Every effort has bee n m ade to e nsure that th e m ater ial herein is com plete and accurat e. However, the
manufacturer is not responsible for any mistakes in printing or faulty instructions contained in this boo k.
Notification of any errors or misprints will be received with appreciation.
For further information regarding a particular installation, operation or maintenance of equipment,
contact the manufacturer or your local representative or distributor.
This book is copyrighted. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, elec tronic , m echanical, photoc opying, recording or otherwise
without the prior written permission of the manufacturer.
Modbus is a tradem ark of Modicon, Inc.
BG0236 Rev.A2
2
Table of Contents
1 GENERAL ......................................................................................................4
5.23 Real Time Clock Registers............................................................................................38
5.24 TOU System Registers Setup........................................................................................39
5.25 TOU Daily Profiles Registers .........................................................................................40
5.26 TOU Calendar Registers................................................................................................41
5.27 TOU Calendar Years Registers.....................................................................................41
3
1 GENERAL
This docume nt specifies a subs et of the Modbus ser ial com munications protocol used to transfe r data
between a master comp uter sta tion and the PM171. T he docum ent pr ovides the com plete infor matio n
necessary to develop a third-party comm unicat ions sof tware capable of com m unic ation with the Series
PM171 Powermeters. Additional information concerning communications operation, configuring the
communications parameters, and communications connections is found in "Series PM171
Powermeters, Installation and Operation Manual".
IMPORTANT
1. The voltage parameters throughout the protocol can represent line-to-neutral or line-to-line voltages
depending on the wiring mode selected in the instrument. When the 4LN3 or 3LN3 wiring mode is
selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages.
In 4LN3, 4LL3, 3LN3 and 3LL3 wiring modes, harmonic voltages will represent line-to-neutral voltages.
In a 3-wire direct connection, harmonic voltages will represent line-to-neutral voltages as they appear on
the instrument's input transformers. In a 3-wire open delta connection, harmonic voltages will comprise
L12 and L23 line-to-line voltages.
2. In 3-wire connection schemes, the unbalanced current and phase readings for power factor, active
power, and reactive power will be zeros, because they have no meaning. Only the total three-phase
power values can be used.
3. Most of the inst rument 's advanc ed fe atures a re configu red usi ng multi ple setu p parame ters that can be
accessed in certain contiguous registers. When writing the setup registers, it is recommended to write
all the registers at once using a single request, or to clear (zero) the setup before writing into separate
registers.
4
2 MODBUS FRAMING
2.1 Transmission Mode
The protocol us es t he M odbus Remote Terminal Unit ( RT U) t rans mission mode. In RTU m ode, dat a is
sent in 8-bit binary character s. The 8 bit even parity or 8 bit no parity data format mu st be selected
when configuring the instrument communicat ions. The data format is shown in the following table.
Table 2-1 RTU Data Format
Field No. of bits
Start bit 1
Data bits 8
Parity (optional) 1
Stop bit 1
Least significant bit first
2.2 The RTU Frame Format
Frame synchronization is maintained in RTU transmission mode by simulating a synchronization
message. T he receiving device m onitors the elaps ed time between receptions o f characters. If three
and one-half character times elapse without a new character or completion of the frame, then the
device flushes the frame and assumes that the next byte received will be an address. The frame
format is def ined below.
The maximum query and response message length is 256 bytes including check characters.
RTU Message Frame Format
T1 T2 T3 Address Function Data CRC Check T1 T2 T3
8 bits 8 bits N * 8 bits 16 bits
2.3 Address Field
The address field contains a user assigned address (1-247) of the instrument that is to receive a
message. Address 0 is used in broadcast mode to transmit to all instruments (broadcast mode is
available only for functions 06 and 16). In this case all instruments receive the message and take
action on the request , but do not issue a response. I n the PM171, the broadcast mode is supporte d
only for register address es 287- 294 and 301-302 ( reset ener gies and m ax imum dem and s), 3404- 3415
(reset/clear registers), and 4352-4358 (real-time clock registers).
2.4 Function Field
The function field contains a f unction code that tells the instr ument what action to perf orm. Function
codes used in the protocol are shown below in Table 2-2.
Table 2-2 Modbus Function Codes
Code
(decimal)
03 Read holding registers Read multipl e registers
04 Read input registers Read multiple registers
06 Preset single register Write single register
16 Preset multiple registers Write multiple registers
08 Loop-back test Communicatio ns test
NOTE Broadcast mode available only f or functions code 06 and 16 .
Meaning in Modbus Action
5
2.5 Data Field
The data field c ontains information needed by the instrum ent to perform a spec ific function, or data
collected by the instrument in response to a query.
IMPORTANT Fields composed of two bytes are sent in the order high byte first, low byte second.
2.6 Error Check Field
The error c heck f ield contains the Cyclical Redundancy Check (CRC) word. T he start of the m essage
is ignored in calculating the CRC . The CRC-16 error check sequence is implemented as described in
the following paragraphs.
The message (data bits only, disregarding start/stop and optional parity bits) is considered one
continuous binary num ber whose m ost significant bit (MSB) is transmit ted first. The m essage is premultiplied by x
number (11000000000000101). The integer quotient digits are ignored and the 16-bit remainder
(initialized to all ones at the start to avoid the case of all zeros being an accepted message) is
appended to the m essage (MSB fir st) as the two CRC c heck bytes. The r esulting messa ge including
CRC, when divided by the same polynomial (x
remainder if no error s have oc curred. (The receiving unit rec alculates th e CRC and comp ares it to the
transmitted CRC). All arithmetic is performed modulo two (no carries).
The device used to serialize the data f or trans mission will s end the conventiona l LSB or right-most bit
of each char acter first. In generating the CRC, the firs t bit transmitted is defined as the MSB of the
dividend. For convenien ce, and since ther e are no carries used in t he arithmetic, let's ass ume while
computing the CRC that the MSB is on the right. To be consistent, the bit order of the generating
polynomial must be r eversed. The MSB of the polynomial is drop ped since it affe cts only the quotient
and not the rem ainder. T his yields 101 0 0000 0000 000 1 (Hex A001). Not e that th is reversal of the bit
order will have no effect whatever on the int erpretation or bit order of cha racters ext ernal to the CRC
calculations.
The step by step procedure to form the CRC-16 check bytes is as follows:
1. Load a 16-bit register with all 1's.
2. Exclusive OR the first 8- bit byte with the low order byt e of the 16-b it regist er, putti ng the resu lt in the 16- bit
register.
3. Shift the 16-bit register one bit to the right.
4a. If the bit shi fted out to the right (flag) i s one, exclusive OR the generating polyno mial 1010 000 000 00 01
with the 16-bit register.
4b. If the bit shifted out to the right is zero, return to step 3.
5. Repeat steps 3 and 4 until 8 shifts have been performed.
6. Exclusive OR the next 8-bit byte with the 16-bit register.
7. Repeat step 3 through 6 until all bytes of the message have been exclusive ORed with the 16-bit register
and shifted 8 times.
8. W h en the 16-bit CRC is transmitted in the message, the low order byte will be transmitted first, followed by
the high order byte.
For detailed information about CRC calculation, refer to the Mod bus Pr otocol Reference Guide.
16
(shifted left 16 bit s), and then divided by x
16
+ x
16
15
+ x
+ x2 + 1 expr essed as a binary
15
+ x2 + 1) at the receiver will give a zero
6
3 MODBUS MESSAGE FORMATS
3.1 Function 03 - Read Multiple Registers
This comm and allows t he user to obtain contents of up to 125 contiguous register s fr om a single data
table.
The byte count field contains quantity of bytes to be returned.
3.2 Function 04 - Read Multiple Registers
This comm and allows the user to ob tain cont ents of up to 125 cont iguous regis ters f rom a single data
table. It can be used instead of function 03.
The normal response is the retransmiss i on of the write request.
Function
(06)
Address of the register to be written
Data to be written to the register
Starting
Address
Data
Word
Error
check
7
3.4 Function 16 - Write Multiple Registers
This request a llows the us er to write t he con ten ts of m ultiple co nt iguous r egis ters to a single dat a tab le
where registers can be wr itten.
The normal response is the re-transmission of a test message.
Function
(08)
Designates action to be taken in Loop-back test. The protocol supports only Diagnostic
Code 0 - return query data.
Query data. The data passed in this field will be returned to the master through the
instrument. The entire message returned will be identical to the message transmitted by the
master, fiel d-per-field.
Function
(08)
Diagnostic
Code (0)
Diagnostic
Code (0)
Data Error
Check
Data Error
Check
8
3.6 Exception Responses
The instrum ent sends an exception r esponse when errors ar e detected in the received mes sage. To
indicate that the response is notification of an error, the high order bit of the function code is set to 1.
Exception Response
Instrument
Address
1 byte 1 byte 1 byte 2 byte
Exception response codes:
01
- Illegal function
02 - Illegal data address
03
- Illegal data value
06
- Busy, rejected message. The message was received without error, but the instrument is being
programmed fr om the keypad (only for reque st s accessing setup re gi sters).
NOTE W hen th e charac ter fra ming, p arity, or redundan cy che ck dete cts a c ommun ication error, process ing of
the master's request stops. The instrument will not act on or respond to the message.
Function (high
order bit is set to 1)
Exception
Code
Error Check
9
4 PROTOCOL IMPLEM ENTATION
4.1 Modbus Register Addresses
The PM171 Modbus register s are referred to by using addresses in the range of 0 to 65535. From
within the Modbus applications, the PM171 Modbus r egisters can be access ed by simulating holding
registers of th e Modicon 584, 88 4 or 984 Program mable Cont roller, using a 5-digit “4XX XX” or 6-digit
“4XXXXX” addressing scheme. To map the PM171 register address to the range of the Modbus
holding registers, add a value of 40001 to the PM171 register address. When a register address
exceeds 9999, use a 6-digit addr essing scheme by adding 400001 to the PM171 register ad dr ess.
4.2 Data Formats
The PM171 uses thr ee data f ormats to pass data b etween a mast er application and the instru ment: a
16-bit integer format, a 32-bit modulo 10000 format, and a 32-bit long integer format.
