Satec PM171 series Reference Manual

Series PM171
Powermeters
Modbus
Communications
Protocol
Reference
BG0236 Rev. A2
SERIES PM171 POWERMETERS
COMMUNICATIONS
Modbus Communications Protocol
REFERENCE GUIDE
Every effort has bee n m ade to e nsure that th e m ater ial herein is com plete and accurat e. However, the manufacturer is not responsible for any mistakes in printing or faulty instructions contained in this boo k. Notification of any errors or misprints will be received with appreciation.
For further information regarding a particular installation, operation or maintenance of equipment, contact the manufacturer or your local representative or distributor.
This book is copyrighted. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, elec tronic , m echanical, photoc opying, recording or otherwise without the prior written permission of the manufacturer.
Modbus is a tradem ark of Modicon, Inc.
BG0236 Rev.A2
2
Table of Contents
1 GENERAL ......................................................................................................4
2 MODBUS FRAMING ......................................................................................5
2.1 Transmission Mode.............. .................. ................... .................. ................... ....................5
2.2 The RTU Frame Format ....................................................................................................5
2.3 Address Field.....................................................................................................................5
2.4 Function Field.....................................................................................................................5
2.5 Data Field..................... .................. ................................... .................. ................... ............6
2.6 Error Check Field...............................................................................................................6
3 MODBUS MESSAGE FORMATS...................................................................7
3.1 Function 03 - Read Multiple Registers...............................................................................7
3.2 Function 04 - Read Multiple Registers...............................................................................7
3.3 Function 06 - Write Single Register...................................................................................7
3.4 Function 16 - Write Multiple Registers...............................................................................8
3.5 Function 08 - Loop-back Communications Test................................................................8
3.6 Exception Responses.................... ................... .................. ................... .................. ..........9
4 PROTOCOL IMPLEMENTATION.................................................................10
4.1 Modbus Register Addre sses........................ .................. ................... .................. ... ..........10
4.2 Data Formats............................ ... .................. ................... .................. ................... ..........10
4.2.1 16-bit Integer Format................................................................................................10
4.2.2 32-bit Modulo 10000 Format....................................................................................11
4.2.3 32-bit Long Integer Format................................ ... ..................... .. ..................... ... .. ...11
4.3 User Assignable Registers........... ... .................. .................. ... .................. ................... .....11
4.4 Configuring and Accessing Log Files ...............................................................................12
5 POWERMETER REGISTERS DESCRIPTION.............................................13
5.1 Basic Data Registers........................................................................................................13
5.2 Basic Setup Registers......................................................................................................14
5.3 User Selectable Option s Setu p Regi ste rs.............................. ... .................. ... ..................15
5.4 Communications Setup Registers....................................................................................16
5.5 Reset/Clear Registers ......................................................................................................16
5.6 Instrument Status Registers......... .................. ................... .................. ... .................. ........17
5.7 Extended Status Registers............... ..................... ........................................................... 17
5.8 Memory Status Registers.................................................................................................20
5.9 Extended Data Regist ers....... ..................... .....................................................................20
5.10 Analog Output Setup Registers......................................................................................27
5.11 Analog Expander Setup Registers.................................................................................27
5.12 Digital Inputs Allocation Registers..................................................................................29
5.13 Timers Setup Registers .................................................................................................29
5.14 Alarm/Event Setpoints Registers ...................................................................................29
5.15 Pulsing Setpoints Registers...........................................................................................32
5.16 Relay Operation Control Registers................................................................................33
5.17 Pulse Counters Setup Registers....................................................................................33
5.18 Log Memory Partitions Setup Registers...... ............................................................. ......34
5.19 Data Log Setup Registers.......................................................... ....................................35
5.20 Event Log Registers......... ..................... ............................................................. ............35
5.21 Data Log Registers ............. ..................... ................... ..................... ..............................37
5.22 Min/Max Log Registers..................................................................................................37
5.23 Real Time Clock Registers............................................................................................38
5.24 TOU System Registers Setup........................................................................................39
5.25 TOU Daily Profiles Registers .........................................................................................40
5.26 TOU Calendar Registers................................................................................................41
5.27 TOU Calendar Years Registers.....................................................................................41
3
1 GENERAL
This docume nt specifies a subs et of the Modbus ser ial com munications protocol used to transfe r data between a master comp uter sta tion and the PM171. T he docum ent pr ovides the com plete infor matio n necessary to develop a third-party comm unicat ions sof tware capable of com m unic ation with the Series PM171 Powermeters. Additional information concerning communications operation, configuring the communications parameters, and communications connections is found in "Series PM171 Powermeters, Installation and Operation Manual".
IMPORTANT
1. The voltage parameters throughout the protocol can represent line-to-neutral or line-to-line voltages depending on the wiring mode selected in the instrument. When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages. In 4LN3, 4LL3, 3LN3 and 3LL3 wiring modes, harmonic voltages will represent line-to-neutral voltages. In a 3-wire direct connection, harmonic voltages will represent line-to-neutral voltages as they appear on the instrument's input transformers. In a 3-wire open delta connection, harmonic voltages will comprise L12 and L23 line-to-line voltages.
2. In 3-wire connection schemes, the unbalanced current and phase readings for power factor, active power, and reactive power will be zeros, because they have no meaning. Only the total three-phase power values can be used.
3. Most of the inst rument 's advanc ed fe atures a re configu red usi ng multi ple setu p parame ters that can be accessed in certain contiguous registers. When writing the setup registers, it is recommended to write all the registers at once using a single request, or to clear (zero) the setup before writing into separate registers.
4
2 MODBUS FRAMING
2.1 Transmission Mode
The protocol us es t he M odbus Remote Terminal Unit ( RT U) t rans mission mode. In RTU m ode, dat a is sent in 8-bit binary character s. The 8 bit even parity or 8 bit no parity data format mu st be selected when configuring the instrument communicat ions. The data format is shown in the following table.
Table 2-1 RTU Data Format
Field No. of bits
Start bit 1 Data bits  8 Parity (optional) 1 Stop bit 1
Least significant bit first
2.2 The RTU Frame Format
Frame synchronization is maintained in RTU transmission mode by simulating a synchronization message. T he receiving device m onitors the elaps ed time between receptions o f characters. If three and one-half character times elapse without a new character or completion of the frame, then the device flushes the frame and assumes that the next byte received will be an address. The frame format is def ined below.
The maximum query and response message length is 256 bytes including check characters.
RTU Message Frame Format
T1 T2 T3 Address Function Data CRC Check T1 T2 T3 8 bits 8 bits N * 8 bits 16 bits
2.3 Address Field
The address field contains a user assigned address (1-247) of the instrument that is to receive a message. Address 0 is used in broadcast mode to transmit to all instruments (broadcast mode is available only for functions 06 and 16). In this case all instruments receive the message and take action on the request , but do not issue a response. I n the PM171, the broadcast mode is supporte d only for register address es 287- 294 and 301-302 ( reset ener gies and m ax imum dem and s), 3404- 3415 (reset/clear registers), and 4352-4358 (real-time clock registers).
2.4 Function Field
The function field contains a f unction code that tells the instr ument what action to perf orm. Function codes used in the protocol are shown below in Table 2-2.
Table 2-2 Modbus Function Codes
Code
(decimal)
03 Read holding registers Read multipl e registers 04 Read input registers Read multiple registers 06 Preset single register Write single register 16 Preset multiple registers Write multiple registers 08 Loop-back test Communicatio ns test
NOTE Broadcast mode available only f or functions code 06 and 16 .
Meaning in Modbus Action
5
2.5 Data Field
The data field c ontains information needed by the instrum ent to perform a spec ific function, or data collected by the instrument in response to a query.
IMPORTANT Fields composed of two bytes are sent in the order high byte first, low byte second.
2.6 Error Check Field
The error c heck f ield contains the Cyclical Redundancy Check (CRC) word. T he start of the m essage is ignored in calculating the CRC . The CRC-16 error check sequence is implemented as described in the following paragraphs.
The message (data bits only, disregarding start/stop and optional parity bits) is considered one continuous binary num ber whose m ost significant bit (MSB) is transmit ted first. The m essage is pre­multiplied by x number (11000000000000101). The integer quotient digits are ignored and the 16-bit remainder (initialized to all ones at the start to avoid the case of all zeros being an accepted message) is appended to the m essage (MSB fir st) as the two CRC c heck bytes. The r esulting messa ge including CRC, when divided by the same polynomial (x remainder if no error s have oc curred. (The receiving unit rec alculates th e CRC and comp ares it to the transmitted CRC). All arithmetic is performed modulo two (no carries).
The device used to serialize the data f or trans mission will s end the conventiona l LSB or right-most bit of each char acter first. In generating the CRC, the firs t bit transmitted is defined as the MSB of the dividend. For convenien ce, and since ther e are no carries used in t he arithmetic, let's ass ume while computing the CRC that the MSB is on the right. To be consistent, the bit order of the generating polynomial must be r eversed. The MSB of the polynomial is drop ped since it affe cts only the quotient and not the rem ainder. T his yields 101 0 0000 0000 000 1 (Hex A001). Not e that th is reversal of the bit order will have no effect whatever on the int erpretation or bit order of cha racters ext ernal to the CRC calculations.
The step by step procedure to form the CRC-16 check bytes is as follows:
1. Load a 16-bit register with all 1's.
2. Exclusive OR the first 8- bit byte with the low order byt e of the 16-b it regist er, putti ng the resu lt in the 16- bit
register.
3. Shift the 16-bit register one bit to the right.
4a. If the bit shi fted out to the right (flag) i s one, exclusive OR the generating polyno mial 1010 000 000 00 01
with the 16-bit register.
4b. If the bit shifted out to the right is zero, return to step 3.
5. Repeat steps 3 and 4 until 8 shifts have been performed.
6. Exclusive OR the next 8-bit byte with the 16-bit register.
7. Repeat step 3 through 6 until all bytes of the message have been exclusive ORed with the 16-bit register
and shifted 8 times.
