0023 ST400FM0043
ST200FM0063 ST200FM0083 ST200FM0023 ST200FM0043
High Endurance 2.5” Models -
Limited Warranty with Media Usage
Standard Self-Encrypting Standard Self-Encrypting
ST400FM0093 ST400FM0103 ST400FM0113 ST400FM0123
ST200FM0093 ST200FM0103 ST200FM0113 ST200FM0123
ST100FM0093 ST100FM0103 ST100FM0113 ST100FM0123
Note. Previous generations of Seagate Self-Encrypting Drive models were called Full Disk Encryption (FDE) models
before a differentiation between drive-based encryption and other forms of encryption was necessary.
Note. The Self-Encrypting Drive models indicated on the cover of this product manual have provisions for “Security
of Data at Rest” based on the standards defined by the Trusted Computing Group (see www.trustedcomputinggroup.org).
For more information on FIPS 140-2 Level 2 certification see Section 7.0 on page 44.
For product certification status visit - http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/1401vend.htm.
High Endurance 2.5” Models -
1.8” Models -
Managed Life
Managed Life
SEAGATE 1200 SSD PRODUCT MANUAL, REV. A 2

2.0 APPLICABLE STANDARDS AND REFERENCE DOCUMENTATION

The drives documented in this manual have been developed as system peripherals to the highest standards of design and construction. The drives depend on host equipment to provide adequate power and environment for optimum performance and compliance with applicable industry and governmental regulations. Special attention must be given in the areas of safety, power distribution, shielding, audible noise control, and temperature regulation. In particular, the drives must be securely mounted to guarantee the specified performance characteristics. Mounting by bottom holes must meet the requirements of Section 10.3.

2.1 STANDARDS

The Seagate 1200 SSD family complies with Seagate standards as noted in the appropriate sections of this manual and the
Seagate SAS Interface Manual, part number 100293071.
The drives are recognized in accordance with UL 60950-1 as tested by UL, CSA 60950-1 as tested by CSA, and EN60950-1 as tested by TUV.
The security features of Self-Encrypting Drive models are based on the “TCG Storage Architecture Core Specification” and the “TCG Storage Workgroup Security Subsystem Class: Enterprise_A” specification with additional vendor-unique features as noted in this product manual.

2.1.1 Electromagnetic compatibility

The drive, as delivered, is designed for system integration and installation into a suitable enclosure prior to use. The drive is supplied as a subassembly and is not subject to Subpart B of Part 15 of the FCC Rules and Regulations nor the Radio Interference Regulations of the Canadian Department of Communications.
The design characteristics of the drive serve to minimize radiation when installed in an enclosure that provides reasonable shielding. The drive is capable of meeting the Class B limits of the FCC Rules and Regulations of the Canadian Department of Communications when properly packaged; however, it is the user’s responsibility to assure that the drive meets the appropriate EMI requirements in their system. Shielded I/O cables may be required if the enclosure does not provide adequate shielding. If the I/O cables are external to the enclosure, shielded cables should be used, with the shields grounded to the enclosure and to the host controller.
2.1.1.1 Electromagnetic susceptibility
As a component assembly, the drive is not required to meet any susceptibility performance requirements. It is the responsibility of those integrating the drive within their systems to perform those tests required and design their system to ensure that equipment operating in the same system as the drive or external to the system does not adversely affect the performance of the drive. See Section 6.3, DC power requirements.

2.1.2 Electromagnetic compliance

Seagate uses an independent laboratory to confirm compliance with the directives/standards for CE Marking and C-Tick Marking. The drive was tested in a representative system for typical applications and comply with the Electromagnetic Interference/Electromagnetic Susceptibility (EMI/EMS) for Class B products. The selected system represents the most popular characteristics for test platforms. The system configurations include:
• Typical current use microprocessor
• Keyboard
• Monitor/display
• Printer
• Mouse
Although the test system with this Seagate model complies with the directives/standards, we cannot guarantee that all systems will comply. The computer manufacturer or system integrator shall confirm EMC compliance and provide the appropriate marking for their product.
Electromagnetic compliance for the European Union
If this model has the CE Marking it complies with the European Union requirements of the Electromagnetic Compatibility Directive 2004/108/EC as put into place on 20 July 2007.
SEAGATE 1200 SSD PRODUCT MANUAL, REV. A 3
Australian C-Tick
If this model has the C-Tick Marking it complies with the Australia/New Zealand Standard AS/NZ CISPR22 and meets the Electromagnetic Compatibility (EMC) Framework requirements of Australia’s Spectrum Management Agency (SMA).
Korean KCC
If these drives have the Korean Communications Commission (KCC) logo, they comply with KN22, KN 24, and KN61000.
Taiwanese BSMI
If this model has the Taiwanese certification mark then it complies with Chinese National Standard, CNS13438.

2.1.3 European Union Restriction of Hazardous Substances (RoHS)

The European Union Restriction of Hazardous Substances (RoHS) Directive restricts the presence of chemical substances, including Lead (Pb), in electronic products effective July 2006.
A number of parts and materials in Seagate products are procured from external suppliers. We rely on the representations of our suppliers regarding the presence of RoHS substances in these parts and materials. Our supplier contracts require compliance with our chemical substance restrictions, and our suppliers document their compliance with our requirements by providing material content declarations for all parts and materials for the disk drives documented in this publication. Current supplier declarations include disclosure of the inclusion of any RoHS-regulated substance in such parts or materials.
Seagate also has internal systems in place to ensure ongoing compliance with the RoHS Directive and all laws and regulations which restrict chemical content in electronic products. These systems include standard operating procedures that ensure that restricted substances are not utilized in our manufacturing operations, laboratory analytical validation testing, and an internal auditing process to ensure that all standard operating procedures are complied with.