4.2.1 16-bit Integer Format
A 16-bit data is tr ansmitted in a single 16- bit Modbus register as unsigne d or signed integer (whole)
numbers without co nversion or using p re-scaling to a ccomm odate large-sca le and fractional num bers
to a 16-bit r egister format. Scaling can be made using either the LIN 3 linear conversion, or decimal
pre-scaling to pass fractional numbers in integer format.
Non-scaled data
The data will be presented exactly as retrieved by the communications program from the instrumen t.
The value range for unsigned data is 0 to 65535; for signed data the range is -32768 to 32767.
LIN3 (Linear) Scal i ng
This convers ion m aps the r aw data rece ived by the com munic ations pro gram in the rang e of 0 - 9999
onto the user-defined LO scale/HI scale range. The conversion is carried out according to the f or mula:
Y = (X / 9999) × (HI - LO) + LO
where:
Y - the true value in en gi neering units
X - the raw input data i n the range of 0 - 9999
LO, HI - the data low and high scales in engineering units
When data convers ion is nece ssary, the HI and LO sc ales, and data convers ion metho d are indicated
for the corresponding r egisters.
EXAMPLE
Suppose you have read a value of 5000 from register 256 that contains a voltage reading (see Table 5-1). If your
instrument has the 144V input option, and you use potential transformers with the ratings of
22,000V : 110V = 200, then the vo l tage high scale is HI = 144×200 = 28,800, and in accordance with the above
formula, the voltage reading in engineering units will be as follows:
5000 × (28800 - 0)/9999 + 0 = 14401V
When a value is written to the instrument, the convers ion is carried out in reverse to produce the
written value in the range of 0 - 9999:
X = 9999 × (Y - LO) / (HI - LO)
Decimal Scaling
Decimal pre-s caling can be used to accom modate fractional numbe rs to an integer register forma t.
Fractional num bers pre-mu ltiplied by 10 in power N, where N is the num ber of digits in the fractional
part. For example, the frequency reading of 50.01 Hz is transmitted as 5001, having been premultiplied by 100. W henever a data register c ontains a fractional num ber, the register m easurement
unit is given with a m ultiplier ×0.1, ×0.01 or ×0.001, showing an actual register resolution (the weight of
10
the least significant decimal digit). To get an actual fractional number with specified precision, scale the
register value with the g iven multiplier. To write a f r act ional nu m b er into the reg ister , divide the number
by the given multiplier.
4.2.2 32-bit Modulo 10000 Format
The short energ y registers 287-294, a nd 301-302 are transm itted in two contiguous 16-bit r egisters in
modulo 10000 f ormat. The firs t (low order) register contains the value m od 10000, and the second
(high order) register c ontains the value/10000. T o get the tru e energy reading, the high order regis ter
value should be multiplied by 10,000 and added to the low order register.
4.2.3 32-bit Long Integer Format
In a 32-bit long inte ger f orm at, dat a is transm it ted in two adjac ent 16-b it Modbus regis ters as uns igne d
or signed long integer (whole) numbers. The first register contains the low-order word (lower 16 bits)
and the second reg ister contains the high or der word (higher 16 bits) of the 32-bit long num ber. The
low-order word always starts at an even M odbus address. T he value range for unsigned d ata is 0 to
4,294,967,295; f or signed data the range is -2,147,483,648 to 2,147,483,647.
A 32-bit data can be transmit ted without convers ion as is, or by using decimal pre-sc aling to transfor m
fractional num bers to an integer format as described above (see Decimal Scaling in Section 4.2.1).
4.3 User Assignable Registers
The PM171 contains th e 120 user assignable registers in t he address range of 0 to 119 (see Table
4-1), any of which you can map to either re gister address access ible in the instr ument. Reg isters that
reside in different locations may be accessed by a single request by re-mapping them to adjacent
addresses in the user assignable registers area.
The actual addresses of the assignable registers which are accessed via addresses 0 to 119 are
specified in the u ser as signable registe r map (s ee Table 4-2) . This m ap occupies addr esses f rom 120
to 239, where map register 120 should contain the actual address of the register accessed via
assignable register 0, register 121 should contain the actual address of the register accessed via
assignable register 1, and so on. Note that the assignable register address es and the map register
addresses may not be re-mapped.
To build your own register m ap, write to m ap registe rs (120 to 239) the actual ad dresses you want to read from
or write to via the assignable area (0 to 119). Note that long word registers should always be aligned at even
addresses. Fo r example, if you want to re ad register s 7136 (real -time voltage of phase A, word) and 757 6/7577
(kWh import, long word) via registers 0-2, then do the following:
- write 7576 to register 120
- write 7577 to register 1 21
- write 7136 to register 122
Reading from registers 0-2 will return the kWh reading in registers 0 (low word) and 1 (high word), and the
voltage reading in register 2.
Register address for user data 0 120 2 R/W 240 t o 65535
Register address for user data 1 121 2 R/W 240 t o 65535
Register addres s for user data 2
...
Register address for user data 119 239 2 R/W 240 to 65535
122
...
2
...
R/W
...
240 to 65535
...
4.4 Configuring and Accessing Log Files
Configuring Memory for Logging
To use the o nboar d data lo gging, alloca te a se para te log par tition f or each spec ific data you want to be
recorded in your instrum ent. The PM171E provides conc urrent recording data in 9 dif ferent memory
partitions, one of which is intended to record event log data and the others to store 8 different data logs
using different sets of data parameters. Refer to Section 5.18 for information on how to allocate a
memory partition for your sp ecific dat a. Refer to Sectio n 5.19 on how to conf igure a set of param eters
to be recorded to each data log.
Each memor y partition you allocated for logging is or ganized as a sequential file of records where all
data is recorded in chronological order with a time and date stamp. When a partition is filled up,
recording can be stopped or can continue over the oldest records if you specified a partition with a
wrap-around (circular) attribute.
Accessing Log Files
Each log file has a separa te file read pointer which always points to the current file record that will be
read next, a nd a s eparate re gister window whic h gives acc ess t o the rec ord pointe d to by this point er.
Initially, the read pointer is as sociated with the oldest rec ord in the file. Reading a re cord via the file
window returns the cu rrent record data, and t hen the pointer automat ically advances to the following
record in the file. Consequen t requests add ress ed to the f ile window will return a new record each time
in the direction from the oldest record t o the more recent recor ds. Because the f ile window advances
automatically after the instrument responds to the master request (regardless of the number of
registers in the window being accessed), the entire window must be read at once using a single
request.
The instrum ent provides sequential readin g of a file records unt il the end of a file is reac hed. W hen a
record is requested after the end of a file, the re sponse message will contain a zero record with an
exception code indicating th e end of a log file. Refer to Sections 5.20 and 5.21 f or inform ation on rea d
requests you can use to access your log files .
You can also use the instrum en t res et regist ers ( see Section 5. 5) to rest ore t he file read po inter t o the
oldest record in your log file if you want to re-read the file fr om the be ginning. Tak e into consideratio n
the fact that in a wr ap- aro und ( c ircu lar) log par tition, the oldes t recor ds may be overwritten by the most
recent records s ince you have read them.
12
5 POWERMETER REGISTERS DESCRIPTION
5.1 Basic Data Registers
Table 5-1 Basic Data Registers
Parameter Register Size, Direc- Unit Scale Con-
byte tion Low High version
Voltage L1/L12 256 2 R 1V 0 Vmax LIN3
Voltage L2/L23 257 2 R 1V 0 Vmax LIN3
Voltage L3/L31 258 2 R 1V 0 Vmax LIN3
Current L1 259 2 R 1A 0 Imax L IN3
Current L2 260 2 R 1A 0 Imax LIN3
Current L3 261 2 R 1A 0 Imax LIN3
kW L1 262 2 R 1kW -Pmax Pmax LIN3
kW L2 263 2 R 1kW -Pmax Pmax LIN3
kW L3 264 2 R 1kW -Pmax Pmax LIN3
kvar L1 265 2 R 1kvar -Pmax Pmax LIN3
kvar L2 266 2 R 1kvar -Pmax Pmax LIN3
kvar L3 267 2 R 1kvar -Pmax Pmax LIN3
kVA L1 268 2 R 1kVA -Pmax Pmax LIN3
kVA L2 269 2 R 1kVA -Pmax Pmax LIN3
kVA L3 270 2 R 1kVA -Pmax Pmax LIN3
Power factor L1 271 2 R 0. 001 -1.000 1.000 LIN3
Power factor L2 272 2 R 0. 001 -1.000 1.000 LIN3
Power factor L3 273 2 R 0. 001 -1.000 1.000 LIN3
Total power factor 274 2 R 0.001 -1.000 1.000 LIN3
Total kW 275 2 R 1kW -Pmax Pmax LIN3
Total kvar 276 2 R 1kvar -Pmax Pmax LIN3
Total kVA 277 2 R 1kVA -Pmax Pmax LIN3
Neutral current 278 2 R 1A 0 Imax LIN3
Frequency 279 2 R 0.01Hz 45.00 65.00 LIN3
Max. sliding window kW
demand (E)
Accumulated kW
demand (E)
Max. sliding window kVA
demand (E)
Accumulated kVA
demand (E)
Max. ampere demand L1 284 2 R/W 1A 0 Imax LIN3
Max. ampere demand L2 285 2 R/W 1A 0 Im ax LI N3
Max. ampere demand L3 286 2 R/W 1A 0 Im ax LI N3
kWh im port (low) (E) 287 2 R/W 1kWh 0 9999 NONE
kWh im port (high) (E) 288 2 R/W 10,000 kWh 0 9999 NONE
kWh export (low) (E) 289 2 R/W 1kWh 0 9999 NONE
kWh export (high) (E) 290 2 R/W 10,000 kWh 0 9999 NONE
+kvarh net (low) (E) 291 2 R/W 1kvarh 0 9999 NONE
+kvarh net (high) (E) 292 2 R/W 10,000 kvarh 0 9999 NONE
-kvarh net (low) (E)
-kvarh net (high) (E)
Voltage THD L1/L12 295 2 R 0.1% 0 999.9 LIN3
Voltage THD L2/L23 296 2 R 0.1% 0 999.9 LIN3
Voltage THD L3 297 2 R 0 . 1% 0 999.9 LIN3
Current THD L1 298 2 R 0.1% 0 999.9 LIN3
Current THD L2 299 2 R 0.1% 0 999.9 LIN3
Current THD L3 300 2 R 0.1% 0 999.9 LIN3
kVAh (low) (E) 301 2 R/W 1kVAh 0 9999 NONE
kVAh (high) (E) 302 2 R/W 10,000 kVAh 0 9999 NONE
Present sliding window
kW de m and (E)
Present sliding window
kVA demand (E)
PF at maximum kVA
siding wind ow demand
303 2 R 1kW -Pmax Pmax LIN3
304 2 R 1kVA -Pmax Pmax LIN3
305 2 R 0.001 -1.000 1.000 LIN3
13
Parameter Register Size, Direc- Unit Scale Con-
byte tion Low High version
Current TDD L1 306 2 R 0.1% 0 100.0 LIN3
Current TDD L2 307 2 R 0.1% 0 100.0 LIN3
Current TDD L3 308 2 R 0.1% 0 100.0 LIN3
The parameter limits are as follows:
Imax
(20% over-range) = 1.2 × CT primary current [A]
Direct wiring (PT Ratio = 1):
Vmax
(690 V input option) = 828.0 V
Vmax
(120 V input option) = 144.0 V
Wiring via PTs (PT Ratio > 1):
Vmax (690 V input option) = 144 × PT Ratio [V]
Vmax
(120 V input option) = 144 × PT Ratio [V]
Pmax
= (Imax × Vmax × 3)/1000 [kW ] if wiring mode is 4LN3 or 3LN3
Pmax
= (Imax × Vmax × 2)/1000 [kW ] if wiring mode is 4LL3, 3OP2, 3DIR2, 3OP3 or 3LL3
Positive readings of kvarh ne t
Negative readings of kvarh net
To get bloc k interval demand reading s, specify the number of de m and periods equal to 1 (see Table 5-2).