8. W h en the 16-bit CRC is transmitted in the message, the low order byte will be transmitted first, followed by
the high order byte.
For detailed information about CRC calculation, refer to the Mod bus Pr otocol Reference Guide.
16
(shifted left 16 bit s), and then divided by x
16
+ x
16
15
+ x
+ x2 + 1 expr essed as a binary
15
+ x2 + 1) at the receiver will give a zero
6
3 MODBUS MESSAGE FORMATS
3.1 Function 03 - Read Multiple Registers
This comm and allows t he user to obtain contents of up to 125 contiguous register s fr om a single data table.
Request
Instrument Address 1 byte 1 byte 2 bytes 2 bytes 2 bytes
Starting Address Word Count
Response
Instrument Address 1 byte 1 byte 1 byte 2 bytes ... 2 bytes 2 byte s
The byte count field contains quantity of bytes to be returned.
3.2 Function 04 - Read Multiple Registers
This comm and allows the user to ob tain cont ents of up to 125 cont iguous regis ters f rom a single data table. It can be used instead of function 03.
Request
Instrument Address 1 byte 1 byte 2 bytes 2 bytes 2 bytes
Starting Address Word Count
Response
Instrument Address 1 byte 1 byte 1 byte 2 byte s ... 2 bytes 2 bytes
The byte count field contains quantity of bytes to be returned.
Function (03)
Address of the first register to be read
The number of co nt iguous words to be read
Function (03)
Function (04)
Address of the first register to be read
The number of co nt iguous words to be read
Function (04)
Starting Address
Byte Count
Starting Address
Byte Count
Data Word 1
Data Word 1
Word Count Error Check
... Data
Word Count Error Check
... Data
Word N
Word N
Error Check
Error Check
3.3 Function 06 - Write Single Register
This command allows the user to write the contents of a data register in any data table where a register can be writt en.
Request
Instrument Address 1 byte 1 byte 2 b ytes 2 bytes 2 bytes
Starting Address Data Value
Response
The normal response is the retransmiss i on of the write request.
Function (06)
Address of the register to be written Data to be written to the register
Starting Address
Data Word
Error check
7
3.4 Function 16 - Write Multiple Registers
This request a llows the us er to write t he con ten ts of m ultiple co nt iguous r egis ters to a single dat a tab le where registers can be wr itten.
Request
Instrument Address 1 byte 1 byte 2 byte s 2 bytes 1 byte
Data Word 1 ... ... ... Data Word N Error Check
2 bytes ... ... ... 2 bytes 2 bytes
Function (16)
Starting Address
Word Count
Byte Count
Starting Address Word Count Byte Count
Address of the first register to be written
The number of cont iguous words to be written The number of by tes to be writte n
Response
Instrument Address 1 byte 1 byte 2 bytes 1 word 2 bytes
Function (16)
Starting Address
Word Count
Error Check
3.5 Function 08 - Loop-back Communications Test
The purpose of this req uest is to check the com munic ations link between the specified instrum ent and PC.
Request
Instrument Address 1 byte 1 byte 2 bytes 2 bytes 2 bytes
Diagnostic Code
Data
Response
Instrument Address 1 byte 1 byte 2 bytes 2 bytes 2 bytes
The normal response is the re-transmission of a test message.
Function (08)
Designates action to be taken in Loop-back test. The protocol supports only Diagnostic
Code 0 - return query data. Query data. The data passed in this field will be returned to the master through the
instrument. The entire message returned will be identical to the message transmitted by the master, fiel d-per-field.
Function (08)
Diagnostic Code (0)
Diagnostic Code (0)
Data Error
Check
Data Error
Check
8
3.6 Exception Responses
The instrum ent sends an exception r esponse when errors ar e detected in the received mes sage. To indicate that the response is notification of an error, the high order bit of the function code is set to 1.
Exception Response
Instrument Address 1 byte 1 byte 1 byte 2 byte
Exception response codes:
01
- Illegal function
02 - Illegal data address 03
- Illegal data value
06
- Busy, rejected message. The message was received without error, but the instrument is being
programmed fr om the keypad (only for reque st s accessing setup re gi sters). NOTE W hen th e charac ter fra ming, p arity, or redundan cy che ck dete cts a c ommun ication error, process ing of
the master's request stops. The instrument will not act on or respond to the message.
Function (high order bit is set to 1)
Exception Code
Error Check
9
4 PROTOCOL IMPLEM ENTATION
4.1 Modbus Register Addresses
The PM171 Modbus register s are referred to by using addresses in the range of 0 to 65535. From within the Modbus applications, the PM171 Modbus r egisters can be access ed by simulating holding registers of th e Modicon 584, 88 4 or 984 Program mable Cont roller, using a 5-digit “4XX XX” or 6-digit “4XXXXX” addressing scheme. To map the PM171 register address to the range of the Modbus holding registers, add a value of 40001 to the PM171 register address. When a register address exceeds 9999, use a 6-digit addr essing scheme by adding 400001 to the PM171 register ad dr ess.
4.2 Data Formats
The PM171 uses thr ee data f ormats to pass data b etween a mast er application and the instru ment: a 16-bit integer format, a 32-bit modulo 10000 format, and a 32-bit long integer format.
4.2.1 16-bit Integer Format
A 16-bit data is tr ansmitted in a single 16- bit Modbus register as unsigne d or signed integer (whole) numbers without co nversion or using p re-scaling to a ccomm odate large-sca le and fractional num bers to a 16-bit r egister format. Scaling can be made using either the LIN 3 linear conversion, or decimal pre-scaling to pass fractional numbers in integer format.
Non-scaled data
The data will be presented exactly as retrieved by the communications program from the instrumen t. The value range for unsigned data is 0 to 65535; for signed data the range is -32768 to 32767.
LIN3 (Linear) Scal i ng
This convers ion m aps the r aw data rece ived by the com munic ations pro gram in the rang e of 0 - 9999 onto the user-defined LO scale/HI scale range. The conversion is carried out according to the f or mula:
Y = (X / 9999) × (HI - LO) + LO
where: Y - the true value in en gi neering units X - the raw input data i n the range of 0 - 9999 LO, HI - the data low and high scales in engineering units
When data convers ion is nece ssary, the HI and LO sc ales, and data convers ion metho d are indicated for the corresponding r egisters.
EXAMPLE
Suppose you have read a value of 5000 from register 256 that contains a voltage reading (see Table 5-1). If your instrument has the 144V input option, and you use potential transformers with the ratings of 22,000V : 110V = 200, then the vo l tage high scale is HI = 144×200 = 28,800, and in accordance with the above formula, the voltage reading in engineering units will be as follows:
5000 × (28800 - 0)/9999 + 0 = 14401V
When a value is written to the instrument, the convers ion is carried out in reverse to produce the written value in the range of 0 - 9999:
X = 9999 × (Y - LO) / (HI - LO)
Decimal Scaling
Decimal pre-s caling can be used to accom modate fractional numbe rs to an integer register forma t. Fractional num bers pre-mu ltiplied by 10 in power N, where N is the num ber of digits in the fractional part. For example, the frequency reading of 50.01 Hz is transmitted as 5001, having been pre­multiplied by 100. W henever a data register c ontains a fractional num ber, the register m easurement unit is given with a m ultiplier ×0.1, ×0.01 or ×0.001, showing an actual register resolution (the weight of
10
the least significant decimal digit). To get an actual fractional number with specified precision, scale the register value with the g iven multiplier. To write a f r act ional nu m b er into the reg ister , divide the number by the given multiplier.
4.2.2 32-bit Modulo 10000 Format
The short energ y registers 287-294, a nd 301-302 are transm itted in two contiguous 16-bit r egisters in modulo 10000 f ormat. The firs t (low order) register contains the value m od 10000, and the second (high order) register c ontains the value/10000. T o get the tru e energy reading, the high order regis ter value should be multiplied by 10,000 and added to the low order register.
4.2.3 32-bit Long Integer Format
In a 32-bit long inte ger f orm at, dat a is transm it ted in two adjac ent 16-b it Modbus regis ters as uns igne d or signed long integer (whole) numbers. The first register contains the low-order word (lower 16 bits) and the second reg ister contains the high or der word (higher 16 bits) of the 32-bit long num ber. The low-order word always starts at an even M odbus address. T he value range for unsigned d ata is 0 to 4,294,967,295; f or signed data the range is -2,147,483,648 to 2,147,483,647.
A 32-bit data can be transmit ted without convers ion as is, or by using decimal pre-sc aling to transfor m fractional num bers to an integer format as described above (see Decimal Scaling in Section 4.2.1).
4.3 User Assignable Registers
The PM171 contains th e 120 user assignable registers in t he address range of 0 to 119 (see Table 4-1), any of which you can map to either re gister address access ible in the instr ument. Reg isters that reside in different locations may be accessed by a single request by re-mapping them to adjacent addresses in the user assignable registers area.
The actual addresses of the assignable registers which are accessed via addresses 0 to 119 are specified in the u ser as signable registe r map (s ee Table 4-2) . This m ap occupies addr esses f rom 120 to 239, where map register 120 should contain the actual address of the register accessed via assignable register 0, register 121 should contain the actual address of the register accessed via assignable register 1, and so on. Note that the assignable register address es and the map register addresses may not be re-mapped.
To build your own register m ap, write to m ap registe rs (120 to 239) the actual ad dresses you want to read from or write to via the assignable area (0 to 119). Note that long word registers should always be aligned at even addresses. Fo r example, if you want to re ad register s 7136 (real -time voltage of phase A, word) and 757 6/7577 (kWh import, long word) via registers 0-2, then do the following:
- write 7576 to register 120
- write 7577 to register 1 21
- write 7136 to register 122
Reading from registers 0-2 will return the kWh reading in registers 0 (low word) and 1 (high word), and the voltage reading in register 2.