2.1.4 China Restriction of Hazardous Substances (RoHS) Directive

This product has an Environmental Protection Use Period (EPUP) of 20 years. The following table contains information mandated by China's "Marking Requirements for Control of Pollution Caused by Electronic Information Products" Standard.
"O" indicates the hazardous and toxic substance content of the part (at the homogenous material level) is lower than the threshold defined by the China RoHS MCV Standard.
"X" indicates the hazardous and toxic substance content of the part (at the homogenous material level) is over the threshold defined by the China RoHS MCV Standard.
SEAGATE 1200 SSD PRODUCT MANUAL, REV. A 4

2.2 REFERENCE DOCUMENTS

SCSI Commands Reference Manual Seagate part number: 100293068
SAS Interface Manual Seagate part number: 100293071
ANSI SAS Documents
SFF-8144 54mm x 78.5mm Form Factor with micro serial connector SFF-8223 2.5” Drive Form Factor with Serial Connector SFF-8460 HSS Backplane Design Guidelines SFF-8470 Multi Lane Copper Connector SFF-8482 SAS Plug Connector ANSI INCITS.xxx Serial Attached SCSI (SAS-3) Standard (T10/2212-D) ISO/IEC 14776-xxx SCSI Architecture Model-5 (SAM-5) Standard (T10/2104-D) ISO/IEC 14776-xxx SCSI Primary Commands-4 (SPC-4) Standard (T10/1731-D) ISO/IEC 14776-xxx SCSI Block Commands-3 (SBC-3) Standard (T10/1799-D)
ANSI Small Computer System Interface (SCSI) Documents
X3.270-1996 (SCSI-3) Architecture Model
Trusted Computing Group (TCG) Documents (apply to Self-Encrypting Drive models only)
TCG Storage Architecture Core Specification, Rev. 1.0 TCG Storage Security Subsystem Class Enterprise Specification, Rev. 1.0
Self-Encrypting Drives Reference Manual Seagate part number: 100515636
In case of conflict between this document and any referenced document, this document takes precedence.
SEAGATE 1200 SSD PRODUCT MANUAL, REV. A 5

3.0 GENERAL DESCRIPTION

Seagate 1200 SSD drives provide high performance, high capacity data storage for a variety of systems with a Serial Attached SCSI (SAS) interface. The Serial Attached SCSI interface is designed to meet next-generation computing demands for performance, scalability, flexibility and high-density storage requirements.
Seagate 1200 SSD drives are random access storage devices designed to support the Serial Attached SCSI Protocol as
described in the ANSI specifications, this document, and the SAS Interface Manual (part number 100293071) which
describes the general interface characteristics of this drive. Seagate 1200 SSD drives are classified as intelligent peripherals and provide level 2 conformance (highest level) with the ANSI SCSI-1 standard. The SAS connectors, cables and electrical interface are compatible with Serial ATA (SATA), giving future users the choice of populating their systems with either SAS or SATA drives. This allows users to continue to leverage existing investment in SCSI while gaining a 12Gb/s serial data transfer rate.
The Self-Encrypting Drive models indicated on the cover of this product manual have provisions for “Security of Data at Rest” based on the standards defined by the Trusted Computing Group (see www.trustedcomputinggroup.org).
Note. Never disassemble and do not attempt to service items in the enclosure. The drive does not contain user-
replaceable parts. Opening for any reason voids the drive warranty..

3.1 STANDARD FEATURES

Seagate 1200 SSD drives have the following standard features:
• 1.5 / 3.0 / 6.0 / 12.0* Gb Serial Attached SCSI (SAS) interface (* 12.0 Gb only available on 2.5” models)
• Integrated dual port SAS controller supporting the SCSI protocol
• Support for SAS expanders and fanout adapters
• Firmware downloadable using the SAS interface
• 128 - deep task set (queue)
• Supports up to 32 initiators
• Jumperless configuration
• User-selectable logical block size (512, 520, 524, 528, 4096, 4160, 4192, or 4224 bytes per logical block)
• Industry standard SFF 1.8 and 2.5-inch dimensions
• ECC, LDPC, and Micro-RAID Error Recovery
• No preventive maintenance or adjustments required
• Self diagnostics performed when power is applied to the drive
• Vertical, horizontal, or top down mounting
• Drive Self Test (DST)
• Parallel flash access channels
• Power loss data protection
• Thin Provisioning with Block Unmap Support
• Silent operation
• Lifetime Endurance Management (available by default on Managed Life models)
Seagate 1200 SSD Self-Encrypting Drive models have the following additional features:
• Automatic data encryption/decryption
• Controlled access
• Random number generator
• Drive locking
• Up to 16 independent data bands
• Cryptographic erase of user data for a drive that will be repurposed or scrapped
• Authenticated firmware download
• SANITIZE command support
SEAGATE 1200 SSD PRODUCT MANUAL, REV. A 6

3.2 MEDIA DESCRIPTION

The media used on the drive consists of Multi Layer Cell (MLC) NAND Flash for improved reliability and performance.

3.3 PERFORMANCE

• Firmware controlled multi-segmentable cache buffer
• Up to 1200MB/s maximum instantaneous data transfers on 12Gb capable configurations.
• Background processing of queue
• Non-Volatile Write Cache
Note. There is no significant performance difference between Self-Encrypting Drive and standard (non-Self-Encrypting
Drive) models.

3.4 RELIABILITY

• Annualized Failure Rate (AFR) of 0.44%
• Mean time between failures (MTBF) of 2,000,000 hours
• Incorporates industry-standard Self-Monitoring Analysis and Reporting Technology (S.M.A.R.T.)
• "Managed Life" or "Limited Warranty with Media Usage" warranty options [1]
[1] Warranty terms will vary based on type of warranty chosen: “Managed Life” or “Limited Warranty with Media Usage”.
Consult the Seagate sales representative for warranty terms and conditions.