W hen the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring
mode, they will be line-to-line voltages.
(E) available in the PM171E
NOTE
W riting a zero to one of registers 280-286 causes reset of all maximum demands. Writing a zero to one
of registers 287-294 and 30 1-302 causes reset of all accumulated en ergies. This does not apply to the
TOU system registers.
5.2 Basic Setup Registers
Table 5-2 Basic Setup Registers
Parameter Register Size,
Wiring mode 2304 2 R/W 0 = 3OP2, 1 = 4LN3,
PT ratio 2305 2 R/W
CT primary current 2306 2 R/W 1 to 50000 A
Power demand period (E) 2307 2 R/W 1,2,5,10,15,20,30,60 min,
Volt/ampere demand period 2308 2 R/W 0 to 180 0 sec
Averaging buffer size 2309 2 R/W 8, 16, 32
Reset enable/disable 2310 2 R/W 0 = disable, 1 = enable
Reserved 2311 2 R Read as 6553 5
The number of demand periods (E) 2312 2 R/W 1 to 15
Reserved 2313 2 R Read as 6553 5
Reserved 2314 2 R Read as 65535
Nominal frequency 2315 2 R/W 50, 60, 25 (Hz)
Maximum demand load cu rr ent 2316 2 R/W 0 to 50,000 A
The wiring mode options are as follows:
3OP2 - 3-wire open delta using 2 CTs (2 element)
4LN3 - 4-wire WYE using 3 PTs (3 element), line to neutral voltage readings
3DIR2 - 3-wire dire ct connection using 2 CTs (2 element)
4LL3 - 4-wire WYE using 3 PTs (3 element), line to line voltage readings
3OP3 - 3-wire open delta using 3 CTs (2 1/2 element)
3LN3 - 4-wire WYE using 2 PTs (2 1/2 element), line to neutral voltage re adings
3LL3 - 4-wire WYE using 2 PTs (2 1/2 element), lin e to line voltage readings
Data format 2348 2 R/W 1 = 8 bits/no parity
Incoming flow control
(handshaking)
Outgoing flow control
(RTS/DTR)
When changing the instrument address, baud rate or data format, the new communications parameters will take
effect 100 ms after the instrument responds to the master's request.
Reserved 2561 2 R Read as 0
Relay status 2562 2 R see Table 5-7
Reserved 2563 2 R Read as 0
Status inputs 2564 2 R see Table 5-11
Firmware version
number
Instrument options 1 2566 2 R see Table 5-8
Instrument options 2 2567 2 R see Table 5-8
Writing a value of 65535 into register 2560 will cause the instrument to perform a warm restart.
Table 5-7 Relay Status
Bit number Description
0-5 Not used (permanently set to 1)
6 Relay #2 status
7 Relay #1 status
8-15 Not used (permanently set to 0)
Bit meaning: 0 = relay is energized, 1 = relay is not energized
Table 5-8 Instrument Options
Options register Bit Description
Options1 0 120V option
1 690V option
2-3 Reserved
4 100% curre nt over-range
5 Reserved
6 Analog output 0/4-20 mA
7 Analog output 0-1 mA
8
9 Relays option
10 Digital inputs option
11-13 Reserved
14
15 Reserved
Options 2 0-2 Number of relays - 1
3-6 Number of digital inputs - 1
7-8 Number of analog outputs - 1
9-13 Reserved
14-15 Memory m odule size (PM171E): 10 = 512 Kbytes
2560 2 R/W 0 (when read)
65535 (when written) =
reset the instrument
2565 2 R 0-65535
Analog output ±1 mA
Analog expander outp ut ±1 mA
5.7 Extended Status Registers
Table 5-9 Extended Status Registers
Parameter Register Size,
Relay status 3452 2 R see Table 5-10
Reserved 3453 2 R Read as 0
Status inputs 3454 2 R see Table 5-11
Setpoints status 3455 2 R see Table 5-12
Log status 3456 2 R see Table 5-13
Data log status 3457 2 R see Table 5-14
Reserved 3458-
3473
DirectionValue range
byte
2 R Read as 0
17
Parameter Register Size,
Setpoint alarm status 3474 2 R/W see Table 5-15
Self-check alarm status 3475 2 R/W see Table 5-16
Reserved 3476-
3484
Battery status 3485 2 R 0 = low, 1 = normal
DirectionValue range
byte
2 R Read as 0
Table 5-10 Relay Status
Bit Description
0 Relay #1 status
1 Relay #2 status
2-15 Not used (perma n ently set to 0)
Bit meaning: 0 = rela y is not energized, 1 = relay is energized
Table 5-11 Status Inputs
Bit Description
0 Status input #1
1 Status input #2
2-15 Not used (perma n ently set to 0)
Bit meaning: 0 = co nt act open, 1 = contact close d
Table 5-12 Setpoints Status
Bit Description
0 Set point # 1 status
1 Set point # 2 status
2 Set point # 3 status
3 Set point # 4 status
4 Set point # 5 status
5 Set point # 6 status
6 Set point # 7 status
7 Set point # 8 status
8 Set point # 9 status
9 Setpoint # 10 status
10 Setpoint # 11 status
11 Setpoint # 12 status
12 Setpoint # 13 status
13 Setpoint # 14 status
14 Setpoint # 15 status
15 Setpoint # 16 status
Bit meaning: 0 = setpoint is released, 1 = setpoint is operated
Table 5-13 Log Status
Bit Description
0 Reserved
1 New Min/Max Log
2 New event log
3 New data log (any)
4-15 Not used (permanen t l y set to 0)
Bit meaning: 0 = no new logs, 1 = new log recorded (the new log flag is reset when the user reads the first log
record after the flag has been set)
18
Table 5-14 Data Log Status
Bit Description
0 New data log #1
1 New data log #2
2 New data log #3
3 New data log #4
4 New data log #5
5 New data log #6
6 New data log #7
7 New data log #8
4-15 Not used (permanen t l y set to 0)
Bit meaning: 0 = no new logs, 1 = new log recorded (the new log flag is reset when the user reads the first log
record after the flag has been set)
Bit meaning: 1 = set point has been operated
The setpoint alarm re gister stores the sta tus of the operated setpo ints by setting the appr opriate bits to 1. The
alarm statu s bits can be re set all together by writi ng zero to the setp oint alarm registe r. It is possible t o reset
each alarm statu s bit sepa rat ely by writing ba ck the conten ts of th e alarm regist er with a co rrespo ndi ng alar m bit
set to 0.
Table 5-16 Self-ch eck Alarm Status
Bit Description
0 Reserved
1 ROM error
2 RAM error
3 Watchdog timer reset
4 Sampling failure
5 Out of control trap
6 Reserved
7 Timing failure
8 Loss of powe r ( powe r up)
9 External reset (warm restart)
10 Configuration corrupted
11 RTC time-synchronization required
12-15 Reserved
The self-chec k alarm regist er indicates p ossible problem s with the instrumen t hardware or setup config uration.
The hardware problems are indicated by the appropriate bits which are set whenever the instrument fails self-test
diagnostics or in the event o f loss of power. The setu p config uration problems are indicat ed by the dedi cated bi t
which is set when either configuration register is corrupted. In this event, the instrument will use the default
configuration. The configuration corrupt bit may also be set as a result of the legal changes in the setup
configuration since the instrument might implicitly change or clear other setups if they are affected by the
changes made .
Hardware fault bits can be res et by writing zero to the sel f-check alarm re gister . The config uration corrupt s tatus
bit and RTC synchronization bit are also reset automatically when you change setup or update RTC either via the
front panel or through communications.