Table 4-1 User Assignable Registers
Register contents Register Size, byte Direction Range
User definab l e da t a 0 0 User definab l e da t a 1 1 User definab l e da t a 2 ... User definab l e da t a 119 119
- depends on the ma pped register
2 ...
  
...
  
...
  
...
11
Table 4-2 User Assignable Register Map
Register contents Register Size, byte Direction Range
Register address for user data 0 120 2 R/W 240 t o 65535 Register address for user data 1 121 2 R/W 240 t o 65535 Register addres s for user data 2 ... Register address for user data 119 239 2 R/W 240 to 65535
122 ...
2 ...
R/W ...
240 to 65535 ...
4.4 Configuring and Accessing Log Files
Configuring Memory for Logging
To use the o nboar d data lo gging, alloca te a se para te log par tition f or each spec ific data you want to be recorded in your instrum ent. The PM171E provides conc urrent recording data in 9 dif ferent memory partitions, one of which is intended to record event log data and the others to store 8 different data logs using different sets of data parameters. Refer to Section 5.18 for information on how to allocate a memory partition for your sp ecific dat a. Refer to Sectio n 5.19 on how to conf igure a set of param eters to be recorded to each data log.
Each memor y partition you allocated for logging is or ganized as a sequential file of records where all data is recorded in chronological order with a time and date stamp. When a partition is filled up, recording can be stopped or can continue over the oldest records if you specified a partition with a wrap-around (circular) attribute.
Accessing Log Files
Each log file has a separa te file read pointer which always points to the current file record that will be read next, a nd a s eparate re gister window whic h gives acc ess t o the rec ord pointe d to by this point er. Initially, the read pointer is as sociated with the oldest rec ord in the file. Reading a re cord via the file window returns the cu rrent record data, and t hen the pointer automat ically advances to the following record in the file. Consequen t requests add ress ed to the f ile window will return a new record each time in the direction from the oldest record t o the more recent recor ds. Because the f ile window advances automatically after the instrument responds to the master request (regardless of the number of registers in the window being accessed), the entire window must be read at once using a single request.
The instrum ent provides sequential readin g of a file records unt il the end of a file is reac hed. W hen a record is requested after the end of a file, the re sponse message will contain a zero record with an exception code indicating th e end of a log file. Refer to Sections 5.20 and 5.21 f or inform ation on rea d requests you can use to access your log files .
You can also use the instrum en t res et regist ers ( see Section 5. 5) to rest ore t he file read po inter t o the oldest record in your log file if you want to re-read the file fr om the be ginning. Tak e into consideratio n the fact that in a wr ap- aro und ( c ircu lar) log par tition, the oldes t recor ds may be overwritten by the most recent records s ince you have read them.
12
5 POWERMETER REGISTERS DESCRIPTION
5.1 Basic Data Registers
Table 5-1 Basic Data Registers
Parameter Register Size, Direc- Unit Scale Con-
byte tion Low High version
Voltage L1/L12  256 2 R 1V 0 Vmax LIN3 Voltage L2/L23  257 2 R 1V 0 Vmax LIN3 Voltage L3/L31  258 2 R 1V 0 Vmax LIN3 Current L1 259 2 R 1A 0 Imax L IN3 Current L2 260 2 R 1A 0 Imax LIN3 Current L3 261 2 R 1A 0 Imax LIN3 kW L1 262 2 R 1kW -Pmax Pmax LIN3 kW L2 263 2 R 1kW -Pmax Pmax LIN3 kW L3 264 2 R 1kW -Pmax Pmax LIN3 kvar L1 265 2 R 1kvar -Pmax Pmax LIN3 kvar L2 266 2 R 1kvar -Pmax Pmax LIN3 kvar L3 267 2 R 1kvar -Pmax Pmax LIN3 kVA L1 268 2 R 1kVA -Pmax Pmax LIN3 kVA L2 269 2 R 1kVA -Pmax Pmax LIN3 kVA L3 270 2 R 1kVA -Pmax Pmax LIN3 Power factor L1 271 2 R 0. 001 -1.000 1.000 LIN3 Power factor L2 272 2 R 0. 001 -1.000 1.000 LIN3 Power factor L3 273 2 R 0. 001 -1.000 1.000 LIN3 Total power factor 274 2 R 0.001 -1.000 1.000 LIN3 Total kW 275 2 R 1kW -Pmax Pmax LIN3 Total kvar 276 2 R 1kvar -Pmax Pmax LIN3 Total kVA 277 2 R 1kVA -Pmax Pmax LIN3 Neutral current 278 2 R 1A 0 Imax LIN3 Frequency 279 2 R 0.01Hz 45.00 65.00 LIN3 Max. sliding window kW demand  (E) Accumulated kW demand (E) Max. sliding window kVA demand  (E) Accumulated kVA demand (E) Max. ampere demand L1 284 2 R/W 1A 0 Imax LIN3 Max. ampere demand L2 285 2 R/W 1A 0 Im ax LI N3 Max. ampere demand L3 286 2 R/W 1A 0 Im ax LI N3 kWh im port (low) (E) 287 2 R/W 1kWh 0 9999 NONE kWh im port (high) (E) 288 2 R/W 10,000 kWh 0 9999 NONE kWh export (low) (E) 289 2 R/W 1kWh 0 9999 NONE kWh export (high) (E) 290 2 R/W 10,000 kWh 0 9999 NONE +kvarh net (low)  (E) 291 2 R/W 1kvarh 0 9999 NONE +kvarh net (high)  (E) 292 2 R/W 10,000 kvarh 0 9999 NONE
-kvarh net (low)  (E)
-kvarh net (high) (E)
Voltage THD L1/L12 295 2 R 0.1% 0 999.9 LIN3 Voltage THD L2/L23 296 2 R 0.1% 0 999.9 LIN3 Voltage THD L3 297 2 R 0 . 1% 0 999.9 LIN3 Current THD L1 298 2 R 0.1% 0 999.9 LIN3 Current THD L2 299 2 R 0.1% 0 999.9 LIN3 Current THD L3 300 2 R 0.1% 0 999.9 LIN3 kVAh (low) (E) 301 2 R/W 1kVAh 0 9999 NONE kVAh (high) (E) 302 2 R/W 10,000 kVAh 0 9999 NONE Present sliding window kW de m and  (E) Present sliding window kVA demand  (E) PF at maximum kVA siding wind ow demand
280 2 R/W 1kW -Pmax Pmax LIN3 281 2 R/W 1kW -Pmax Pmax LIN3 282 2 R/W 1kVA -Pmax Pmax LIN3 283 2 R/W 1kVA -Pmax Pmax LIN3
293 2 R/W 1kvarh 0 9999 NONE 294 2 R/W 10,000 kvarh 0 999 NONE
303 2 R 1kW -Pmax Pmax LIN3 304 2 R 1kVA -Pmax Pmax LIN3 305 2 R 0.001 -1.000 1.000 LIN3
13
Parameter Register Size, Direc- Unit Scale Con-
byte tion Low High version
Current TDD L1 306 2 R 0.1% 0 100.0 LIN3 Current TDD L2 307 2 R 0.1% 0 100.0 LIN3 Current TDD L3 308 2 R 0.1% 0 100.0 LIN3
The parameter limits are as follows:
Imax
(20% over-range) = 1.2 × CT primary current [A]
Direct wiring (PT Ratio = 1):
Vmax
(690 V input option) = 828.0 V
Vmax
(120 V input option) = 144.0 V
Wiring via PTs (PT Ratio > 1):
Vmax (690 V input option) = 144 × PT Ratio [V] Vmax
(120 V input option) = 144 × PT Ratio [V]
Pmax
= (Imax × Vmax × 3)/1000 [kW ] if wiring mode is 4LN3 or 3LN3
Pmax
= (Imax × Vmax × 2)/1000 [kW ] if wiring mode is 4LL3, 3OP2, 3DIR2, 3OP3 or 3LL3
Positive readings of kvarh ne t
Negative readings of kvarh net To get bloc k interval demand reading s, specify the number of de m and periods equal to 1 (see Table 5-2).
W hen the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring
mode, they will be line-to-line voltages.
(E) available in the PM171E
NOTE
W riting a zero to one of registers 280-286 causes reset of all maximum demands. Writing a zero to one
of registers 287-294 and 30 1-302 causes reset of all accumulated en ergies. This does not apply to the TOU system registers.
5.2 Basic Setup Registers
Table 5-2 Basic Setup Registers
Parameter Register Size,
Wiring mode  2304 2 R/W 0 = 3OP2, 1 = 4LN3,
PT ratio 2305 2 R/W CT primary current 2306 2 R/W 1 to 50000 A Power demand period (E) 2307 2 R/W 1,2,5,10,15,20,30,60 min,
Volt/ampere demand period 2308 2 R/W 0 to 180 0 sec Averaging buffer size 2309 2 R/W 8, 16, 32 Reset enable/disable 2310 2 R/W 0 = disable, 1 = enable Reserved 2311 2 R Read as 6553 5 The number of demand periods (E) 2312 2 R/W 1 to 15 Reserved 2313 2 R Read as 6553 5 Reserved 2314 2 R Read as 65535 Nominal frequency 2315 2 R/W 50, 60, 25  (Hz) Maximum demand load cu rr ent 2316 2 R/W 0 to 50,000 A
The wiring mode options are as follows:
3OP2 - 3-wire open delta using 2 CTs (2 element) 4LN3 - 4-wire WYE using 3 PTs (3 element), line to neutral voltage readings 3DIR2 - 3-wire dire ct connection using 2 CTs (2 element) 4LL3 - 4-wire WYE using 3 PTs (3 element), line to line voltage readings 3OP3 - 3-wire open delta using 3 CTs (2 1/2 element) 3LN3 - 4-wire WYE using 2 PTs (2 1/2 element), line to neutral voltage re adings 3LL3 - 4-wire WYE using 2 PTs (2 1/2 element), lin e to line voltage readings
25 Hz - special order
(E) available in the PM171E
byte
Direc-
tion
Range
2 = 3DIR2, 3 = 4LL3, 4 = 3O P 3, 5 = 3LN3, 6 = 3LL3
10 to 65000 × 0.1
255 = exter na l synchronizati o n
(0 = CT primary current)
14
5.3 User Selectable Options Setup Registers
Table 5-3 User Selectable Options Registers
Parameter Register Size,
Power calculation mode 2376 2 R/W 0 = using reactive power, Energy roll value (E)  2377 2 R/W
Phase energy calculation mode (E) 2378 2 R/W 0 = disabl e, 1 = enable
Analog output option
Analog expander output
(E) available in the PM171E (read as 65535 in the PM171P)
For short energy registers (see Table 5-1), the maximum roll value will be 1×10
7
for negative readings.