3.5 FORMATTED CAPACITIES

Standard OEM models are formatted to 512 bytes per block. The block size is selectable at format time. Supported block sizes are 512, 520, 524, 528, 4096, 4160, 4192, and 4224. Users having the necessary equipment may modify the data block size before issuing a format command and obtain different formatted capacities than those listed.
To provide a stable target capacity environment and at the same time provide users with flexibility if they choose, Seagate recommends product planning in one of two modes:
Seagate designs specify capacity points at certain block sizes that Seagate guarantees current and future products will meet. We recommend customers use this capacity in their project planning, as it ensures a stable operating point with backward and forward compatibility from generation to generation. The current guaranteed operating points for this product are shown below. The Capacity stated is identical when the drive is formatted with or without PI enabled.
Table 1 Formatted Capacity Block Count
CAPACITY (BLOCKS)
BLOCK SIZE
512 520 524 528 4096 4160 4192 4224
DECIMAL HEX DECIMAL HEX DECIMAL HEX DECIMAL HEX
1,562,824,368 5D26CEB0h 781,422,768 2E9390B0h 390,721,968 1749F1B0h 195,371,568 BA52230h
1,529,743,600 5B2E08F0h 764,871,800 2D970478h 382,435,904 16CB8240h 191,217,952 B65C120h
1,509,354,136 59F6EA98h 754,677,072 2CFB7550h 377,338,536 167DBAA8h 188,669,272 B3EDD58h
1,487,666,080 58ABFBA0h 743,833,040 2C55FDD0h 371,916,520 162AFEE8h 185,958,264 B157F78h
195,353,046 BA4D9D6h 97,677,846 5D27216h 48,840,246 2E93E36h 24,421,446 174A446h
192,307,693 B7661EDh 96,153,847 5BB30F7h 48,076,924 2DD987Ch 24,038,462 16ECC3Eh
190,839,695 B5FFB8Fh 95,419,848 5AFFDC8h 47,709,924 2D7FEE4h 23,854,962 16BFF72h
189,393,940 B49EC14h 94,696,970 5A4F60Ah 47,348,485 2D27B05h 23,674,243 1693D83h
800GB 400GB 200GB 100GB
SEAGATE 1200 SSD PRODUCT MANUAL, REV. A 7

3.6 PROGRAMMABLE DRIVE CAPACITY

Using the MODE SELECT command, the drive can change its capacity to something less than maximum. See the MODE
SELECT (6) parameter list table in the SAS Interface Manual, part number 100293071. A value of zero in the Number of
Blocks field indicates that the drive will not change the capacity it is currently formatted to have. A number other than zero and less than the maximum number of LBAs in the Number of Blocks field changes the total drive capacity to the value in the Number of Blocks field. A value greater than the maximum number of LBAs is rounded down to the maximum capacity.

3.7 FACTORY-INSTALLED OPTIONS

OEMs may order the following items which are incorporated at the manufacturing facility during production or packaged before shipping. Some of the options available are (not an exhaustive list of possible options):
• Other capacities can be ordered depending on LBA size requested and other factors.
• Single-unit shipping pack. The drive is normally shipped in bulk packaging to provide maximum protection against transit damage. Units shipped individually require additional protection as provided by the single unit shipping pack. Users plan­ning single unit distribution should specify this option.
• The Safety and Regulatory Agency Specifications, part number 75789512, is usually included with each standard OEM
drive shipped, but extra copies may be ordered.

3.8 THIN PROVISIONING

3.8.1 Logical Block Provisioning

The drive is designed with a feature called Thin Provisioning. Thin Provisioning is a technique which does not require Logical Blocks to be associated to Physical Blocks on the storage medium until such a time as needed. The use of Thin Provisioning is a major factor in SSD products because it reduces the amount of wear leveling and garbage collection that must be performed. The result is an increase in the products endurance. For more details on Logical Block Provisioning and Thin Provisioning, Reference the SBC-3 document provided by the T-10 committee.

3.8.2 Thin Provisioning capabilities

The level of Thin Provisioning support may vary by product model. Devices that support Thin Provisioning are allowed to return a default data pattern for read requests made to Logical Blocks that have not been mapped to Physical Blocks by a previous WRITE command.
In order to determine if Thin Provisioning is supported and what features of it are implemented requires the system to send a READ CAPACITY 16 (9Eh) command to the drive. Thin Provisioning and the READ CAPACITY 16 (9Eh) command is defined in the Seagate SCSI Command Reference 100293068.
Product Configuration LBPME LBPRZ Non-SED Supported Supported SED Supported Not Supported
A logical block provisioning management enabled (LBPME) bit set to one indicates that the logical unit implements logical block provisioning management. An LBPME bit set to zero indicates that the logical unit is fully provisioned and does not implement logical block provisioning management.
A logical block provisioning read zeros (LBPRZ) bit set to one indicates that, for an unmapped LBA specified by a read operation, the device server sends user data with all bits set to zero to the data-in buffer. An LBPRZ bit set to zero indicates that, for an unmapped LBA specified by a read operation, the device server may send user data with all bits set to any value to the data-in buffer.

3.8.3 UNMAP

The UNMAP command requests that the device server break the association of a specific Logical Block address from a Physical Block, thereby freeing up the Physical Block from use and no longer requiring it to contain user data. An unmapped block will respond to a READ command with data that is determined by the setting of the LBPRZ bit in the READ CAPACITY parameter data.
SEAGATE 1200 SSD PRODUCT MANUAL, REV. A 8

3.8.4 FORMAT UNIT command

A device which supports Thin Provisioning will be capable of performing a SCSI FORMAT UNIT command which allocates Logical Blocks Addresses that are not linked to Physical Block Locations. A FORMAT command will cause all LBAs to become unmapped.