19
5.8 Memory Status Registers
Table 5-17 Memory Status Registers
Parameter Register Size,
Total memory size, Byte 3506, 3507 4 R 524288
Free memory size, Byte 3508, 3509 4 R 0 - 524288
The total number of event log records 3510 2 R 0 - 65535
The total number of data log #1 records 3511 2 R 0 - 6553 5
The total number of data log #2 records 3512 2 R 0 - 6553 5
The total number of data log #3 records 3513 2 R 0 - 6553 5
The total number of data log #4 records 3514 2 R 0 - 6553 5
The total number of data log #5 records 3515 2 R 0 - 6553 5
The total number of data log #6 records 3516 2 R 0 - 6553 5
The total number of data log #7 records 3517 2 R 0 - 6553 5
The total number of data log #8 records 3518 2 R 0 - 6553 5
Reserved 3519-3528 2 R 0
The number of new event log records 3529 2 R 0 - 65535
The number of new data log #1 records 3530 2 R 0 - 65535
The number of new data log #2 records 3531 2 R 0 - 65535
The number of new data log #3 records 3532 2 R 0 - 65535
The number of new data log #4 records 3533 2 R 0 - 65535
The number of new data log #5 records 3534 2 R 0 - 65535
The number of new data log #6 records 3535 2 R 0 - 65535
The number of new data log #7 records 3536 2 R 0 - 65535
The number of new data log #8 records 3537 2 R 0 - 65535
Reserved 3538-3547 2 R 0
The total numb er of records shows all the re cords logg ed in the mem ory partition. The number of new records
indicates the number of records never read before.
Direction Range
byte
5.9 Extended Data Registers
The following table lists all registers containing the data measured by the instrument. Notice that these registers
are arranged into groups, which are not located at adjacent addresses. You can re-map these registers into
adjacent addresses to access multiple data from different data groups by using a single reques t. Refer to Section
4.3 for information on the user assignable registers. All data can be read either as 16-bit unsigned integer
numbers using LIN3 conversion to get true values in engineering un its, or as 32-bit long signed or unsigned
integer numbers with scaling usi ng multipli ers to transm it fraction al numbers . Note that in both cases, pulse and
energy counters are transmitted as 32-bit unsigned long intege rs.
Along with the reg ister address, the table shows for each d ata item its data id entifier (ID). This is a on e word
containing a data group ID in the high byt e and the parameter off set in a group in the low byte. Data IDs are use d
to specify input or output parameters whenever a data parameter specification is needed, for example, when
selecting analog output parameters or reading Min/Max log records.
Table 5-18 Extended Data Regis t e r s
Parameter 16-bit Register32-bit Data Dir. Unit Range/Scale
Reg. Conv.Register ID Low High
None
None
Status inputs
Status inputs
(see Table 5-11)
Relays
Relay status
(see Table 5-10)
Pulse counters
Pulse counter #1 7056
Pulse counter #2 7058
6656 11776-11777 0 R 0 0
6896 12544-12545 1536 R 0 3
6976 12800-12801 2048 R 0 3
13056-13057 2560 R/W 0 999999
7057
13058-13059 2561 R/W 0 999999
7059
20
Parameter 16-bit Register32-bit Data Dir. Unit Range/Scale
Reg. Conv.Register ID Low High
Pulse counter #3 7060
7061
Pulse counter #4 7062
7063
Real-time values per phase
Voltage L1/L1 2 7136 LIN3 13312-13313 3072 R 1V 0 Vmax
Voltage L2/L2 3 7137 LIN3 13314-13315 3073 R 1V 0 Vmax
Voltage L3/L3 1 7138 LIN3 13316-13317 3074 R 1V 0 Vmax
Current L1 7139 LIN3 13318-13319 3075 R 1A 0 Imax
Current L2 7140 LIN3 13320-13321 3076 R 1A 0 Imax
Current L3 7141 LIN3 13322-13323 3077 R 1A 0 Imax
kW L1 7142 LIN3 13324-13325 3078 R 1kW -Pmax Pmax
kW L2 7143 LIN3 13326-13327 3079 R 1kW -Pmax Pmax
kW L3 7144 LIN3 13328-13329 3080 R 1kW -Pm ax Pmax
kvar L1 7145 LIN3 13330-13331 3081 R 1kvar -Pmax Pmax
kvar L2 7146 LIN3 13332-13333 3082 R 1kvar -Pmax Pmax
kvar L3 7147 LIN3 13334-13335 3083 R 1kvar -Pmax Pmax
kVA L1 7148 LIN3 13336-13337 3084 R 1kVA 0 Pmax
kVA L2 7149 LIN3 13338-13339 3085 R 1kVA 0 Pmax
kVA L3 7150 LIN3 13340-13341 3086 R 1kVA 0 Pmax
Power factor L1 7151 LIN3 13342-13343 3087 R 0.001 -1.000 1.000
Power factor L2 7152 LIN3 13344-13345 3088 R 0.001 -1.000 1.000
Power factor L3 7153 LIN3 13346-13347 3089 R 0.001 -1.000 1.000
Voltage THD L1/L12 7154 LIN3 13348-13349 3090 R 0.1% 0 999.9
Voltage THD L2/L23 7155 LIN3 13350-13351 3091 R 0.1% 0 999.9
Voltage THD L3 7156 LIN3 13352-13353 3092 R 0.1% 0 999.9
Current THD L1 7157 LIN3 13354-13355 3093 R 0.1% 0 999.9
Current THD L2 7158 LIN3 13356-13357 3094 R 0.1% 0 999.9
Current THD L3 7159 LIN3 13358-13359 3095 R 0.1% 0 999.9
K-Factor L1 7160 LIN3 13360-13361 3096 R 0.1 1.0 999.9
K-Factor L2 7161 LIN3 13362-13363 3097 R 0.1 1.0 999.9
K-Factor L3 7162 LIN3 13364-13365 3098 R 0.1 1.0 999.9
Current TDD L1 7163 LIN3 13366-13367 3099 R 0.1% 0 100.0
Current TDD L2 7164 LIN3 13368-13369 3100 R 0.1% 0 100.0
Current TDD L3 7165 LIN3 13370-13371 3101 R 0.1% 0 100.0
Voltage L12 7166 LIN3 13372-13373 3102 R 1V 0 Vmax
Voltage L23 7167 LIN3 13374-13375 3103 R 1V 0 Vmax
Voltage L31 7168 LIN3 13376-13377 3104 R 1V 0 Vmax
Real-time total v al ue s
Total kW 7256 LIN3 13696-13697 3840 R 1kW -Pmax Pmax
Total kvar 7257 LIN3 13698-13699 3841 R 1kvar -Pmax Pmax
Total kVA 7258 LIN3 13700-13701 3842 R 1kVA 0 Pmax
Total PF 7259 LIN3 13702-13703 3843 R 0.001 -1.000 1.000
Reserved 7260 LIN3 13704-13705 3844 R 0 0
Reserved 7261 LIN3 13706-13707 3845 R 0 0
Real-time auxiliary values
Reserved 7296 LIN3 13824-13825 4096 R 0 0
Neutral current 7297 LIN3 13826-13827 4097 R 1A 0 Imax
Frequency 7298 LIN3 13828-13829 4098 R 0.01Hz 0 100.00
Voltage unbalance 7299 LIN3 13830-13831 4099 R 1% 0 300
Current unbalance 7300 LIN3 13832-13833 4100 R 1% 0 300
Average values per phase
Voltage L1/L1 2 7336 LIN3 13952-13953 4352 R 1V 0 Vmax
Voltage L2/L2 3 7337 LIN3 13954-13955 4353 R 1V 0 Vmax
Voltage L3/L3 1 7338 LIN3 13956-13957 4354 R 1V 0 Vmax
Current L1 7339 LIN3 13958-13959 4355 R 1A 0 Imax
Current L2 7340 LIN3 13960-13961 4356 R 1A 0 Imax
Current L3 7341 LIN3 13962-13963 4357 R 1A 0 Imax
kW L1 7342 LIN3 13964-13965 4358 R 1kW -Pmax Pmax
kW L2 7343 LIN3 13966-13967 4359 R 1kW -Pmax Pmax
kW L3 7344 LIN3 13968-13969 4360 R 1kW -Pm ax Pmax
kvar L1 7345 LIN3 13970-13971 4361 R 1kvar -Pmax Pmax
kvar L2 7346 LIN3 13972-13973 4362 R 1kvar -Pmax Pmax
kvar L3 7347 LIN3 13974-13975 4363 R 1kvar -Pmax Pmax
Parameter 16-bit Register32-bit Data Dir. Unit Range/Scale
Reg. Conv.Register ID Low High
kVA L1 7348 LIN3 13976-13977 4364 R 1kVA 0 Pmax
kVA L2 7349 LIN3 13978-13979 4365 R 1kVA 0 Pmax
kVA L3 7350 LIN3 13980-13981 4366 R 1kVA 0 Pmax
Power factor L1 7351 LIN3 13982-13983 4367 R 0.001 -1.000 1.000
Power factor L2 7352 LIN3 13984-13985 4368 R 0.001 -1.000 1.000
Power factor L3 7353 LIN3 13986-13 987 4369 R 0. 001 -1.000 1.000
Voltage THD L1/L12 7354 LIN3 13988-13989 4370 R 0.1% 0 999.9
Voltage THD L2/L23 7355 LIN3 13990-13991 4371 R 0.1% 0 999.9
Voltage THD L3 7356 LIN3 13992-13993 4372 R 0.1% 0 999.9
Current THD L1 7357 LIN3 13994-13995 4373 R 0.1% 0 999.9
Current THD L2 7358 LIN3 13996-13997 4374 R 0.1% 0 999.9
Current THD L3 7359 LIN3 13998-13999 4375 R 0.1% 0 999.9
K-Factor L1 7360 LIN3 14000-14001 4376 R 0.1 1.0 999.9