1×10
Do not enable the analog expander output if the analog expander is not connected to the instrument,
otherwise the computer communications will become garbled.
2379 2 R/W 0 = none
2380 2 R/W 0 = none
byte
Direc-
tion
Range
1 = using non-active power 0 = 1×104 1 = 1×105 2 = 1×106 3 = 1×107 4 = 1×108 5 = 1×109
1 = 0-20 mA 2 = 4-20 mA 3 = 0-1 mA 4 = ±1 mA
1 = 0-20 mA 2 = 4-20 mA 3 = 0-1 mA 4 = ±1 mA
8
for positive readings and
15
5.4 Communications Setup Registers
Table 5-4 Communications Setup Registers
Parameter Register Size,
byte
Reserved 2344 2 R Interface 2345 2 R/W 0 = RS-232
Address 2346 2 R/W 1 to 247 Baud rate 2347 2 R/W 0 = 110 bps
Data format 2348 2 R/W 1 = 8 bits/no parity Incoming flow control
(handshaking)
Outgoing flow control (RTS/DTR)
When changing the instrument address, baud rate or data format, the new communications parameters will take effect 100 ms after the instrument responds to the master's request.
2349 2 R/W 0 = no handshaking
2350 2 R/W 0 = RTS signal not used
Direc-
tion
Range
Read as 65535 1 = RS-422
2 = RS-485
1 = 300 bps 2 = 600 bps 3 = 1200 bps 4 = 2400 bps 5 = 4800 bps 6 = 9600 bps 7 = 19200 bps
2 = 8 bits/even pari ty 1 = software handshaking
(XON/XOFF protocol) 2 = hardware handshaking (CTS protocol)
1 = RTS permanently asserted (DTR mode) 2 = RTS asserted during the transmission
5.5 Reset/Clear Registers
Table 5-5 Reset/Clear Registers
Function Register Size,
Clear total energy registers (E) 3404 2 W 0 Clear total maximum demand registers
Clear TOU energy registers (E) 3406 2 W 0 Clear TOU maximum demand registers (E) Clear pulse counters 3408 2 W 0 = all counters
Clear Min/Max log 3409 2 W 0 Clear event log (E) 3410 2 W 0 Clear data log 3411 2 W 0-7 = log #1 - #8
Reserved 3412 2 Reserved 3413 2 Reserved 3414 2 Restore event log queue pointer (E) Restore data log queue pointer (E) 3416 2 W 0-7 = log #1 - #8
(E) available in the PM171E
3405 2 W 0 = all maximum demands
3407 2 W 0
3415 2 W 0
byte
Direc-
tion
Reset
value
1 = power demands (E) 2 = volt/ampere demands
1-4 = counter #1 - #4
16 = all data logs
16
5.6 Instrument Status Registers
Table 5-6 Instrument Status Registers
Parameter Register Size, Direc- Unit Range
byte tion
Instrument reset register 
Reserved 2561 2 R Read as 0 Relay status 2562 2 R see Table 5-7 Reserved 2563 2 R Read as 0 Status inputs 2564 2 R see Table 5-11 Firmware version number Instrument options 1 2566 2 R see Table 5-8 Instrument options 2 2567 2 R see Table 5-8
Writing a value of 65535 into register 2560 will cause the instrument to perform a warm restart.
Table 5-7 Relay Status
Bit number Description
0-5 Not used (permanently set to 1) 6 Relay #2 status 7 Relay #1 status 8-15 Not used (permanently set to 0)
Bit meaning: 0 = relay is energized, 1 = relay is not energized
Table 5-8 Instrument Options
Options register Bit Description
Options1 0 120V option 1 690V option 2-3 Reserved 4 100% curre nt over-range 5 Reserved 6 Analog output 0/4-20 mA 7 Analog output 0-1 mA 8 9 Relays option 10 Digital inputs option 11-13 Reserved 14 15 Reserved Options 2 0-2 Number of relays - 1 3-6 Number of digital inputs - 1 7-8 Number of analog outputs - 1 9-13 Reserved 14-15 Memory m odule size (PM171E): 10 = 512 Kbytes
2560 2 R/W 0 (when read)
65535 (when written) = reset the instrument
2565 2 R 0-65535
Analog output ±1 mA
Analog expander outp ut ±1 mA
5.7 Extended Status Registers
Table 5-9 Extended Status Registers
Parameter Register Size,
Relay status 3452 2 R see Table 5-10 Reserved 3453 2 R Read as 0 Status inputs 3454 2 R see Table 5-11 Setpoints status 3455 2 R see Table 5-12 Log status 3456 2 R see Table 5-13 Data log status 3457 2 R see Table 5-14 Reserved 3458-
3473
Direction Value range
byte
2 R Read as 0
17
Parameter Register Size,
Setpoint alarm status 3474 2 R/W see Table 5-15 Self-check alarm status 3475 2 R/W see Table 5-16 Reserved 3476-
3484
Battery status 3485 2 R 0 = low, 1 = normal
Direction Value range
byte
2 R Read as 0
Table 5-10 Relay Status
Bit Description
0 Relay #1 status 1 Relay #2 status 2-15 Not used (perma n ently set to 0)
Bit meaning: 0 = rela y is not energized, 1 = relay is energized
Table 5-11 Status Inputs
Bit Description
0 Status input #1 1 Status input #2 2-15 Not used (perma n ently set to 0)
Bit meaning: 0 = co nt act open, 1 = contact close d
Table 5-12 Setpoints Status
Bit Description
0 Set point # 1 status 1 Set point # 2 status 2 Set point # 3 status 3 Set point # 4 status 4 Set point # 5 status 5 Set point # 6 status 6 Set point # 7 status 7 Set point # 8 status 8 Set point # 9 status 9 Setpoint # 10 status 10 Setpoint # 11 status 11 Setpoint # 12 status 12 Setpoint # 13 status 13 Setpoint # 14 status 14 Setpoint # 15 status 15 Setpoint # 16 status
Bit meaning: 0 = setpoint is released, 1 = setpoint is operated
Table 5-13 Log Status
Bit Description
0 Reserved 1 New Min/Max Log 2 New event log 3 New data log (any) 4-15 Not used (permanen t l y set to 0)
Bit meaning: 0 = no new logs, 1 = new log recorded (the new log flag is reset when the user reads the first log record after the flag has been set)
18
Table 5-14 Data Log Status
Bit Description
0 New data log #1 1 New data log #2 2 New data log #3 3 New data log #4 4 New data log #5 5 New data log #6 6 New data log #7 7 New data log #8 4-15 Not used (permanen t l y set to 0)
Bit meaning: 0 = no new logs, 1 = new log recorded (the new log flag is reset when the user reads the first log record after the flag has been set)
Table 5-15 Setpoint Alarm Status
Bit Description
0 Alarm #1 1 Alarm #2 2 Alarm #3 3 Alarm #4 4 Alarm #5 5 Alarm #6 6 Alarm #7 7 Alarm #8 8 Alarm #9 9 Alarm #10 10 Alarm #11 11 Alarm #12 12 Alarm #13 13 Alarm #14 14 Alarm #15 15 Alarm #16
Bit meaning: 1 = set point has been operated The setpoint alarm re gister stores the sta tus of the operated setpo ints by setting the appr opriate bits to 1. The
alarm statu s bits can be re set all together by writi ng zero to the setp oint alarm registe r. It is possible t o reset each alarm statu s bit sepa rat ely by writing ba ck the conten ts of th e alarm regist er with a co rrespo ndi ng alar m bit set to 0.
Table 5-16 Self-ch eck Alarm Status
Bit Description
0 Reserved 1 ROM error 2 RAM error 3 Watchdog timer reset 4 Sampling failure 5 Out of control trap 6 Reserved 7 Timing failure 8 Loss of powe r ( powe r up) 9 External reset (warm restart) 10 Configuration corrupted 11 RTC time-synchronization required 12-15 Reserved
The self-chec k alarm regist er indicates p ossible problem s with the instrumen t hardware or setup config uration. The hardware problems are indicated by the appropriate bits which are set whenever the instrument fails self-test diagnostics or in the event o f loss of power. The setu p config uration problems are indicat ed by the dedi cated bi t which is set when either configuration register is corrupted. In this event, the instrument will use the default configuration. The configuration corrupt bit may also be set as a result of the legal changes in the setup configuration since the instrument might implicitly change or clear other setups if they are affected by the changes made .
Hardware fault bits can be res et by writing zero to the sel f-check alarm re gister . The config uration corrupt s tatus bit and RTC synchronization bit are also reset automatically when you change setup or update RTC either via the front panel or through communications.