3.8.5 Protection Information (PI) and Security (SED)

The requirements in this section apply to any device which supports LBA unmapping.
In SCSI devices, umapped LBAs are defined as part of the Thin Provisioning model. Support of the Thin Provisioning model is indicated by the LBPME bit having a value of '1' in the READ CAPACITY (16) parameter data.
When a region of LBA's are erased via cryptographic erase, as part of the erase, the drive shall unmap those LBAs.
If the host attempts to access an unmapped or trimmed LBA, the drive shall return scrambled data. For a given LBA, the data shall be identical from access to access, until that LBA is either updated with actual data from the host or that LBA is cryptographically erased. The drive shall report a value of '0' in the LBPRZ field returned in the READ CAPACITY (16) parameter data.
If the host attempts to access an unmapped LBA on a drive that has been formatted with Protection Information (PI), the drive shall return scrambled PI data for that LBA. Depending on the value of the RDPROTECT field in the data-access command CDB, this may result in the drive returning a standard PI error to the host.
If the host reduces the addressable capacity of the drive via a MODE SELECT command, the drive shall unmap or trim any LBA within the inaccessible region of the device.
Additionally, an UNMAP command is not permitted on a locked band.
DRIVE CONFIGURATION
Standard SED
PI Setting Disabled Enabled Disabled Enabled
PROT_EN bit 0 1 0 1
LBPME bit 1 1 1 1
LBPRZ bit 1 1 0 0
PI Check Requested N/A Yes No N/A Yes No
DATA Returned for Thin Provisioned LBA
PI Returned for Thin Provisioned LBA
PI Check Performed N/A No No N/A Yes No
Error reported to Host No No No No Yes No
0x00 0x00 0x00 Random None Random
None 0xFF 0xFF None None
Scrambled PI data
SEAGATE 1200 SSD PRODUCT MANUAL, REV. A 9

4.0 PERFORMANCE CHARACTERISTICS

This section provides detailed information concerning performance-related characteristics and features of Seagate 1200 SSD drives.

4.1 INTERNAL DRIVE CHARACTERISTICS

Flash Memory Type NAND MLC Emulated LBA Size 512, 520, 524, 528, 4096, 4160, 4192 or 4224 Native Programmable Page Size 8192 User Bytes Map Unit Size 4096 Default Transfer Alignment Offset 0

4.2 PERFORMANCE CHARACTERISTICS

4.2.1 Response time

Response time measurements are taken with nominal power at 25°C ambient temperature. The typical values in the table below are defined as follows:
• Page-to-page response time is an average of all possible page-to-page accesses for a sequentially preconditioned drive.
• Average response time is a true statistical random average of at least 5000 measurements of accesses between pro­grammable pages on a randomly preconditioned drive.
Table 2 Typical Response Time (μsec)
ALL CAPACITIES
1,2
READ WRITE
Average
Page to Page 39 44
Average Latency 183 13
1. Execution time measured from receipt of the Command to the Response.
2. Assumes no errors.
3. Typical response times are measured under nominal conditions of temperature and voltage as measured on a representative sample of drives.
Typical
3
192 45
These drives are designed to provide the highest possible performance under typical conditions. How-
ever, due to the nature of Flash memory technologies there are many factors that can result in values different than those stated in this specification
2.
SEAGATE 1200 SSD PRODUCT MANUAL, REV. A 10

4.2.2 FORMAT UNIT command execution time for 512-byte LBA’s (minutes)

The device may be formatted as either a Thin Provisioned device or a Fully Provisioned device. The default format is Thin Provisioned
and is recommended for most applications. Thin Provisioning provides the most flexibility for the device to
manage the flash medium to maximize endurance.
Table 3 Maximum FORMAT UNIT Times (minutes)
C
ONFIGURATION
Non-SED
Non-SED
Non-SED
Non-SED
SED
SED
SED
SED