K-Factor L2 7361 LIN3 14002-14003 4377 R 0.1 1.0 999.9
K-Factor L3 7362 LIN3 14004-14005 4378 R 0.1 1.0 999.9
Current TDD L1 7363 LIN3 14006-14007 4379 R 0.1% 0 100.0
Current TDD L2 7364 LIN3 14008-14009 4380 R 0.1% 0 100.0
Current TDD L3 7365 LIN3 14010-14011 4381 R 0.1% 0 100.0
Voltage L12 7366 LIN3 14012-14013 4382 R 1V 0 Vmax
Voltage L23 7367 LIN3 14014-14015 4383 R 1V 0 Vmax
Voltage L31 7368 LIN3 14016-14017 4384 R 1V 0 Vmax
Average total values
Total kW 7456 LIN3 14336-14337 5120 R 1kW -Pmax Pmax
Total kvar 7457 LIN3 14338-14339 5121 R 1kvar -Pmax Pmax
Total kVA 7458 LIN3 14340-14341 5122 R 1kVA 0 Pmax
Total PF 7459 LIN3 14342-14343 5123 R 0.001 -1.000 1.000
Reserved 7460 LIN3 14344-14345 5124 R 0 0
Reserved 7461 LIN3 14346-14347 5125 R 0 0
Average auxiliary values
Reserved 7496 LIN3 14464-14465 5376 R 0 0
Neutral current 7497 LIN3 14466-14467 5377 R 1A 0 Imax
Frequency 7498 LIN3 14468-14469 5378 R 0.01Hz 0 100.00
Voltage unbalance 7499 LIN3 14470-14471 5379 R 1% 0 300
Current unbalance 7500 LIN3 14472-14473 5380 R 1% 0 300
Present demands
Volt demand L1/L12 7536 LIN3 14592-14593 5632 R 1V 0 Vmax
Volt demand L2/L23 7537 LIN3 14594-14595 5633 R 1V 0 Vmax
Volt demand L3/L31 7538 LIN3 14596-14597 5634 R 1V 0 Vmax
Ampere demand L1 7539 LIN3 14598-14599 5635 R 1A 0 Imax
Ampere demand L2 7540 LIN3 14600-14601 5636 R 1A 0 Imax
Ampere demand L3 7541 LIN3 14602- 14603 5637 R 1A 0 Imax
Block kW import demand 7542 LI N3 14604-14605 5638 R 1kW 0 Pmax
Block kvar impo rt demand 7543 LIN3 14606-14607 563 9 R 1kvar 0 Pmax
Block kVA demand 7544 LIN3 14608-14609 5640 R 1kVA 0 Pma x
Sliding window kW import
demand
Sliding window kvar
import demand
Sliding window kVA
demand
Reserved 7548 LIN3 14616-14617 5644 R 0 0
Reserved 7549 LIN3 14618-14619 5645 R 0 0
Reserved 7550 LIN3 14620-14621 5646 R 0 0
Accumulated kW import
demand
Accumulated kvar import
demand
Accumulated kVA
demand
Predicted sliding window
kW import demand
Predicted sliding window
kvar import demand
7545 LIN3 14610-14611 5641 R 1kW 0 Pmax
7546 LIN3 14612-14613 5642 R 1kvar 0 Pmax
7547 LIN3 14614-14615 5643 R 1kVA 0 Pmax
7551 LIN3 14622-14623 5647 R 1kW 0 Pmax
7552 LIN3 14624-14625 5648 R 1kvar 0 Pmax
7553 LIN3 14626-14627 5649 R 1kVA 0 Pmax
7554 LIN3 14628-14629 5650 R 1kW 0 Pmax
7555 LIN3 14630-14631 5651 R 1kvar 0 Pmax
22
Parameter 16-bit Register32-bit Data Dir. Unit Range/Scale
Reg. Conv.Register ID Low High
Predicted sliding window
7556 LIN3 14632-14633 5652 R 1kVA 0 Pmax
kVA demand
PF (import) at maximum
7557 LIN3 14634-14635 5653 R 0.001 -1.000 1.000
kVA sliding w indow
demand
Block kW export demand 7558 LI N3 14636-14637 5654 R 1kW 0 Pmax
Block kvar export demand 7559 LIN3 14638-14639 5655 R 1kva r 0 Pmax
Sliding window kW export
7560 LIN3 14640-14641 5656 R 1kW 0 Pmax
demand
Sliding window kvar
7561 LIN3 14642-14643 5657 R 1kvar 0 Pmax
export demand
Accumulated kW expor t
7562 LIN3 14644-14645 5658 R 1kW 0 Pmax
demand
Accumulated kvar export
7565 LIN3 14650-14651 5661 R 1kvar 0 Pmax
kvar export demand
Total energies
kWh import 7576
14720-14721 5888 R kWh 0 109-1
7577
kWh export 7578
14722-14723
5889 R kWh 0 109-1
7579
Reserved 7580
14724-14725
5890 R 0 0
7581
Reserved 7582
14726-14727
5891 R 0 0
7583
kvarh import 7584
14728-14729
5892 R kvarh 0
10
9
-1
7585
kvarh export 7586
14730-14731
5893 R kvarh 0 109-1
7587
Reserved 7588
14732-14733
5894 R 0 0
7589
Reserved 7590
14734-14735
5895 R 0 0
7591
kVAh total 7592
14736-14737
5896 R kVAh 0
10
9
-1
7593
Phase energ ies
kWh import L1 7616
14848-14849 6144 R kWh 0 109-1
7617
kWh import L2 7618
14850-14851
6145 R kWh 0
10
9
-1
7619
kWh import L3 7620
14852-14853
6146 R kWh 0
10
9
-1
7621
kvarh import L1 7622
14854-14855
6147 R kvarh 0
10
9
-1
7623
kvarh import L2 7624
14856-14857
6148 R kvarh 0
10
9
-1
7625
kvarh import L3 7626
14858-14859
6149 R kvarh 0
10
9
-1
7627
kVAh total L1 7628
14860-14861
6150 R kVAh 0
10
9
-1
7629
kVAh total L2 7630
14862-14863
6151 R kVAh 0
10
9
-1
7631
kVAh total L3 7632
14864-14865
6152 R kVAh 0
10
9
-1
7633
Fundamental's (H01) real- tim e values per phase
Voltage L1/L12 8296 LIN3 17024-17025 10496 R 1V 0 Vmax
Voltage L2/L23 8297 LIN3 17026-17027 10497 R 1V 0 Vmax
Voltage L3 8298 LIN3 17028-17029 10498 R 1V 0 Vmax
Current L1 8299 LI N3 17030-17031 10499 R 1 A 0 Imax
Current L2 8300 LI N3 17032-17033 10500 R 1 A 0 Imax
23
Parameter 16-bit Register32-bit Data Dir. Unit Range/Scale
Reg. Conv.Register ID Low High
Current L3 8301 LI N3 17034-17035 10501 R 1 A 0 Imax
kW L1 8302 LI N3 17036-17037 10502 R 1kW -Pmax Pmax
kW L2 8303 LI N3 17038-17039 10503 R 1kW -Pmax Pmax
kW L3 8304 LIN3 17040-17041 10504 R 1kW -Pmax Pmax
kvar L1 8305 LI N3 17042-17043 10505 R 1 kvar -Pm ax Pmax
kvar L2 8306 LI N3 17044-17045 10506 R 1 kvar -Pm ax Pmax
kvar L3 8307 LI N3 17046-17047 10507 R 1 kvar -Pm ax Pmax
kVA L1 8308 LIN3 17048-17049 10508 R 1kVA 0 Pmax
kVA L2 8309 LIN3 17050-17051 10509 R 1kVA 0 Pmax
kVA L3 8310 LIN3 17052-17053 10510 R 1kVA 0 Pmax
Power factor L1 8311 LIN3 17054-17 055 10511 R 0.001 -1.000 1.000
Power factor L2 8312 LIN3 17056-17 055 10512 R 0.001 -1.000 1.000
Power factor L3 8313 LIN3 17058-17 059 10513 R 0.001 -1.000 1.000
Fundamental's (H01 ) re al-time total values
Total kW 8336 LIN3 17152-17153 10752 R 1 kW -Pmax Pmax
Total kvar 8337 LIN3 17154-17155 10753 R 1kvar -Pmax Pmax
Total kVA 8338 LIN3 17156-17157 10754 R 1kVA 0 Pma x
Total PF 8339 LIN3 17158-17159 10755 R 0.001 -1.000 1.000
Minimum real-time values per phase (M)
Voltage L1/L1 2 8416 LIN3 17408-17409 11264 R 1V 0 Vmax
Voltage L2/L2 3 8417 LIN3 17410-17411 11265 R 1V 0 Vmax
Voltage L3/L3 1 8418 LIN3 17412-17413 11266 R 1V 0 Vmax
Current L1 8419 LI N3 17414-17415 11267 R 1 A 0 Imax
Current L2 8420 LI N3 17416-17417 11268 R 0 , 01A 0 Imax
Current L3 8421 LI N3 17418-17419 11269 R 0 , 01A 0 Imax
Minimum real-time total values (M)
Total kW 8456 LIN3 17536-17537 11520 R 1 kW -Pmax Pmax
Total kvar 8457 LIN3 17538-17539 11521 R 1kvar -Pmax Pmax
Total kVA 8458 LIN3 17540-17541 11522 R 1kVA 0 Pma x
Total PF
Minimum real-t i me auxiliary values (M)
Reserved 8496 LIN3 17664-17665 11776 R 0 0
Neutral current 8497 LIN3 17666-17667 11777 R 1A 0 Imax
Frequency 8498 LIN3 17668-17669 11778 R 0.01Hz 0 100.00
Minimum demands (M) - Reserved
Reserved 8536
Maximum real -time values per phase (M)
Voltage L1/L1 2 8736 LIN3 18432-18433 13312 R 1V 0 Vmax
Voltage L2/L2 3 8737 LIN3 18434-18435 13313 R 1V 0 Vmax
Voltage L3/L3 1 8738 LIN3 18436-18437 13314 R 1V 0 Vmax
Current L1 8739 LI N3 18438-18439 13315 R 1 A 0 Imax
Current L2 8740 LI N3 18440-18441 13316 R 1 A 0 Imax
Current L3 8741 LI N3 18442-18443 13317 R 1 A 0 Imax
Maximum real -time total values (M)
Total kW 8776 LIN3 18560-18561 13568 R 1 kW -Pmax Pmax
Total kvar 8777 LIN3 18562-18563 13569 R 1kvar -Pmax Pmax
Total kVA 8778 LIN3 18564-18565 13570 R 1kVA 0 Pma x
Total PF
Maximum real-time auxiliary values (M)
Reserved 8816 LIN3 18688-18689 13824 R 0
Neutral current 8817 LIN3 18680-18681 13825 R 1A 0 Imax
Frequency 8818 LIN3 18682-18683 13826 R 0.01Hz 0 100.00
Voltages are transmitted in 1V uni t s, currents in 1A units, and powers in 1 kW/kvar/kVA units.
The actual frequency range is 45.00 - 65.00 Hz (20.00 - 65.00 Hz - special order).