19
5.8 Memory Status Registers
Table 5-17 Memory Status Registers
Parameter Register Size,
Total memory size, Byte 3506, 3507 4 R 524288 Free memory size, Byte 3508, 3509 4 R 0 - 524288 The total number of event log records 3510 2 R 0 - 65535 The total number of data log #1 records 3511 2 R 0 - 6553 5 The total number of data log #2 records 3512 2 R 0 - 6553 5 The total number of data log #3 records 3513 2 R 0 - 6553 5 The total number of data log #4 records 3514 2 R 0 - 6553 5 The total number of data log #5 records 3515 2 R 0 - 6553 5 The total number of data log #6 records 3516 2 R 0 - 6553 5 The total number of data log #7 records 3517 2 R 0 - 6553 5 The total number of data log #8 records 3518 2 R 0 - 6553 5 Reserved 3519-3528 2 R 0 The number of new event log records 3529 2 R 0 - 65535 The number of new data log #1 records 3530 2 R 0 - 65535 The number of new data log #2 records 3531 2 R 0 - 65535 The number of new data log #3 records 3532 2 R 0 - 65535 The number of new data log #4 records 3533 2 R 0 - 65535 The number of new data log #5 records 3534 2 R 0 - 65535 The number of new data log #6 records 3535 2 R 0 - 65535 The number of new data log #7 records 3536 2 R 0 - 65535 The number of new data log #8 records 3537 2 R 0 - 65535 Reserved 3538-3547 2 R 0
The total numb er of records shows all the re cords logg ed in the mem ory partition. The number of new records indicates the number of records never read before.
Direction Range
byte
5.9 Extended Data Registers
The following table lists all registers containing the data measured by the instrument. Notice that these registers are arranged into groups, which are not located at adjacent addresses. You can re-map these registers into adjacent addresses to access multiple data from different data groups by using a single reques t. Refer to Section
4.3 for information on the user assignable registers. All data can be read either as 16-bit unsigned integer
numbers using LIN3 conversion to get true values in engineering un its, or as 32-bit long signed or unsigned integer numbers with scaling usi ng multipli ers to transm it fraction al numbers . Note that in both cases, pulse and energy counters are transmitted as 32-bit unsigned long intege rs.
Along with the reg ister address, the table shows for each d ata item its data id entifier (ID). This is a on e word containing a data group ID in the high byt e and the parameter off set in a group in the low byte. Data IDs are use d to specify input or output parameters whenever a data parameter specification is needed, for example, when selecting analog output parameters or reading Min/Max log records.
Table 5-18 Extended Data Regis t e r s
Parameter 16-bit Register 32-bit Data Dir. Unit Range/Scale
Reg. Conv. Register ID Low High None None Status inputs Status inputs
(see Table 5-11)
Relays Relay status (see Table 5-10) Pulse counters
Pulse counter #1 7056 Pulse counter #2 7058
6656 11776-11777 0 R 0 0
6896 12544-12545 1536 R 0 3
6976 12800-12801 2048 R 0 3
13056-13057 2560 R/W 0 999999
7057
13058-13059 2561 R/W 0 999999
7059
20
Parameter 16-bit Register 32-bit Data Dir. Unit Range/Scale
Reg. Conv. Register ID Low High
Pulse counter #3 7060
7061
Pulse counter #4 7062
7063
Real-time values per phase
Voltage L1/L1 2  7136 LIN3 13312-13313 3072 R 1V 0 Vmax Voltage L2/L2 3  7137 LIN3 13314-13315 3073 R 1V 0 Vmax Voltage L3/L3 1  7138 LIN3 13316-13317 3074 R 1V 0 Vmax Current L1 7139 LIN3 13318-13319 3075 R 1A 0 Imax Current L2 7140 LIN3 13320-13321 3076 R 1A 0 Imax Current L3 7141 LIN3 13322-13323 3077 R 1A 0 Imax kW L1 7142 LIN3 13324-13325 3078 R 1kW -Pmax Pmax kW L2 7143 LIN3 13326-13327 3079 R 1kW -Pmax Pmax kW L3 7144 LIN3 13328-13329 3080 R 1kW -Pm ax Pmax kvar L1 7145 LIN3 13330-13331 3081 R 1kvar -Pmax Pmax kvar L2 7146 LIN3 13332-13333 3082 R 1kvar -Pmax Pmax kvar L3 7147 LIN3 13334-13335 3083 R 1kvar -Pmax Pmax kVA L1 7148 LIN3 13336-13337 3084 R 1kVA 0 Pmax kVA L2 7149 LIN3 13338-13339 3085 R 1kVA 0 Pmax kVA L3 7150 LIN3 13340-13341 3086 R 1kVA 0 Pmax Power factor L1 7151 LIN3 13342-13343 3087 R 0.001 -1.000 1.000 Power factor L2 7152 LIN3 13344-13345 3088 R 0.001 -1.000 1.000 Power factor L3 7153 LIN3 13346-13347 3089 R 0.001 -1.000 1.000 Voltage THD L1/L12 7154 LIN3 13348-13349 3090 R 0.1% 0 999.9 Voltage THD L2/L23 7155 LIN3 13350-13351 3091 R 0.1% 0 999.9 Voltage THD L3 7156 LIN3 13352-13353 3092 R 0.1% 0 999.9 Current THD L1 7157 LIN3 13354-13355 3093 R 0.1% 0 999.9 Current THD L2 7158 LIN3 13356-13357 3094 R 0.1% 0 999.9 Current THD L3 7159 LIN3 13358-13359 3095 R 0.1% 0 999.9 K-Factor L1 7160 LIN3 13360-13361 3096 R 0.1 1.0 999.9 K-Factor L2 7161 LIN3 13362-13363 3097 R 0.1 1.0 999.9 K-Factor L3 7162 LIN3 13364-13365 3098 R 0.1 1.0 999.9 Current TDD L1 7163 LIN3 13366-13367 3099 R 0.1% 0 100.0 Current TDD L2 7164 LIN3 13368-13369 3100 R 0.1% 0 100.0 Current TDD L3 7165 LIN3 13370-13371 3101 R 0.1% 0 100.0 Voltage L12 7166 LIN3 13372-13373 3102 R 1V 0 Vmax Voltage L23 7167 LIN3 13374-13375 3103 R 1V 0 Vmax Voltage L31 7168 LIN3 13376-13377 3104 R 1V 0 Vmax
Real-time total v al ue s
Total kW 7256 LIN3 13696-13697 3840 R 1kW -Pmax Pmax Total kvar 7257 LIN3 13698-13699 3841 R 1kvar -Pmax Pmax Total kVA 7258 LIN3 13700-13701 3842 R 1kVA 0 Pmax Total PF 7259 LIN3 13702-13703 3843 R 0.001 -1.000 1.000 Reserved 7260 LIN3 13704-13705 3844 R 0 0 Reserved 7261 LIN3 13706-13707 3845 R 0 0
Real-time auxiliary values
Reserved 7296 LIN3 13824-13825 4096 R 0 0 Neutral current 7297 LIN3 13826-13827 4097 R 1A 0 Imax Frequency  7298 LIN3 13828-13829 4098 R 0.01Hz 0 100.00 Voltage unbalance 7299 LIN3 13830-13831 4099 R 1% 0 300 Current unbalance 7300 LIN3 13832-13833 4100 R 1% 0 300
Average values per phase
Voltage L1/L1 2  7336 LIN3 13952-13953 4352 R 1V 0 Vmax Voltage L2/L2 3  7337 LIN3 13954-13955 4353 R 1V 0 Vmax Voltage L3/L3 1  7338 LIN3 13956-13957 4354 R 1V 0 Vmax Current L1 7339 LIN3 13958-13959 4355 R 1A 0 Imax Current L2 7340 LIN3 13960-13961 4356 R 1A 0 Imax Current L3 7341 LIN3 13962-13963 4357 R 1A 0 Imax kW L1 7342 LIN3 13964-13965 4358 R 1kW -Pmax Pmax kW L2 7343 LIN3 13966-13967 4359 R 1kW -Pmax Pmax kW L3 7344 LIN3 13968-13969 4360 R 1kW -Pm ax Pmax kvar L1 7345 LIN3 13970-13971 4361 R 1kvar -Pmax Pmax kvar L2 7346 LIN3 13972-13973 4362 R 1kvar -Pmax Pmax kvar L3 7347 LIN3 13974-13975 4363 R 1kvar -Pmax Pmax
13060-13061 2562 R/W 0 999999 13062-13063 2563 R/W 0 999999
21
Parameter 16-bit Register 32-bit Data Dir. Unit Range/Scale
Reg. Conv. Register ID Low High
kVA L1 7348 LIN3 13976-13977 4364 R 1kVA 0 Pmax kVA L2 7349 LIN3 13978-13979 4365 R 1kVA 0 Pmax kVA L3 7350 LIN3 13980-13981 4366 R 1kVA 0 Pmax Power factor L1 7351 LIN3 13982-13983 4367 R 0.001 -1.000 1.000 Power factor L2 7352 LIN3 13984-13985 4368 R 0.001 -1.000 1.000 Power factor L3 7353 LIN3 13986-13 987 4369 R 0. 001 -1.000 1.000 Voltage THD L1/L12 7354 LIN3 13988-13989 4370 R 0.1% 0 999.9 Voltage THD L2/L23 7355 LIN3 13990-13991 4371 R 0.1% 0 999.9 Voltage THD L3 7356 LIN3 13992-13993 4372 R 0.1% 0 999.9 Current THD L1 7357 LIN3 13994-13995 4373 R 0.1% 0 999.9 Current THD L2 7358 LIN3 13996-13997 4374 R 0.1% 0 999.9 Current THD L3 7359 LIN3 13998-13999 4375 R 0.1% 0 999.9 K-Factor L1 7360 LIN3 14000-14001 4376 R 0.1 1.0 999.9 K-Factor L2 7361 LIN3 14002-14003 4377 R 0.1 1.0 999.9 K-Factor L3 7362 LIN3 14004-14005 4378 R 0.1 1.0 999.9 Current TDD L1 7363 LIN3 14006-14007 4379 R 0.1% 0 100.0 Current TDD L2 7364 LIN3 14008-14009 4380 R 0.1% 0 100.0 Current TDD L3 7365 LIN3 14010-14011 4381 R 0.1% 0 100.0 Voltage L12 7366 LIN3 14012-14013 4382 R 1V 0 Vmax Voltage L23 7367 LIN3 14014-14015 4383 R 1V 0 Vmax Voltage L31 7368 LIN3 14016-14017 4384 R 1V 0 Vmax