4.2.3 Performance

Standard 2.5” Models - Managed Life
Maximum Burst Transfer Rate 1200MB/s Peak sequential 128KB read/write
data transfer rate (MB/s max) Sustained sequential 128KB read/
write data transfer rate (MB/s) Peak 4KB random read/write
command rate (IOPs) Sustained 4KB random read/write
command rate (IOPs) Sustainable 4KB Random combined
IOPS for 5 year Endurance (65%/35% R/W, 70% Duty Cycle)
Format Mode DCRT Bit IP Bit 800GB 400GB 200GB 100GB
(Default) Thin Provisioned DCRT = 0 IP = 0 5 5 5 5
(Default) Thin Provisioned DCRT = 1 IP = 0 5 5 5 5
Fully Provisioned DCRT = 0 IP = 1 10 10 10 10
Fully Provisioned DCRT = 1 IP = 1 10 10 10 10
(Default) Thin Provisioned DCRT = 0 IP = 0 5 5 5 5
(Default) Thin Provisioned DCRT = 1 IP = 0 5 5 5 5
Fully Provisioned DCRT = 0 IP = 1 430 430 430 430
Fully Provisioned DCRT = 1 IP = 1 280 280 280 280
Notes
[1] 750/500 750/400
[1] 750/195 750/95 750/45
[2] 110,000/30,000 110,000/25,000
[2] 110,000/15,000 110,000/7500 110,000/3700
[3] 60,000 50,000
ST800FM0013 ST800FM0023 ST800FM0033
ST400FM0013 ST400FM0033
ST200FM0013 ST200FM0033
Standard 2.5” Models - Limited Warranty with Media Usage
Maximum Burst Transfer Rate 1200MB/s Peak sequential 128KB read/write
data transfer rate (MB/s max) Sustained sequential 128KB read/
write data transfer rate (MB/s) Peak 4KB random read/write
command rate (IOPs) Sustained 4KB random read/write
command rate (IOPs) Sustainable 4KB Random combined
IOPS for 5 year Endurance (65%/35% R/W, 70% Duty Cycle)
Notes
[1]
[1]
[2]
[2]
[3] 60,000 50,000
ST800FM0043 ST800FM0053 ST800FM0063
110,000/30,000 110,000/25,000
ST400FM0053 ST400FM0073
750/500 750/400
ST200FM0053 ST200FM0073
SEAGATE 1200 SSD PRODUCT MANUAL, REV. A 11
Standard 1.8” Models - Managed Life
Maximum Burst Transfer Rate 600MB/s Peak sequential 128KB read/write
data transfer rate (MB/s max) Sustained sequential 128KB read/
write data transfer rate (MB/s) Peak 4KB random read/write
command rate (IOPs) Sustained 4KB random read/write
command rate (IOPs) Sustainable 4KB Random combined
IOPS for 5 year Endurance (65%/35% R/W, 70% Duty Cycle)
Standard 1.8” Models - Limited Warranty with Media Usage
Maximum Burst Transfer Rate 600MB/s Peak sequential 128KB read/write
data transfer rate (MB/s max) Sustained sequential 128KB read/
write data transfer rate (MB/s) Peak 4KB random read/write
command rate (IOPs) Sustained 4KB random read/write
command rate (IOPs) Sustainable 4KB Random combined
IOPS for 5 year Endurance (65%/35% R/W, 70% Duty Cycle)
Notes
[1] 550/500
[1] 550/195 550/95
[2] 110,000/30,000
[2] 110,000/15,000 110,000/7500
[3] 60,000
Notes
[1]
[1]
[2]
[2]
[3] 60,000
ST400FM0023 ST400FM0043
ST400FM0063 ST400FM0083
550/500
110,000/30,000
ST200FM0023 ST200FM0043
ST200FM0063 ST200FM0083
High Endurance 2.5” Models - Managed Life
Maximum Burst Transfer Rate 1200MB/s Peak sequential 128KB read/write
data transfer rate (MB/s max) Sustained sequential 128KB read/
write data transfer rate (MB/s) Peak 4KB random read/write
command rate (IOPs) Sustained 4KB random read/write
command rate (IOPs) Sustainable 4KB Random combined
IOPS for 5 year Endurance (65%/35% R/W, 70% Duty Cycle)
Notes
[1] 750/500 750/400
[1] 750/195 750/95 750/45
[2] 110,000/50,000 110,000/50,000
[2] 110,000/15,000 110,000/7500 110,000/3700
[3] 70,000 60,000
ST400FM0113 ST400FM0123
ST200FM0113 ST200FM0123
ST100FM0113 ST100FM0123
SEAGATE 1200 SSD PRODUCT MANUAL, REV. A 12
High Endurance 2.5” Models - Limited Warranty with Media Usage
Maximum Burst Transfer Rate 1200MB/s Peak sequential 128KB read/write
data transfer rate (MB/s max) Sustained sequential 128KB read/
write data transfer rate (MB/s) Peak 4KB random read/write
command rate (IOPs) Sustained 4KB random read/write
command rate (IOPs) Sustainable 4KB Random combined
IOPS for 5 year Endurance (65%/35% R/W, 70% Duty Cycle)
Notes
[1]
[1]
[2]
[2]
[3] 70,000 60,000
ST400FM0093 ST400FM0103
750/500 750/400
110,000/50,000 110,000/50,000
ST200FM0093 ST200FM0103
ST100FM0093 ST100FM0103
[1] Testing performed at Queue Depth = 128, Sequentially Preconditioned drive, using IOMeter 2006.7.27. [2] Testing performed at Queue Depth = 128, Randomly Preconditioned drive, using IOMeter 2006.7.27. [3] Testing performed at Queue Depth = 128, Non-Preconditioned drive, using IOMeter 2006.7.27.
Note. IOMeter is available at h
ttp://www.iometer.org/ or http://sourceforge.net/projects/iometer/.
IOMeter is licensed under the Intel Open Source License and the GNU General Public License. Intel does not endorse any IOMeter results.
Peak performance is defined as the typical best case performance that the product will be able to achieve when the product is preconditioned as mentioned and host commands are aligned on 4KB boundaries.
Sustained performance is defined as the worst case performance that the product will be able to achieve when the product is preconditioned
as mentioned and host commands are aligned on 4KB boundaries. For models that support Lifetime Endurance Management, write values also take into account the worst case performance throttling that may occur to ensure the product meets specified reliability specifications.
Due to the nature of Flash memory technologies there are many factors that can result in values different than those stated in this specification. Some discrepancies can be caused by bandwidth limitations in the host adapter, operating system, or driver limitations. It is not the intent of this manual to cover all possible causes of performance discrepancies.
When evaluating performance of SSD devices, it is recommended to measure performance of the device in a method that resembles the targeted application using real world data and workloads. Test time should also be adequately large to ensure that sustainable metrics and measures are obtained.

4.3 START/STOP TIME

The drive accepts the commands listed in the SAS Interface Manual less than 3 seconds after DC power has been applied.
If the drive receives a NOTIFY (ENABLE SPINUP) primitive through either port and has not received a START STOP UNIT command with the START bit equal to 0, the drive becomes ready for normal operations within 10 seconds (excluding the error recovery procedure).
If the drive receives a START STOP UNIT command with the START bit equal to 0 before receiving a NOTIFY (ENABLE SPINUP) primitive, the drive waits for a START STOP UNIT command with the START bit equal to 1. After receiving a START STOP UNIT command with the START bit equal to 1, the drive waits for a NOTIFY (ENABLE SPINUP) primitive. After receiving a NOTIFY (ENABLE SPINUP) primitive through either port, the drive becomes ready for normal operations within 10 seconds (excluding the error recovery procedure).
If the drive receives a START STOP UNIT command with the START bit and IMMED bit equal to 1 and does not receive a NOTIFY (ENABLE SPINUP) primitive within 5 seconds, the drive fails the START STOP UNIT command.
The START STOP UNIT command may be used to command the drive to stop. Stop time is 3 seconds (maximum) from removal of DC power. SCSI stop time is 3 seconds. There is no power control switch on the drive.
SEAGATE 1200 SSD PRODUCT MANUAL, REV. A 13

4.4 CACHE CONTROL

All default cache mode parameter values (Mode Page 08h) for standard OEM versions of this drive family are given in Section 11.3.2.