Absol ute min/max value (lag or lead).
The exported energy registers are read as positive unsigned long (32-bit) integers.
W hen the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring
mode, they will be line-to-line voltages.
The TOU energy register unit will depend on the input parameter for which the register is allocated. See also
note .
(M) These parameters are logged to the Min/Max log.
(E) available in the PM171E
26
5.10 Analog Output Setup Registers
Table 5-19 Analog Output Allocation Registers
Channel Registers (see Table 5-20)
Channel #1 3148-3150
Channel #2 3151-3153
Table 5-20 Analog Channel Allocation Registers
Parameter Offset Size, byte Direction Range
Output paramete r ID +0 2 R/W see Table 5-23
Zero scale (0-4 mA) +1 2 R/W see Table 5-23
Full scale (1/20 mA) +2 2 R/W see Table 5-23
1. Except for the signed power factor (see Note 3 to Table 5-23), t he output scale is linea r with in the value
range. The scale range will be inverted if the full scale specified is less than the zero scale.
2. For bi-dir ection al an alog ou tput (±1 mA), the zero scale corresponds to the center of the scale range (0
mA) and the direction of the current matches the sign of the output parameter. For signed (bidirectional) values, such as powers and signed power factor, the scale is always symmetrical with
regard to 0 m A, and the full scale c orresponds to +1 mA output for positive read ings and to -1 mA
output for negative readings. For these, the zero scale (0 mA output) is permanently set in the
instrument to zero for all parameters except the signed power factor for which it is set to 1.000. In the
write request, the zero scale is ignored. No error will occur when you attempt to change it. Unsigned
parameters a re outp ut within the cu rrent range 0 to +1 mA and can be scaled us ing both zero an d full
scales as in the case of single-ended analog output.
Output paramete r ID +0 2 R/W see Table 5-23
Zero scale (0-4 mA) +1 2 R/W see Table 5-23
Full scale (20 mA) +2 2 R/W see Table 5-23
Except for the sig ned power factor (s ee Note 3 to Table 5-23), th e output scale is linear within the value range.
The scale range will be inverted if the full scale specified is less than the zero scale.
NOTE
Analog expander outputs settings will not be in effect until the analog expander output is globally enabled. To
activate the ana log expand er output, set the a nalog expande r option to the enabl ed state in the user sel ectable
options setup (s ee Section 5.3).
27
Table 5-23 Analog Output Parameters
Output parameter Data Size,Unit Scale Con-
ID byteLow High version
None
None
Real-time values per phas e
Voltage L1/L12 3072 2 1V 0 Vmax LIN3
Voltage L2/L23 3073 2 1V 0 Vmax LIN3
Voltage L3/L31 3074 2 1V 0 Vmax LIN3
Current L1 3075 2 1A 0 Imax LIN3
Current L2 3076 2 1A 0 Imax LIN3
Current L3 3077 2 1A 0 Imax LIN3
Real-time total value s
Total kW 3840 2 1kW -Pmax Pmax LIN3
Total kva r 3841 2 1kvar -Pmax Pmax LIN3
Total kVA 3842 2 1kVA 0 Pmax LIN3
Total PF 3843 2 0.001 -1.000 1.000 LIN3
Total PF Lag 3844 2 0.001 0 1.000 LIN3
Total PF Lead 3845 2 0.001 0 1.000 LIN3
Real-time auxilia ry values
Frequency 4098 2 0.01Hz 0 100.00 LIN3
Average values per phase
Voltage L1/L12 4352 2 1V 0 Vmax LIN3
Voltage L2/L23 4353 2 1V 0 Vmax LIN3
Voltage L3/L31 4354 2 1V 0 Vmax LIN3
Current L1 4355 2 1A 0 Imax LIN3
Current L2 4356 2 1A 0 Imax LIN3
Current L3 4357 2 1A 0 Imax LIN3
Average total values
Total kW 5120 2 1kW -Pmax Pmax LIN3
Total kva r 5121 2 1kvar -Pmax Pmax LIN3
Total kVA 5122 2 1kVA 0 Pmax LIN3
Total PF 5123 2 0.001 -1.000 1.000 LIN3
Total PF Lag 5124 2 0.001 0 1.000 LIN3
Total PF Lead 5125 2 0.001 0 1.000 LIN3
Average auxiliary values
Neutral current 5377 2 1A 0 Imax LIN3
Frequency 5378 2 0.01Hz 0 100.00 LIN3
Present demands
Accumulated kW import
demand (E)
Accumulated kVA deman d (E) 5649 2 1kVA 0 Pmax LIN3
For parameter limits, see note to Table 5-1.
Voltages are transmitted in 1V uni ts, currents in 1A units, a nd powers in 1 kW/kvar/ kVA units.
The actu al frequency range is 45.0 0 t o 65.00 Hz (20.00 - 65.00 Hz - specia l order).
The output scale for signed (bi-directional) power factor is symmetrical with regard to ±1.000 and is linear
from -0 to -1.000 , and fr om 1. 000 to +0 (n ote tha t -1.0 00 ≡ +1.000). Negative power factor is output as [ -1.000
minus measured value], and non-negative power factor is output as [+1.000 minus measured value]. To
define the entire range for power factor from -0 to +0, the scales would be specified as -0/0. Because of the
fact that negative zero may not be transmitted, the value of -0.001 is used to specify the scale of -0, and both
+0.001 and 0.000 are used to specify the scale of +0. To define the range of -0 to 0, you must send
-0.001/0.001 or -0.001/0.
W hen the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring
mode, they will be line-to-line voltages.
(E) available in the PM171E
0 2 N/A N/A NONE
5647 2 1kW 0 Pmax LIN3
28
5.12 Digital Inputs Allocation Registers
Table 5-24 Digital Inputs Allocation Register s
Parameter Register Size,
Status inputs allocation mask 3292 2 R See Table 5-25
Pulse inputs allocation mask 3293 2 R/W See Table 5-25
Not used 3294 2 R Read as 0
External demand synchr onization input mask (E) 3295 2 R/W See Table 5-25
Writing to these locations is ignored. No error will occur.
(E) available in the PM171E
NOTES
1. All digital inputs that were not allocated as pulse inputs will be automatically configured as status inputs.
2. A digital input al located for the externa l demand synchroniza tion pulse or time synchroniza tion pulse
will be automatically configured as a pulse input.
DirectionRange
byte
Table 5-25 Digital Inputs Allocation Mask
Bit Description
0 Digital input # 1 allocation status
1 Digital input # 2 allocation status
2-15 Not used (read as 0)
Bit meaning: 0 = input is not allocated, 1 = input is allocated to the group
5.13 Timers Setup Registers
Table 5-26 Timers Setup Regist e r s
Parameter Register Size,
byte
Timer #1 time inter val 3300 2 R/W 1-9999 sec, 0 = timer disabled
Timer #2 time inter val 3301 2 R/W 1-9999 sec, 0 = timer disabled
1. The setpoint is disabled when the first trigger ID is set to NONE. To disable the setpoint, write zero into
this register.
2. When writing the setpoint registers (except the event when the setpoint is to be disabled), it is
recommended to write all the setpoin t registers using a sing le request, or disable the setp oint before
writing into separate registers. Each value being written is checked for compatibility with the other
setpoint parameters; if the new value does not conform to these, the request will be rejected.
3. Operate and rel ease lim its for t he trigge r parame ters and th eir conver sion sca les ar e indica ted in Table
5-29. Each lim it value occ upies two conti guous regi sters, the fir st of which (low word) conta ins the limi t
value, and the second (high word) is reserved for long parameters. This register is always read as zero.
When written, its value is ignored.
4. Limits ind icated in Table 5-29 by a N/A mar k are read as zeros. W hen writing, they can be omitted or
should be written a s zer os.
5. When a setpoin t ac ti on is di rec t ed t o a rela y al loc ate d to outp ut en er gy puls es, an atte mp t to re -al loc ate
it for a setpoint will result in a negative response.
Status input #1 ON 1536 2 N/A N/A NONE
Status input #2 ON 1537 2 N/A N/A NONE
Status input #1 OFF 34304 2 N/A N/A NONE
Status input #2 OFF 34305 2 N/A N/A NONE
Trigger parameter Trigger Size,Unit Limit/s cale Con-
ID byteLow High version
High pulse count er #4 2563 2 0 106-1 NONE
Time/Date parame ters (E)
Day of week
Year
Month
Day of month
Hour
Minutes
Seconds
High/low real-time values per phase
High current L1 3075 2 1A 0 Imax LIN3
High current L2 3076 2 1A 0 Imax LIN3
High current L3 3077 2 1A 0 Imax LIN3
Low current L1 35843 2 1A 0 Imax LIN3
Low current L2 35844 2 1A 0 Imax LIN3
Low current L3 35845 2 1A 0 Imax LIN3
High/low real-time values on any phase
High voltage 3584 2 1V 0 Vmax LIN3
Low voltage 36096 2 1V 0 Vmax LIN3
High current 3585 2 1A 0 Imax LIN3
Low current 36097 2 1A 0 Imax LIN3
High voltage THD 3591 2 0.1% 0 999.9 LI N3
High current THD 3592 2 0.1% 0 999.9 LIN3
High K-Factor 3593 2 0.1 1.0 999.9 LIN3
High current TDD 3594 2 0.1% 0 100.0 LIN3
High/low real-time auxiliary values
High frequency 4098 2 0.01Hz 0 100.00 LIN3
Low frequency 36866 2 0.01Hz 0 100.00 LIN3
High/low average values per phase
High current L1 4355 2 1A 0 Imax LIN3
High current L2 4356 2 1A 0 Imax LIN3
High current L3 4357 2 1A 0 Imax LIN3
Low current L1 37123 2 1A 0 Imax LIN3
Low current L2 37124 2 1A 0 Imax LIN3
Low current L3 37125 2 1A 0 Imax LIN3
High/low average value s on any phase
High voltage 4864 2 1V 0 Vmax LIN3
Low voltage 37376 2 1V 0 Vmax LIN3
High current 4865 2 1V 0 Vm ax LIN3
Low current 37377 2 1V 0 Vmax LIN3
High/low average total values
High total kW import 5126 2 1k W -Pmax Pmax LIN3
High total kW export 5127 2 1k W -Pmax Pmax LIN3
High total kvar import 5128 2 1kvar -Pmax Pmax LIN3
High total kvar export 5129 2 1kvar -Pmax Pmax LIN3
High total kVA 5122 2 1kVA 0 Pmax LI N3
Low total PF Lag 37892 2 0.001 0 1.000 LIN3
Low total PF Lead 37893 2 0.001 0 1.000 LIN3
High/low average auxiliary values
High neutral current 5377 2 1A 0 Imax LIN3
High frequency 5378 2 0.01Hz 0 100.00 LIN3
Low frequency 38146 2 0.01Hz 0 100.00 LIN3
High present demands
High volt demand L1/L12 5632 2 1V 0 Vmax LIN3
High volt demand L2/L23 5633 2 1V 0 Vmax LIN3
High volt demand L3/L31 5634 2 1V 0 Vmax LIN3
High ampere dem and L1 5635 2 1A 0 Imax LIN3
High ampere dem and L2 5636 2 1A 0 Imax LIN3
High ampere dem and L3 5637 2 1A 0 Imax LIN3
High block kW import demand (E) 5638 2 1kW 0 Pm ax LIN3
High block kVA demand (E) 5640 2 1kVA 0 Pm ax LIN3
High sliding window kW import demand (E) 5641 2 1kW 0 Pmax LIN3
Trigger parameter Trigger Size,Unit Limit/s cale Con-
ID byteLow High version
High sliding window kVA demand (E) 5643 2 1kVA 0 Pmax LIN3
High accumulated kW import dema nd (E) 5647 2 1k W 0 Pmax LIN3
High accumulated kVA demand (E) 5649 2 1kVA 0 Pmax LIN3
High predicted kW import demand (E) 5650 2 1kW 0 Pmax LIN3
High predicted kVA de m and (E) 5652 2 1kVA 0 Pmax LIN3
For parameter limits, see note to Table 5-1
Voltages are transmitted in 1V uni t s, currents in 1 A units, and powers in 1 kW/kvar/ kVA units.