Average total values
Total kW 7456 LIN3 14336-14337 5120 R 1kW -Pmax Pmax Total kvar 7457 LIN3 14338-14339 5121 R 1kvar -Pmax Pmax Total kVA 7458 LIN3 14340-14341 5122 R 1kVA 0 Pmax Total PF 7459 LIN3 14342-14343 5123 R 0.001 -1.000 1.000 Reserved 7460 LIN3 14344-14345 5124 R 0 0 Reserved 7461 LIN3 14346-14347 5125 R 0 0
Average auxiliary values
Reserved 7496 LIN3 14464-14465 5376 R 0 0 Neutral current 7497 LIN3 14466-14467 5377 R 1A 0 Imax Frequency  7498 LIN3 14468-14469 5378 R 0.01Hz 0 100.00 Voltage unbalance 7499 LIN3 14470-14471 5379 R 1% 0 300 Current unbalance 7500 LIN3 14472-14473 5380 R 1% 0 300
Present demands
Volt demand L1/L12  7536 LIN3 14592-14593 5632 R 1V 0 Vmax Volt demand L2/L23  7537 LIN3 14594-14595 5633 R 1V 0 Vmax Volt demand L3/L31  7538 LIN3 14596-14597 5634 R 1V 0 Vmax Ampere demand L1 7539 LIN3 14598-14599 5635 R 1A 0 Imax Ampere demand L2 7540 LIN3 14600-14601 5636 R 1A 0 Imax Ampere demand L3 7541 LIN3 14602- 14603 5637 R 1A 0 Imax Block kW import demand 7542 LI N3 14604-14605 5638 R 1kW 0 Pmax Block kvar impo rt demand 7543 LIN3 14606-14607 563 9 R 1kvar 0 Pmax Block kVA demand 7544 LIN3 14608-14609 5640 R 1kVA 0 Pma x Sliding window kW import demand Sliding window kvar import demand Sliding window kVA demand Reserved 7548 LIN3 14616-14617 5644 R 0 0 Reserved 7549 LIN3 14618-14619 5645 R 0 0 Reserved 7550 LIN3 14620-14621 5646 R 0 0 Accumulated kW import demand Accumulated kvar import demand Accumulated kVA demand Predicted sliding window kW import demand Predicted sliding window kvar import demand
7545 LIN3 14610-14611 5641 R 1kW 0 Pmax 7546 LIN3 14612-14613 5642 R 1kvar 0 Pmax 7547 LIN3 14614-14615 5643 R 1kVA 0 Pmax
7551 LIN3 14622-14623 5647 R 1kW 0 Pmax 7552 LIN3 14624-14625 5648 R 1kvar 0 Pmax 7553 LIN3 14626-14627 5649 R 1kVA 0 Pmax 7554 LIN3 14628-14629 5650 R 1kW 0 Pmax 7555 LIN3 14630-14631 5651 R 1kvar 0 Pmax
22
Parameter 16-bit Register 32-bit Data Dir. Unit Range/Scale
Reg. Conv. Register ID Low High
Predicted sliding window
7556 LIN3 14632-14633 5652 R 1kVA 0 Pmax kVA demand PF (import) at maximum
7557 LIN3 14634-14635 5653 R 0.001 -1.000 1.000 kVA sliding w indow demand Block kW export demand 7558 LI N3 14636-14637 5654 R 1kW 0 Pmax Block kvar export demand 7559 LIN3 14638-14639 5655 R 1kva r 0 Pmax Sliding window kW export
7560 LIN3 14640-14641 5656 R 1kW 0 Pmax demand Sliding window kvar
7561 LIN3 14642-14643 5657 R 1kvar 0 Pmax export demand Accumulated kW expor t
7562 LIN3 14644-14645 5658 R 1kW 0 Pmax demand Accumulated kvar export
7563 LIN3 14646-14647 5659 R 1kvar 0 Pmax demand Predicted sliding window
7564 LIN3 14648-14649 5660 R 1kW 0 Pmax kW export demand Predicted sliding window
7565 LIN3 14650-14651 5661 R 1kvar 0 Pmax kvar export demand
Total energies
kWh import 7576
14720-14721 5888 R kWh 0 109-1
7577 kWh export  7578
14722-14723
5889 R kWh 0 109-1
7579 Reserved 7580
14724-14725
5890 R 0 0
7581 Reserved 7582
14726-14727
5891 R 0 0
7583 kvarh import 7584
14728-14729
5892 R kvarh 0
10
9
-1
7585 kvarh export  7586
14730-14731
5893 R kvarh 0 109-1
7587 Reserved 7588
14732-14733
5894 R 0 0
7589 Reserved 7590
14734-14735
5895 R 0 0
7591 kVAh total 7592
14736-14737
5896 R kVAh 0
10
9
-1
7593
Phase energ ies
kWh import L1 7616
14848-14849 6144 R kWh 0 109-1
7617 kWh import L2 7618
14850-14851
6145 R kWh 0
10
9
-1
7619 kWh import L3 7620
14852-14853
6146 R kWh 0
10
9
-1
7621 kvarh import L1 7622
14854-14855
6147 R kvarh 0
10
9
-1
7623 kvarh import L2 7624
14856-14857
6148 R kvarh 0
10
9
-1
7625 kvarh import L3 7626
14858-14859
6149 R kvarh 0
10
9
-1
7627 kVAh total L1 7628
14860-14861
6150 R kVAh 0
10
9
-1
7629 kVAh total L2 7630
14862-14863
6151 R kVAh 0
10
9
-1
7631 kVAh total L3 7632
14864-14865
6152 R kVAh 0
10
9
-1
7633
Fundamental's (H01) real- tim e values per phase
Voltage L1/L12 8296 LIN3 17024-17025 10496 R 1V 0 Vmax Voltage L2/L23 8297 LIN3 17026-17027 10497 R 1V 0 Vmax Voltage L3 8298 LIN3 17028-17029 10498 R 1V 0 Vmax Current L1 8299 LI N3 17030-17031 10499 R 1 A 0 Imax Current L2 8300 LI N3 17032-17033 10500 R 1 A 0 Imax
23
Parameter 16-bit Register 32-bit Data Dir. Unit Range/Scale
Reg. Conv. Register ID Low High
Current L3 8301 LI N3 17034-17035 10501 R 1 A 0 Imax kW L1 8302 LI N3 17036-17037 10502 R 1kW -Pmax Pmax kW L2 8303 LI N3 17038-17039 10503 R 1kW -Pmax Pmax kW L3 8304 LIN3 17040-17041 10504 R 1kW -Pmax Pmax kvar L1 8305 LI N3 17042-17043 10505 R 1 kvar -Pm ax Pmax kvar L2 8306 LI N3 17044-17045 10506 R 1 kvar -Pm ax Pmax kvar L3 8307 LI N3 17046-17047 10507 R 1 kvar -Pm ax Pmax kVA L1 8308 LIN3 17048-17049 10508 R 1kVA 0 Pmax kVA L2 8309 LIN3 17050-17051 10509 R 1kVA 0 Pmax kVA L3 8310 LIN3 17052-17053 10510 R 1kVA 0 Pmax Power factor L1 8311 LIN3 17054-17 055 10511 R 0.001 -1.000 1.000 Power factor L2 8312 LIN3 17056-17 055 10512 R 0.001 -1.000 1.000 Power factor L3 8313 LIN3 17058-17 059 10513 R 0.001 -1.000 1.000
Fundamental's (H01 ) re al-time total values
Total kW 8336 LIN3 17152-17153 10752 R 1 kW -Pmax Pmax Total kvar 8337 LIN3 17154-17155 10753 R 1kvar -Pmax Pmax Total kVA 8338 LIN3 17156-17157 10754 R 1kVA 0 Pma x Total PF 8339 LIN3 17158-17159 10755 R 0.001 -1.000 1.000
Minimum real-time values per phase (M)
Voltage L1/L1 2  8416 LIN3 17408-17409 11264 R 1V 0 Vmax Voltage L2/L2 3  8417 LIN3 17410-17411 11265 R 1V 0 Vmax Voltage L3/L3 1  8418 LIN3 17412-17413 11266 R 1V 0 Vmax Current L1 8419 LI N3 17414-17415 11267 R 1 A 0 Imax Current L2 8420 LI N3 17416-17417 11268 R 0 , 01A 0 Imax Current L3 8421 LI N3 17418-17419 11269 R 0 , 01A 0 Imax
Minimum real-time total values (M)
Total kW 8456 LIN3 17536-17537 11520 R 1 kW -Pmax Pmax Total kvar 8457 LIN3 17538-17539 11521 R 1kvar -Pmax Pmax Total kVA 8458 LIN3 17540-17541 11522 R 1kVA 0 Pma x Total PF 
Minimum real-t i me auxiliary values (M)
Reserved 8496 LIN3 17664-17665 11776 R 0 0 Neutral current 8497 LIN3 17666-17667 11777 R 1A 0 Imax Frequency  8498 LIN3 17668-17669 11778 R 0.01Hz 0 100.00
Minimum demands (M) - Reserved
Reserved 8536
Maximum real -time values per phase (M)
Voltage L1/L1 2  8736 LIN3 18432-18433 13312 R 1V 0 Vmax Voltage L2/L2 3  8737 LIN3 18434-18435 13313 R 1V 0 Vmax Voltage L3/L3 1  8738 LIN3 18436-18437 13314 R 1V 0 Vmax Current L1 8739 LI N3 18438-18439 13315 R 1 A 0 Imax Current L2 8740 LI N3 18440-18441 13316 R 1 A 0 Imax Current L3 8741 LI N3 18442-18443 13317 R 1 A 0 Imax
Maximum real -time total values (M)
Total kW 8776 LIN3 18560-18561 13568 R 1 kW -Pmax Pmax Total kvar 8777 LIN3 18562-18563 13569 R 1kvar -Pmax Pmax Total kVA 8778 LIN3 18564-18565 13570 R 1kVA 0 Pma x Total PF
Maximum real-time auxiliary values (M)
Reserved 8816 LIN3 18688-18689 13824 R 0 Neutral current 8817 LIN3 18680-18681 13825 R 1A 0 Imax Frequency  8818 LIN3 18682-18683 13826 R 0.01Hz 0 100.00
Maximum demands (M)
Max. volt demand L1/L12
Max. volt demand L2/L23
Max. volt demand L3/L31
Max. ampere demand L1 8859 LIN3 18822-18 823 14083 R 1A 0 Imax Max. ampere demand L2 8860 LIN3 18824-18 825 14084 R 1A 0 Imax
8459 LIN3 17542-17543 11523 R 0.001 0 1.000
...