4.4.1 Caching write data

Write caching is a write operation by the drive that makes use of a drive buffer storage area where the data to be written to the medium is stored while the drive performs the WRITE command.
If the number of write data logical blocks exceed the size of the segment being written into, when the end of the segment is reached, the data is written into the beginning of the same cache segment, overwriting the data that was written there at the beginning of the operation; however, the drive does not overwrite data that has not yet been written to the medium.
If write caching is enabled (WCE=1), then the drive may return Good status on a WRITE command after the data has been transferred into the cache, but before the data has been written to the medium. If an error occurs while writing the data to the medium, and Good status has already been returned, a deferred error will be generated.
Data that has not been written to the medium is protected by a back up power source which provides the ability of the data to be written to non-volatile medium in the event of an unexpected power loss.
The SYNCHRONIZE CACHE command may be used to force the drive to write all cached write data to the medium. Upon completion of a SYNCHRONIZE CACHE command, all data received from previous WRITE commands will have been written to the medium. Section 11.3.2 shows the mode default settings for the drive.

4.4.2 Prefetch operation

If the Prefetch feature is enabled, data in contiguous logical blocks on the medium immediately beyond that which was requested by a Read command are retrieved and stored in the buffer for immediate transfer from the buffer to the host on subsequent Read commands that request those logical blocks (this is true even if cache operation is disabled). Though the prefetch operation uses the buffer as a cache, finding the requested data in the buffer is a prefetch hit, not a cache operation hit.
To enable Prefetch, use Mode Select page 08h, byte 12, bit 5 (Disable Read Ahead - DRA bit). DRA bit = 0 enables prefetch.
The drive does not use the Max Prefetch field (bytes 8 and 9) or the Prefetch Ceiling field (bytes 10 and 11).
When prefetch (read look-ahead) is enabled (enabled by DRA = 0), the drive enables prefetch of contiguous blocks from the medium when it senses that a prefetch hit will likely occur. The drive disables prefetch when it decides that a prefetch hit is not likely to occur.
SEAGATE 1200 SSD PRODUCT MANUAL, REV. A 14

5.0 RELIABILITY SPECIFICATIONS

The following reliability specifications assume correct host and drive operational interface, including all interface timings, power supply voltages, environmental requirements and drive mounting constraints.
Read Error Rates
Interface error rate: Less than 1 error in 1012 bits transferred Mean Time Between Failure (MTBF): 2,000,000 hours Annualized Failure Rate (AFR): 0.44% Preventive maintenance: None required Typical Data Retention with
Power removed (at 40C) Endurance Rating:
1
Unrecovered Data Less than 1 LBA in 1016 bits transferred Miscorrected Data Less than 1 LBA in 10
21
bits transferred
3 months
2
4
Method 1: Full drive writes per day 10 (all standard models) 25 (only High Endurance models)
Method 2: TBW (per JEDEC JESD218)
ST400FM0093, ST400FM0103 = 18,250 TB
ST400FM0113, ST400FM0123 = 18,250 TB
ST800FM0013, ST800FM0023, ST800FM0033 = 14,600 TB ST800FM0043, ST800FM0053, ST800FM0063 = 14,600 TB
ST200FM0093, ST200FM0103 = 9125 TB ST200FM0113, ST200FM0123 = 9125 TB
ST400FM0013, ST400FM0023, ST400FM0033 = 7300 TB ST400FM0043, ST400FM0053, ST400FM0063 = 7300 TB
ST400FM0073, ST400FM0083 = 7300 TB
ST100FM0093, ST100FM0103 = 4562.5 TB ST100FM0113, ST100FM0123 = 4562.5 TB
ST200FM0013, ST200FM0023, ST200FM0033 = 3650 TB ST200FM0043, ST200FM0053, ST200FM0063 = 3650 TB
ST200FM0073, ST200FM0083 = 3650 TB
1. Error rate specified with automatic retries and data correction with ECC enabled and all flaws reallocated.
2. As NAND Flash devices age with use, the capability of the media to retain a programmed value begins to deteriorate.
This deterioration is affected by the number of times a particular memory cell is programmed and subsequently erased. When a device is new, it has a powered off data retention capability of up to several years. With use the retention capa­bility of the device is reduced. Temperature also has an effect on how long a Flash component can retain its programmed value with power removed. At high temperature the retention capabilities of the device are reduced. Data retention is not an issue with power applied to the SSD. The SSD drive contains firmware and hardware features that can monitor and refresh memory cells when power is applied.
3. Endurance rating is the expected amount of host data that can be written by product when subjected to a specified work-
load at a specified operating and storage temperature. For the specific workload to achieve this level of endurance, please reference JEDEC Specification JESD218. TBW is defined as 1x10
4. Limited Warranty with Media Usage provides coverage for the warranty period or until the SSD Percentage Used
Endurance Indicator, as defined in Section 5.2.7, reaches 100 whichever comes first.
12
Bytes.
SEAGATE 1200 SSD PRODUCT MANUAL, REV. A 15

5.1 ERROR RATES

The error rates stated in this manual assume the following:
• The drive is operated in accordance with this manual using DC power as defined in paragraph 6.3, "DC power require-
ments."
• Errors caused by host system failures are excluded from error rate computations.
• Assume random data.
• Default OEM error recovery settings are applied. This includes AWRE, ARRE, full read retries, full write retries and full retry
time.

5.1.1 Unrecoverable Errors

An unrecoverable data error is defined as a failure of the drive to recover data from the media. These errors occur due to read or write problems. Unrecoverable data errors are only detected during read operations, but not caused by the read. If an unrecoverable data error is detected, a MEDIUM ERROR (03h) in the Sense Key will be reported. Multiple unrecoverable data errors resulting from the same cause are treated as 1 error.