The setpoint is operated when the actual phase sequence does not m atch the indicated phase r ot ation.
The actual frequency range is 45.00 - 65.00 Hz (20.00 - 65.00 Hz - special order).
W hen the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring
mode, they will be line-to-line voltages.
(E) available in the PM171E
Table 5-30 Setpoint Actions
Action Action ID
No action 0
Operate relay #1 12288
Operate relay #2 12289
Increment co unter #1 (E) 16384
Increment co unter #2 (E) 16385
Increment co unter #3 (E) 16386
Increment co unter #4 (E) 16387
Clear counter #1 ( E ) 16896
Clear counter #2 ( E ) 16897
Clear counter #3 ( E ) 16898
Clear counter #4 ( E ) 16899
Clear all counte r s (E) 25600
Reset total energy (E) 24576
Reset all total maximum demands (E) 24832
Reset power maximum demands (E) 24833
Reset volt/amper e m aximum demands (E) 24834
Reset TOU energy (E) 25088
Reset TOU maximum demands (E) 25344
Clear Min/Max registers (E) 25856
Event log (E) 28674
Data log #1 (E) 28928
Data log #2 (E) 28929
Data log #3 (E) 28930
Data log #4 (E) 28931
Data log #5 (E) 28932
Data log #6 (E) 28933
Data log #7 (E) 28934
Data log #8 (E) 28935
(E) available in the PM171E
In the PM171E, operate/release actions via relays are automatically recorded to the event log whenever an
electrical quantity, status input, or phase reversal trigger is used.
Either setpoint transition (both operate and release) is recorded to the event log.
5.15 Pulsing Setpoints Registers
Table 5-31 Pulsing Registers
Relay Setup registers (see Table 5-32)
Relay #1 2892-2893
Relay #2 2894-2895
32
Table 5-32 Pulsing Setup Registers
Parameter OffsetSize,
byte
Output parameter ID +0 2 R/W se e Tabl e 5-33
Number of unit-h ours per pulse +1 2 R/W 1-9999
Direction Range
Table 5-33 Pulsing Output Parameters
Pulsing parameter ID
None 0
kWh im port 1
kWh export 2
kvarh import 4
kvarh export 5
kvarh total (a bso l ute) 6
kVAh total 7
5.16 Relay Operation Control Registers
These registers allow the user to manually override setpoint relay operations. Either relay may be
manually operated or released using commands sent via communications.
NOTES
1. A relay allocated as a pulsing relay may not be manually operated or released. When a relay is
allocated for pulsing, it automatically reverts to normal operation.
2. A relay is energized when manually operated, and is de-energized when manually released.
Table 5-34 Relay Operation Control Registers
Parameter Register Size,
Relay #1 control st atus
Relay #2 control st atus
3244 2 R/W see Tabl e 5-35
3245 2 R/W see Tabl e 5-35
Table 5-35 Relay Operation Status
byte
Direction Range
Operation status Value
Normal operati on 0
Force operate 1
Force release 2
Associated digital input ID +0 2 R/W see Table 5-38
Scale factor (number of units
per input pulse)
+1 2 R/W 1-9999
DirectionRange
byte
33
Table 5-38 Digital Inputs Identifie r s
Discrete input ID
Not allocated 0
Digital input # 1 1
Digital input # 2 2
5.18 Log Memory Partitions Setup Registers
Table 5-39 Memory Partitions Setup Registers
Partition
Number
0 Event log 3660-3665
1 Data log #1 3668-3673
2 Data log #2 3676-3681
3 Data log #3 3684-3689
4 Data log #4 3692-3697
5 Data log #5 3700-3705
6 Data log #6 3708-3713
7 Data log #7 3716-3721
8 Data log #8 3724-3729
Table 5-40 Partition Setup Registers
The number of records in the
partition
The number of log parameters in the
record for a data log partition (for an
event log partition, write 0)
Partition type +2 2 R/W 0 = non-wrap
Record size, byte +3 2 R
Partition size, byte +4
These registers allow you to allocate a memory partition for logging and to specify the partition size and type.
Before alloca ting a par titio n, it is recom men ded to che ck t he avail able m emor y by readin g the extend ed memo ry
status registers. To help you in planning memory, Table 5-41 shows the rec ord size for each partition .
Note that the existing partition may not be resized. To change the partition properties, you should first delete a
partition and then reallocate it with the desirable properties. To delete a partition, write zero into the first
partition's register.
When allocating a memory partiti on, all partitio n registers must be written a t once using a sing le request. After
reallocation of memory, the instrument performs the memory optimization and will not respond to the host
requests for approximately 1 second per 128 Kbyte of memory.
Writing into registers at offsets +3, +4 and +5 does not affect the register contents. No error will occur.
Table 5-41 Partitions' Record Size
Partition Record size, byte
Event log 14
Data log
Memory partition Setup registers
(see Table 5-40)
Parameter Offset Size,
byte
+0 2 R/W 0-65535,
+1 2 R/W 0-16
4 R 0-524288
+5
8 + 4 ∗ (NUMBER OF PARAMETERS)
Direction Range
0 = delete partition
1 = wrap around
34
5.19 Data Log Setup Registers
Table 5-42 Data Log Setup Registe r s
Partition Registers (see Table 5-43)
Data log #1 1792-1807
Data log #2 1808-1823
Data log #3 1824-1839
Data log #4 1840-1855
Data log #5 1856-1871
Data log #6 1872-1887
Data log #7 1888-1903
Data log #8 1904-1919
Table 5-43 Data Log Setup
Parameter Offset Size,
Log parameter #1 ID +0 2 R/W see Table 5-18
Log parameter #2 ID +1 2 R/W see Table 5-18
Log parameter #3 ID +2 2 R/W see Table 5-18
Log parameter #4 ID +3 2 R/W see Table 5-18
Log parameter #5 ID +4 2 R/W see Table 5-18
Log parameter #6 ID +5 2 R/W see Table 5-18
Log parameter #7 ID +6 2 R/W see Table 5-18
Log parameter #8 ID +7 2 R/W see Table 5-18
Log parameter #9 ID +8 2 R/W see Table 5-18
Log parameter #10 ID +9 2 R/W see Table 5-18
Log parameter #11 ID +10 2 R/W see Table 5-18
Log parameter #12 ID +11 2 R/W see Table 5-18
Log parameter #13 ID +12 2 R/W see Table 5-18
Log parameter #14 ID +13 2 R/W see Table 5-18
Log parameter #15 ID +14 2 R/W see Table 5-18
Log parameter #16 ID +15 2 R/W see Table 5-18
Parameters that can be s elected for d ata log are l isted in Tabl e 5-18. Before setting up the parameter s for any
data log, th e memor y partit ion mus t be a llocate d for the lo g (see Se ction 5.18). When writing th e data log s etup
registers, only parameters that are specified in the partition record setup will be written. When reading registers,
those that are not defined in the data log setup will be read as zeros.
Direction Range
byte
5.20 Event Log Registers
These registers allow you to read the packet of consequent records from the event log partition. From 1 to 10
event log records can be read at a time via the event log windows, which comprise registers 3916 through 4035.
Reading from eith er event log window always ret urns the ne xt logg ed even t. Al l reg iste rs within on e wind ow must
be read at once using a single request. After reading each record, the partition queue pointer is shifted forward
until the last logged record has been read. After that, the exception code 98 is returned in the window register at
offset +0. It should be c hecked befo re accept ing the recor d. To restore the queue to the orig in, a zero must be
written to the event lo g queue reset register (se e Section 5.5).
Minute +1 2 R 0 -59
Hour +2 2 R 0-23
Day +3 2 R 1-31
Month +4 2 R 1-12
Year +5 2 R 0-99
Event cause +6 2 R see Table 5-46
Event origin +7 2 R see Table 5-46
Log value (16-bi t
register/32-bit counter)
Event effect +10 2 R see Table 5-46
Event target +11 2 R see Table 5- 46
The log value can be read in one or two registers depen ding on the value type. Fo r the value length and
conversion scales, refer to Table 5-26.