8552
8779 LIN3 18566-18567 13571 R 0.001 0 1.000
8856 LIN3 18816-18817 14080 R 1V 0 Vmax
8857 LIN3 18818-18819 14081 R 1V 0 Vmax
8858 LIN3 18820-18821 14082 R 1V 0 Vmax
17792-17793
... 18824-18825
12032 ... 12048
R 0 0
24
Parameter 16-bit Register 32-bit Data Dir. Unit Range/Scale
Reg. Conv. Register ID Low High
Max. ampere demand L3 8861 LIN3 18826-18827 14085 R 1A 0 I max Reserved 8862 LIN3 18828-18829 14086 R 0 0 Reserved 8863 LIN3 18830-18831 14087 R 0 0 Reserved 8864 LIN3 18832-18833 14088 R 0 0 Max. sliding window kW
8865 LIN3 18834-18835 14089 R 1kW 0 Pmax import demand (E) Max. sliding window kvar
8866 LIN3 18836-18837 14090 R 1kvar 0 Pmax import demand (E) Max. sliding window kVA
8867 LIN3 18838-18839 14091 R 1kVA 0 Pmax demand (E) Reserved 8868 LIN3 18840-18841 14092 R 0 0 Reserved 8869 LIN3 18842-18843 14093 R 0 0 Reserved 8870 LIN3 18844-18845 14094 R 0 0 Max. sliding window kW
8871 LIN3 18846-18847 14095 R 1kW 0 Pmax export demand (E) Max. sliding window kvar
8872 LIN3 18848-18849 14096 R 1kvar 0 Pmax export demand (E)
TOU system parameters (E)
Active tariff 9056 19456-19457 15360 R 0 15 Active profile 9057 19458-19459 15361 R 0 15
TOU energy register #1 (E)
Tariff #1 register 9096
9097 Tariff #2 register 9098
19584-19585 15616 R 19586-19587 15617 R
0 109-1
9
0 10
-1
9099
... ... ... ...
Tariff #16 register 9126
19614-19615 15631 R
0 109-1
9127
TOU energy register #2 (E)
Tariff #1 register 9136
19712-19713 15872 R
0 109-1
9137
Tariff #2 register 9138
19714-19715 15873 R
0 109-1
9139
... ... ... ...
Tariff #16 register 9166
19742-19743 15887 R
0 109-1
9167
TOU energy register #3 (E)
Tariff #1 register 9176
19840-19841 16128 R
0 109-1
9177
Tariff #2 register 9178
19842-19843 16129 R
0 109-1
9179
... ... ... ...
Tariff #16 register 9206
19870-19871 16143 R
0 10
9
-1
9207
TOU energy register #4 (E)
Tariff #1 register 9216
19968-19969 16384 R
0 109-1
9217
Tariff #2 register 9218
19970-19971 16385 R
0 109-1
9219
... ... ... ...
Tariff #16 register 9246
19998-19999 16399 R
0 109-1
9247
TOU energy register #5 (E)
Tariff #1 register 9256
20096-20097 16640 R
0 109-1
9257
Tariff #2 register 9258
20098-20099 16641 R
0 109-1
9259
... ... ... ...
Tariff #16 register 9286
20126-20127 16655 R
0 109-1
9287
TOU energy register #6 (E)
Tariff #1 register 9296
20224-20225 16896 R
0 109-1
9297
25
Parameter 16-bit Register 32-bit Data Dir. Unit Range/Scale
Reg. Conv. Register ID Low High
Tariff #2 register 9298
20226-20227 16897 R
0 10
9
-1
9299
... ... ... ...
Tariff #16 register 9326
20254-20255 16911 R
0 109-1
9327
TOU energy register #7 (E)
Tariff #1 register 9336
9337 Tariff #2 register 9338
20352-20353 17152 R 20354-20355 17153 R
0 109-1
9
0 10
-1
9339
... ... ... ...
Tariff #16 register 9366
20382-20383 17167 R
0 109-1
9367
TOU energy register #8 (E)
Tariff #1 register 9376
20480-20481 17408 R
0 109-1
9377
Tariff #2 register 9378
20482-20483 17409 R
0 109-1
9379
... ... ... ...
Tariff #16 register 9406
20510-20511 17423 R
0 109-1
9407
TOU minimum demand register #1 (M ) - Reserved
Reserved 9416-
9431
20608-20639 17644-
17659
R 0 0
TOU minimum demand register #2 (M ) - Reserved
Reserved 9456-
9571
20736-20765 17900-
17915
R 0 0
TOU minimum demand register #3 (M ) - Reserved
Reserved 9496-
9511
20864-20894 18176-
18191
R 0 0
TOU maximum demand register #1 (M) (E)
Tariff #1 register 9536 LIN3 20992-20993 18432 R 1kW 0 Pmax Tariff #2 register 9537 LIN3 20994-20995 18433 R 1kW 0 Pmax
... ... ... ...
Tariff #16 register 9551 LIN3 21022-21023 18447 R 1kW 0 Pmax
TOU maximum demand register #2 (M) (E)
Tariff #1 register 9576 LIN3 21120-21121 18688 R 1kW 0 Pmax Tariff #2 register 9577 LIN3 21122-21123 18689 R 1kW 0 Pmax
... ... ... ...
Tariff #16 register 9591 LIN3 21150-21151 18703 R 1kW 0 Pmax
TOU maximum demand register #3 (M) (E)
Tariff #1 register 9616 LIN3 21248-21249 18944 R 1kVA 0 Pmax Tariff #2 register 9617 LIN3 21250-21251 18945 R 1kVA 0 Pmax
... ... ... ...
Tariff #16 register 9631 LIN3 21278-21279 18959 R 1kVA 0 Pmax
For the parameter limits, see note  to Table 5-1
Voltages are transmitted in 1V uni t s, currents in 1A units, and powers in 1 kW/kvar/kVA units.
The actual frequency range is 45.00 - 65.00 Hz (20.00 - 65.00 Hz - special order).
Absol ute min/max value (lag or lead).
The exported energy registers are read as positive unsigned long (32-bit) integers.
W hen the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring
mode, they will be line-to-line voltages.
The TOU energy register unit will depend on the input parameter for which the register is allocated. See also
note . (M) These parameters are logged to the Min/Max log. (E) available in the PM171E
26
5.10 Analog Output Setup Registers
Table 5-19 Analog Output Allocation Registers
Channel Registers (see Table 5-20)
Channel #1 3148-3150 Channel #2 3151-3153
Table 5-20 Analog Channel Allocation Registers
Parameter Offset Size, byte Direction Range
Output paramete r ID +0 2 R/W see Table 5-23 Zero scale (0-4 mA) +1 2 R/W see Table 5-23 Full scale (1/20 mA) +2 2 R/W see Table 5-23
1. Except for the signed power factor (see Note 3 to Table 5-23), t he output scale is linea r with in the value range. The scale range will be inverted if the full scale specified is less than the zero scale.
2. For bi-dir ection al an alog ou tput (±1 mA), the zero scale corresponds to the center of the scale range (0 mA) and the direction of the current matches the sign of the output parameter. For signed (bi­directional) values, such as powers and signed power factor, the scale is always symmetrical with regard to 0 m A, and the full scale c orresponds to +1 mA output for positive read ings and to -1 mA output for negative readings. For these, the zero scale (0 mA output) is permanently set in the instrument to zero for all parameters except the signed power factor for which it is set to 1.000. In the write request, the zero scale is ignored. No error will occur when you attempt to change it. Unsigned parameters a re outp ut within the cu rrent range 0 to +1 mA and can be scaled us ing both zero an d full scales as in the case of single-ended analog output.
5.11 Analog Expander Setup Registers
Table 5-21 Analog Ex pander Channel Register s
Channel Registers (see Table 5-22)
Channel #1 3196-3198 Channel #2 3199-3201 Channel #3 3202-3204 Channel #4 3205-3207 Channel #5 3208-3210 Channel #6 3211-3213 Channel #7 3214-3216 Channel #8 3217-3219 Channel #9 3220-3222 Channel #10 3223-3225 Channel #11 3226-3228 Channel #12 3229-3231 Channel #13 3232-3234 Channel #14 3235-3237
Table 5-22 Analog Channel Allocation Registers
Parameter Offset Size, byte Direction Range
Output paramete r ID +0 2 R/W see Table 5-23 Zero scale (0-4 mA) +1 2 R/W see Table 5-23 Full scale (20 mA) +2 2 R/W see Table 5-23
Except for the sig ned power factor (s ee Note 3 to Table 5-23), th e output scale is linear within the value range. The scale range will be inverted if the full scale specified is less than the zero scale.
NOTE
Analog expander outputs settings will not be in effect until the analog expander output is globally enabled. To activate the ana log expand er output, set the a nalog expande r option to the enabl ed state in the user sel ectable options setup (s ee Section 5.3).