5.1.2 Interface errors

An interface error is defined as a failure of the receiver on a port to recover the data as transmitted by the device port connected to the receiver. The error may be detected as a running disparity error, illegal code, loss of word sync, or CRC error.

5.2 ENDURANCE MANAGEMENT

Customer satisfaction with Solid State Drives can be directly related to the internal algorithms which an SSD uses to manage the limited number of Program-Erase (PE) cycles that NAND Flash can withstand. These algorithms consist of Wearleveling, Garbage Collection, Write Amplification, Unmap, Data Retention, Lifetime Endurance Management.

5.2.1 Wear Leveling

Wear Leveling is a technique used by the drive to ensure that all Flash cells are written to or exercised as evenly as possible to avoid any hot spots where some cells are used up faster than other locations. Wear Leveling is automatically managed by the drive and requires no user interaction. The Seagate algorithm is tuned to operate only when needed to ensure reliable product operation.

5.2.2 Garbage Collection

Garbage Collection is a technique used by the drive to consolidate valid user data into a common cell range freeing up unused or obsolete locations to be erased and used for future storage needs. Garbage Collection is automatically managed by the drive and requires no user interaction. The Seagate algorithm is tuned to operate only when needed to ensure reliable product operation.

5.2.3 Write Amplification

While Write Amplification is not an algorithm, it is a major characteristic of SSD's that must be accounted for by all the algorithms that the SSD implements. The Write Amplification Factor of an SSD is defined as the ratio of Host/User data requested to be written to the actual amount of data written by the SSD internal to account for the user data and the housekeeping activities such as Wear Leveling and Garbage Collection. The Write Amplification Factor of an SSD can also be directly affected by the characteristics of the host data being sent to the SSD to write. The best Write Amplification Factor is achieved for data that is written in sequential LBA's that are aligned on 4KB boundaries. The worst case Write Amplification Factor typically occurs for randomly written LBA's of transfer sizes that are less than 4KB and that originate on LBA's that are not on 4KB boundaries.

5.2.4 UNMAP

A new SCSI command has been added to the SSD as part of the Thin Provisioning feature set. Use of the UNMAP command reduces the Write Amplification Factor of the drive during housekeeping tasks such as Wear Leveling and Garbage Collection. This is accomplished because the drive does not need to retain data which has been classified by the host as obsolete.
SEAGATE 1200 SSD PRODUCT MANUAL, REV. A 16

5.2.5 Data Retention

Data Retention is another major characteristic of SSD's that must be accounted for by all the algorithms that the SSD implements. While powered up, the Data Retention of SSD cells are monitored and rewritten if the cell levels decay to an unexpected level. Data Retention when the drive is powered off is affected by Program and Erase (PE) cycles and the temperature of the drive when stored.

5.2.6 Lifetime Endurance Management (Available on select models)

As stated in Section 5.2, an SSD has a limited number of Program and Erase (PE) cycles that are capable. In worse case applications, the write workload could be such that the drive experiences a high Write Amplification Factor that could lead to potential wear out prior to the drive achieving it's expected field life. Additionally, the Data Retention spec of the SSD needs to be considered to ensure the spec is met once the drive is worn out. Seagate has implemented a Lifetime Endurance Management technique which helps OEMS and user to avoid early wear out. By monitoring the write workload being sent to the drive, the drive can add additional response time to WRITE commands to provide a sustainable level of performance that is capable of being sustained for the life of the drive. Most users may never see this added response time in their applications.

5.2.7 SSD Percentage Used Endurance Indicator

An application can interrogate the drive through the host to determine an estimate of the percentage of device life that has been used. To accomplish this, issue a LOG SENSE command to log page 0x11. This allows applications to read the contents of the Percentage Used Endurance Indicator parameter code. The Percentage Used Endurance Indicator is defined in the T10 document SBC-3 available from the T10 committee.

5.3 RELIABILITY AND SERVICE

Integrators can enhance the reliability of Seagate 1200 SSD drives by ensuring that the drive receives adequate cooling. Section 6.0 provides temperature measurements and other information that may be used to enhance the service life of the drive. Section 10.2 provides recommended air-flow information.

5.3.1 Annualized Failure Rate (AFR) and Mean Time Between Failure (MTBF)

The production drive shall achieve an AFR of 0.44% (MTBF of 2,000,000 hours) when operated in an environment that ensures the case temperatures do not exceed the values specified in Section 6.5. Operation at case temperatures outside the specifications in Section 6.5 may increase the product AFR (decrease the MTBF). The AFR (MTBF) is a population statistic not relevant to individual units.
The AFR (MTBF) specification is based on the following assumptions for Enterprise Storage System environments:
• 8760 power-on hours per year.
• 250 average on/off cycles per year.
• Operations at nominal voltages.
• Systems will provide adequate cooling to ensure the case temperatures specified in Section 6.5 are not exceeded. Tem-
peratures outside the specifications in Section 6.5 will increase the product AFR and decrease the MTBF.

5.3.2 Preventive maintenance

No routine scheduled preventive maintenance is required.

5.3.3 Hot plugging the drive

When a drive is powered on by switching the power or hot plugged, the drive runs a self test before attempting to communicate on its’ interfaces. When the self test completes successfully, the drive initiates a Link Reset starting with OOB. An attached device should respond to the link reset. If the link reset attempt fails, or any time the drive looses sync, the drive initiated link reset. The drive will initiate link reset once per second but alternates between port A and B. Therefore each port will attempt a link reset once per 2 seconds assuming both ports are out of sync.
If the self-test fails, the drive does not respond to link reset on the failing port.
Note. It is the responsibility of the systems integrator to assure that no temperature, energy, voltage hazard, or ESD
potential hazard is presented during the hot connect/disconnect operation. Discharge the static electricity from the drive carrier prior to inserting it into the system.
SEAGATE 1200 SSD PRODUCT MANUAL, REV. A 17