+8
+9
4 R see Table 5-46
Direction Range
97 = record corrupted
98 = no more events
99 = no events logged
Table 5-46 Event Log Parameters
Event
cause
Setpoint
event
Comm.
activity
Front panel
activity
Self-check 93 Data location code
External
event
Event cause code Event origin
(location)
Trigger para meter
ID high byte (see
Table 5-29)
91 Data location code
92 Data location code
99 0 = power down
Trigger para m eter ID
low byte (se e T able
5-29)
(see Table 5-47)
(see Table 5-47)
(see Table 5-47)
8 = power up
Log value Event ef fect Event target
Trigger
parameter
value (see
Table 5-29)
N/A See Table 5-48 See Table 5-48
N/A See Table 5-48 See Table 5-48
N/A See Table 5-48 See Table 5-48
N/A N/A N/A
225 = setpoint
operated
226 = setpoint
released
Setpoint
number = 0-15
Table 5-47 Data Location Codes
Location code Description
3 Data keeping memory
8 Real-time clock
16 Event/alarm setpoint
Table 5-48 Event Effect Codes
Effect code Description Target
96 Clear energy regist ers N/A
97 Clear maximum demand
registers
98 Clear TOU energy registers N/A
99 Clear TOU maximum demand
0 = all demands
1 = power deman ds
2 = volt/ampere demands
N/A
1-4 = counter #1-#4
16 = all data logs
36
5.21 Data Log Registers
Data log records are read via a data log window, one for each data log partition. Reading from this window
always returns t he ne xt rec ord lo gg ed in th e pa rtit ion. Al l reg is te rs with in on e window mus t be rea d at on ce us ing
a single reque st. After reading eac h record, the partition queue pointer is sh ifted forward until the la st logged
record has been read. After that, the exception code 98 is returned in the re cord's first regist er. It should be
checked before accepting the record. To restore the queue to the origin, a zero must be written to the partition
queue reset reg i ster (see Section 5.5).
Table 5-49 Data Logs Window Registers
Data log window Registers (see Table 5-50)
Data log #1 window 1120-1161
Data log #2 window 1162-1203
Data log #3 window 1204-1245
Data log #4 window 1246-1287
Data log #5 window 1288-1329
Data log #6 window 1330-1371
Data log #7 window 1372-1413
Data log #8 window 1414-1455
Table 5-50 Data Log Window Registers
Parameter Offset Size,
byte
Trigger setpoint number +0 2 R 1-16,
Hundredths of se cond +1 2 R 0-99
Second +2 2 R 0-59
Minute +3 2 R 0-59
Hour +4 2 R 0-23
Day +5 2 R 1-31
Month +6 2 R 1-12
Year +7 2 R 0-99
Reserved +8 2 R 0
The number of parameters
in the record
Log parameter #1 valu e +11
Log parameter #2 valu e +13
...
Log parameter #16 value +40
The log parameter value is read as 16-bit ordinal register or 32-bit counter. For the value range and
conversion scales, refer to Table 5-18.
When reading the data log window registers, those that reside outside of the specified partition record size will be
read as zeros. The actual number o f parameters in t he record is indic ated in the log window register at offs et
+10.
+10 2 R 1-16
4 R see Table 5-18
+12
4 R see Table 5-18
+14
4 R see Table 5-18
+41
Direction Range
97 = record corrupted
98 = no more records
99 = no records logged
5.22 Min/Max Log Registers
These registers allow you to read time-stamped Min/Max logs in 16-bit Modbus registers using LIN3 conversion.
From 1 to 12 adjacen t records c an be read at a tim e via the Min/Max log windows. The start ing window #1 can
be mapped to any Min/Max log parameter listed in Table 5-18 by writing the parameter ID to the Min/Max log
mapping register. This register must be written before reading the Min/Max log windows. Note that through
Min/Max log windows, you can read onl y adjacent par ameters within the sa me Min/Max log data group. Re ading
parameters outside of the selected Min/Max log data group will return zero.
Second +0 2 R 0-59
Minute +1 2 R 0-59
Hour +2 2 R 0-23
Day +3 2 R 1-31
Month +4 2 R 1-12
Year +5 2 R 0-99
Parameter value +6 2 R see Table 5- 18
Reserved +7 2 R 0
The Min/Max parameter value is r ead in a 16-b it re gist er. Fo r the value rang e and c onversi on sc ales , refer to
Table 5-18.
DirectionRange
byte
Table 5-53 Min/Max Log Mapping Register
Parameter Register Size,
Min/Max log start param eter ID
for window #1
4172 2 R/W see Table 5-18
DirectionRange
byte
5.23 Real Time Clock Registers
Table 5-54 RTC Registers
Parameter Register Size,
byte
Seconds 4352 2 R/W 0-59
Minutes 4353 2 R/W 0-59
Hour 4354 2 R/W 0-23
Day of month 4355 2 R/W 1-31
Month 4356 2 R/W 1-12
Year 4357 2 R/W 0-99
Day of week 4358 2 R/W 1-7 (1=Sunday)
The day of week is not checked when written. It is set automatically when you change the date.
38
Direction Range
5.24 TOU System Registers Setup
Table 5-55 TOU System Setup Registers
TOU system register Setup registers
(see Table 5-56)
TOU energy register #1 4564-4565
TOU energy register #2 4566-4567
TOU energy register #3 4568-4569
TOU energy register #4 4570-4571
TOU energy register #5 4572-4573
TOU energy register #6 4574-4575
TOU energy register #7 4576-4577
TOU energy register #8 4578-4579
TOU Maximum kW demand register 4580-4581
N/A 4582-4583
TOU Maximum kVA demand register 4584-4585
Writing to this register is ignored. No error will occur.
Table 5-56 TOU Register Setup
Parameter Offset Size,
TOU register input id entifier +0 2 R/W see Tables 5-57, 5-58
For a pulse input = numb e r of
unit-hours per pulse. Otherwise,
set to 0.
1. Each TOU register consists of 16 tariff registers.
2. If a pulse input is assigned to an energy register, the register's input ID must be written first.
Specifying this input will be accepted as NONE. No error will occur.
DirectionRange
byte
39
5.25 TOU Daily Profiles Registers
Table 5-59 TOU Daily Profiles Registers
TOU daily profile Setup registers
(see Table 5- 60 )
TOU daily profile #1 2048-2063
TOU daily profile #2 2064-2079
TOU daily profile #3 2080-2095
TOU daily profile #4 2096-2111
TOU daily profile #5 2112-2127
TOU daily profile #6 2128-2143
TOU daily profile #7 2144-2159
TOU daily profile #8 2160-2175
TOU daily profile #9 2176-2191
TOU daily profile #10 2192-2207
TOU daily profile #11 2208-2223
TOU daily profile #12 2224-2239
TOU daily profile #13 2240-2255
TOU daily profile #14 2256-2271
TOU daily profile #15 2272-2287
TOU daily profile #16 2288-2303
Table 5-60 TOU Profile Setup Registe r s
Parameter
1st tariff change Tariff start time +0 2 R/W 0
Active tariff number +1 2 R/W 0-15
2nd tariff change Tariff start time +2 2 R/W see Table 5-61
Active tariff number +3 2 R/W 0-15
3rd tariff change Tariff start time +4 2 R/W see Table 5-61
Active tariff number +5 2 R/W 0-15
4th tariff change Tarif f start time +6 2 R/W see Table 5-61
Active tariff number +7 2 R/W 0-15
5th tariff change Tarif f start time +8 2 R/W see Table 5-61
Active tariff number +9 2 R/W 0-15
6th tariff change Tarif f start time +10 2 R/W see Table 5-61
Active tariff number +11 2 R/W 0-15
7th tariff change Tarif f start time +12 2 R/W see Table 5-61
Active tariff number +13 2 R/W 0-15
8th tariff change Tarif f start time +14 2 R/W see Table 5-61
Active tariff number +15 2 R/W 0-15
Table 5-61 Tariff Start Time Register
Parameter Bits Range
Tariff start minute 0-7 0-45
Tariff sta rt ho ur 8-15 0-23
The daily start time for each tariff is specified with a resolution of 15 minutes. If another value is specified, it will
be truncated to the lower value divisible by 15 minutes. No error will occur. The first daily tariff change time is
always 00:00. It is pre served internally and cannot be changed.
Offset Size,
byte
Direction Range
40
5.26 TOU Calendar Registers
Table 5-62 TOU Calendars Registers
TOU calendar Calendar month Setup registers
(see Table 5-63)
TOU calendar #1 January 4368-4375
February 4376-4383
March 4384-4391
April 4392-4399
May 4400-4407
June 4408-4415
July 4416-4423
August 4424-4431
September 4432-4439
October 4440-4447
November 4448-4455
December 4456-4463
TOU calendar #2 January 4464-4471
February 4472-4479
March 4480-4487
April 4488-4495
May 4496-4503
June 4504-4511
July 4512-4519
August 4520-4527
September 4528-4535
October 4536-4543
November 4544-4551
December 4552-4559
Table 5-64 TOU Calendar Setup Re gis t e rs
Parameter Offset Size, byteDirection Range
1-4 day profiles +0 2 R/W see Table 5-65
5-8 day profiles +1 2 R/W see Table 5-65
9-12 day profil es +2 2 R/W see Table 5-65
13-16 day profiles +3 2 R/W see Table 5-65
17-20 day profiles +4 2 R/W see Table 5-65
21-24 day profiles +5 2 R/W see Table 5-65
25-28 day profiles +6 2 R/W see Table 5-65
29-31 day profiles +7 2 R/W see Table 5-65
Table 5-65 TOU Calendar Profile Format
Parameter Bits Range
1st day profile number 0-3 0-15
2nd day profile number 4-7 0-15
3rd day profile num ber 8-11 0-15
4th day profile number 12-15 0-15
Each profile regi ster defines daily profil es for four days of month.
5.27 TOU Calendar Years Registers
These registers allow to associate calend ar years with two TOU annual calendars.
Table 5-66TOU Calendar Years Registers
Parameter Register Size, byte Direction Range
1st annual calendar year 4560 2 R/W 0-99
2nd annual calendar year 4561 2 R/W 0-99
41
NOTES
42
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.