5.3.4 S.M.A.R.T.

S.M.A.R.T. is an acronym for Self-Monitoring Analysis and Reporting Technology. This technology is intended to recognize conditions that indicate imminent drive failure and is designed to provide sufficient warning of a failure to allow administrators to back up the data before an actual failure occurs.
Note. The drive’s firmware monitors specific attributes for degradation over time but can’t predict instantaneous drive
failures.
Each monitored attribute has been selected to monitor a specific set of failure conditions in the operating performance of the drive and the thresholds are optimized to minimize “false” and “failed” predictions.
Controlling S.M.A.R.T.
The operating mode of S.M.A.R.T. is controlled by the DEXCPT and PERF bits on the Informational Exceptions Control mode page (1Ch). Use the DEXCPT bit to enable or disable the S.M.A.R.T. feature. Setting the DEXCPT bit disables all S.M.A.R.T. functions. When enabled, S.M.A.R.T. collects on-line data as the drive performs normal read and write operations. When the PERF bit is set, the drive is considered to be in “On-line Mode Only” and will not perform off-line functions.
An application can measure off-line attributes and force the drive to save the data by using the REZERO UNIT command. Forcing S.M.A.R.T. resets the timer so that the next scheduled interrupt is in one hour.
An application can interrogate the drive through the host to determine the time remaining before the next scheduled measurement and data logging process occurs. To accomplish this, issue a LOG SENSE command to log page 0x3E. This allows applications to control when S.M.A.R.T. interruptions occur. Forcing S.M.A.R.T. with the REZERO UNIT command resets the timer.
Performance impact
S.M.A.R.T. attribute data is saved to the media so that the events that caused a predictive failure can be recreated. The drive measures and saves parameters once every hour subject to an idle period on the drive interfaces. The process of measuring off-line attribute data and saving data to the media is interruptible. The maximum on-line only processing delay is summarized below
Table 1:
Maximum processing delay
Fully-enabled delay DEXCPT = 0
S.M.A.R.T. delay times 75 ms
Reporting control
Reporting is controlled by the MRIE bits in the Informational Exceptions Control mode page (1Ch). Subject to the reporting method. For example, if the MRIE is set to one, the firmware will issue to the host an 01-5D00 sense code. The FRU field contains the type of predictive failure that occurred. The error code is preserved through bus resets and power cycles.
Determining rate
S.M.A.R.T. monitors the rate at which errors occur and signals a predictive failure if the rate of degraded errors increases to an unacceptable level. To determine rate, error events are logged and compared to the number of total operations for a given attribute. The interval defines the number of operations over which to measure the rate. The counter that keeps track of the current number of operations is referred to as the Interval Counter.
S.M.A.R.T. measures error rates. All errors for each monitored attribute are recorded. A counter keeps track of the number of errors for the current interval. This counter is referred to as the Failure Counter.
Error rate is the number of errors per operation. The algorithm that S.M.A.R.T. uses to record rates of error is to set thresholds for the number of errors and appropriate interval. If the number of errors exceeds the threshold before the interval expires, the error rate is considered to be unacceptable. If the number of errors does not exceed the threshold before the interval expires, the error rate is considered to be acceptable. In either case, the interval and failure counters are reset and the process starts over.
SEAGATE 1200 SSD PRODUCT MANUAL, REV. A 18
Predictive failures
S.M.A.R.T. signals predictive failures when the drive is performing unacceptably for a period of time. The firmware keeps a running count of the number of times the error rate for each attribute is unacceptable. To accomplish this, a counter is incremented each time the error rate is unacceptable and decremented (not to exceed zero) whenever the error rate is acceptable. If the counter continually increments such that it reaches the predictive threshold, a predictive failure is signaled. This counter is referred to as the Failure History Counter. There is a separate Failure History Counter for each attribute.

5.3.5 Thermal monitor

Seagate 1200 SSD drives implement a temperature warning system which:
1. Signals the host if the temperature exceeds a value which would threaten the drive.
2. Signals the host if the temperature exceeds a user-specified value. (i.e., the reference temperature value)
3. Saves a S.M.A.R.T. data frame on the drive which exceeds the threatening temperature value.
A temperature sensor monitors the drive temperature and issues a warning over the interface when the temperature exceeds a set threshold. The temperature is measured at power-up and then at ten-minute intervals after power-up.
The thermal monitor system generates a warning code of 01-0B01 when the temperature exceeds the specified limit in compliance with the SCSI standard.
This feature is controlled by the Enable Warning (EWasc) bit, and the reporting mechanism is controlled by the Method of Reporting Informational Exceptions field (MRIE) on the Informational Exceptions Control (IEC) mode page (1Ch).

5.3.6 Drive Self Test (DST)

Drive Self Test (DST) is a technology designed to recognize drive fault conditions that qualify the drive as a failed unit. DST validates the functionality of the drive at a system level.
There are two test coverage options implemented in DST:
1. Extended test
2. Short test
The most thorough option is the extended test that performs various tests on the drive and scans every logical block address (LBA) of the drive. The short test is time-restricted and limited in length—it does not scan the entire media contents, but does some fundamental tests and scans portions of the media.
If DST encounters an error during either of these tests, it reports a "diagnostic failed" condition. If the drive fails the test, remove it from service and return it to Seagate for service.
5.3.6.1 DST failure definition
The drive will present a “diagnostic failed” condition through the self-tests results value of the diagnostic log page if a functional failure is encountered during DST. The drive parameters are not modified to test the drive more stringently, and the recovery capabilities are not reduced. All retries and recovery processes are enabled during the test. If data is recoverable, no failure condition will be reported regardless of the recovery processes required to recover the data.
The following conditions are considered DST failure conditions:
• Read error after recovery attempts are exhausted
• Write error after recovery attempts are exhausted
Recovered errors will not be reported as diagnostic failures.
SEAGATE 1200 SSD PRODUCT MANUAL, REV. A 19
Loading...
+ 57 hidden pages