27
Table 5-23 Analog Output Parameters
Output parameter Data Size, Unit  Scale  Con-
ID byte Low High version None None Real-time values per phas e
Voltage L1/L12  3072 2 1V 0 Vmax LIN3 Voltage L2/L23  3073 2 1V 0 Vmax LIN3 Voltage L3/L31  3074 2 1V 0 Vmax LIN3 Current L1 3075 2 1A 0 Imax LIN3 Current L2 3076 2 1A 0 Imax LIN3 Current L3 3077 2 1A 0 Imax LIN3
Real-time total value s
Total kW 3840 2 1kW -Pmax Pmax LIN3 Total kva r 3841 2 1kvar -Pmax Pmax LIN3 Total kVA 3842 2 1kVA 0 Pmax LIN3 Total PF  3843 2 0.001 -1.000 1.000 LIN3 Total PF Lag 3844 2 0.001 0 1.000 LIN3 Total PF Lead 3845 2 0.001 0 1.000 LIN3
Real-time auxilia ry values
Frequency  4098 2 0.01Hz 0 100.00 LIN3
Average values per phase
Voltage L1/L12  4352 2 1V 0 Vmax LIN3 Voltage L2/L23  4353 2 1V 0 Vmax LIN3 Voltage L3/L31  4354 2 1V 0 Vmax LIN3 Current L1 4355 2 1A 0 Imax LIN3 Current L2 4356 2 1A 0 Imax LIN3 Current L3 4357 2 1A 0 Imax LIN3
Average total values
Total kW 5120 2 1kW -Pmax Pmax LIN3 Total kva r 5121 2 1kvar -Pmax Pmax LIN3 Total kVA 5122 2 1kVA 0 Pmax LIN3 Total PF  5123 2 0.001 -1.000 1.000 LIN3 Total PF Lag 5124 2 0.001 0 1.000 LIN3 Total PF Lead 5125 2 0.001 0 1.000 LIN3
Average auxiliary values
Neutral current 5377 2 1A 0 Imax LIN3 Frequency  5378 2 0.01Hz 0 100.00 LIN3
Present demands
Accumulated kW import demand (E) Accumulated kVA deman d (E) 5649 2 1kVA 0 Pmax LIN3
For parameter limits, see note  to Table 5-1.
Voltages are transmitted in 1V uni ts, currents in 1A units, a nd powers in 1 kW/kvar/ kVA units.
The actu al frequency range is 45.0 0 t o 65.00 Hz (20.00 - 65.00 Hz - specia l order).
The output scale for signed (bi-directional) power factor is symmetrical with regard to ±1.000 and is linear
from -0 to -1.000 , and fr om 1. 000 to +0 (n ote tha t -1.0 00 ≡ +1.000). Negative power factor is output as [ -1.000 minus measured value], and non-negative power factor is output as [+1.000 minus measured value]. To define the entire range for power factor from -0 to +0, the scales would be specified as -0/0. Because of the fact that negative zero may not be transmitted, the value of -0.001 is used to specify the scale of -0, and both +0.001 and 0.000 are used to specify the scale of +0. To define the range of -0 to 0, you must send
-0.001/0.001 or -0.001/0.
W hen the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring
mode, they will be line-to-line voltages.
(E) available in the PM171E
0 2 N/A N/A NONE
5647 2 1kW 0 Pmax LIN3
28
5.12 Digital Inputs Allocation Registers
Table 5-24 Digital Inputs Allocation Register s
Parameter Register Size,
Status inputs allocation mask 3292 2 R  See Table 5-25 Pulse inputs allocation mask 3293 2 R/W See Table 5-25 Not used 3294 2 R  Read as 0 External demand synchr onization input mask (E) 3295 2 R/W See Table 5-25
Writing to these locations is ignored. No error will occur.
(E) available in the PM171E
NOTES
1. All digital inputs that were not allocated as pulse inputs will be automatically configured as status inputs.
2. A digital input al located for the externa l demand synchroniza tion pulse or time synchroniza tion pulse will be automatically configured as a pulse input.
Direction Range
byte
Table 5-25 Digital Inputs Allocation Mask
Bit Description
0 Digital input # 1 allocation status 1 Digital input # 2 allocation status 2-15 Not used (read as 0)
Bit meaning: 0 = input is not allocated, 1 = input is allocated to the group
5.13 Timers Setup Registers
Table 5-26 Timers Setup Regist e r s
Parameter Register Size,
byte
Timer #1 time inter val 3300 2 R/W 1-9999 sec, 0 = timer disabled Timer #2 time inter val 3301 2 R/W 1-9999 sec, 0 = timer disabled
Direction Range
5.14 Alarm/Event Setpoints Registers
Table 5-27 Setpoint Registers
Setpoint Setup registers (see Table 5-28)
Setpoint #1 352-395 Setpoint #2 396-439 Setpoint #3 440-483 Setpoint #4 484-527 Setpoint #5 528-571 Setpoint #6 572-615 Setpoint #7 616-659 Setpoint #8 660-703 Setpoint #9 704-747 Setpoint #10 748-791 Setpoint #11 792-835 Setpoint #12 836-879 Setpoint #13 880-923 Setpoint #14 924-967 Setpoint #15 968-1011 Setpoint #16 1012-1055
29
Table 5-31 Setpoint Setup Registers
Parameter Offset Size, byte Range
Trigger ID +0 2 see Table 5-29 Action +1 2 see Table 5-30 Operate delay +2 2 0-9999 (x 0.1 sec) Release delay +3 2 0-9999 (x 0.1 sec) Operate limit +4
+5
Release limit +6
+7
1. The setpoint is disabled when the first trigger ID is set to NONE. To disable the setpoint, write zero into
this register.
2. When writing the setpoint registers (except the event when the setpoint is to be disabled), it is
recommended to write all the setpoin t registers using a sing le request, or disable the setp oint before writing into separate registers. Each value being written is checked for compatibility with the other setpoint parameters; if the new value does not conform to these, the request will be rejected.
3. Operate and rel ease lim its for t he trigge r parame ters and th eir conver sion sca les ar e indica ted in Table
5-29. Each lim it value occ upies two conti guous regi sters, the fir st of which (low word) conta ins the limi t value, and the second (high word) is reserved for long parameters. This register is always read as zero. When written, its value is ignored.
4. Limits ind icated in Table 5-29 by a N/A mar k are read as zeros. W hen writing, they can be omitted or
should be written a s zer os.
5. When a setpoin t ac ti on is di rec t ed t o a rela y al loc ate d to outp ut en er gy puls es, an atte mp t to re -al loc ate
it for a setpoint will result in a negative response.
4 see Table 5-29 4 see Table 5-29
Table 5-29 Setpoint Trigger Parameters
Trigger parameter Trigger Size, Unit  Limit/scale  Con-
ID byte Low High version None None Internal events (E)
kWh import pulse kWh export pulse kvarh import pulse kvarh export pulse kvarh total pulse kVAh total pulse Start new demand interval Start new tariff interval Start new volt/ampere demand interval Start new sliding window demand interval
Timers (E)
Timer #1 1280 2 N/A N/ A NONE Timer #2 1281 2 N/A N/A NONE
Status inputs
Status input #1 ON 1536 2 N/A N/A NONE Status input #2 ON 1537 2 N/A N/A NONE Status input #1 OFF 34304 2 N/A N/A NONE Status input #2 OFF 34305 2 N/A N/A NONE
Pulse inputs (E)
Pulse input #1 1792 2 N/A N/ A NONE Pulse input #2 1793 2 N/A N/A NONE
Phase reversal
Positive phase rotation reversal Negative phase rotation reversal
Pulse count ers
High pulse count er #1 2560 2 0 106-1 NONE High pulse count er #2 2561 2 0 106-1 NONE High pulse count er #3 2562 2 0 106-1 NONE
0 2 N/A N/A NONE
1024 2 N/A N/A NONE 1025 2 N/A N/A NONE 1027 2 N/A N/A NONE 1028 2 N/A N/A NONE 1029 2 N/A N/A NONE 1030 2 N/A N/A NONE 1031 2 N/A N/A NONE 1032 2 N/A N/A NONE 1033 2 N/A N/A NONE 1034 2 N/A N/A NONE
35073 2 N/A N/A NONE 35074 2 N/A N/A NONE
30
Trigger parameter Trigger Size, Unit  Limit/s cale  Con-
ID byte Low High version
High pulse count er #4 2563 2 0 106-1 NONE
Time/Date parame ters (E)
Day of week Year Month Day of month Hour Minutes Seconds
High/low real-time values per phase
High current L1 3075 2 1A 0 Imax LIN3 High current L2 3076 2 1A 0 Imax LIN3 High current L3 3077 2 1A 0 Imax LIN3 Low current L1 35843 2 1A 0 Imax LIN3 Low current L2 35844 2 1A 0 Imax LIN3 Low current L3 35845 2 1A 0 Imax LIN3
High/low real-time values on any phase
High voltage  3584 2 1V 0 Vmax LIN3 Low voltage  36096 2 1V 0 Vmax LIN3 High current 3585 2 1A 0 Imax LIN3 Low current 36097 2 1A 0 Imax LIN3 High voltage THD 3591 2 0.1% 0 999.9 LI N3 High current THD 3592 2 0.1% 0 999.9 LIN3 High K-Factor 3593 2 0.1 1.0 999.9 LIN3 High current TDD 3594 2 0.1% 0 100.0 LIN3
High/low real-time auxiliary values
High frequency  4098 2 0.01Hz 0 100.00 LIN3 Low frequency  36866 2 0.01Hz 0 100.00 LIN3
High/low average values per phase
High current L1 4355 2 1A 0 Imax LIN3 High current L2 4356 2 1A 0 Imax LIN3 High current L3 4357 2 1A 0 Imax LIN3 Low current L1 37123 2 1A 0 Imax LIN3 Low current L2 37124 2 1A 0 Imax LIN3 Low current L3 37125 2 1A 0 Imax LIN3
High/low average value s on any phase
High voltage  4864 2 1V 0 Vmax LIN3 Low voltage  37376 2 1V 0 Vmax LIN3 High current 4865 2 1V 0 Vm ax LIN3 Low current 37377 2 1V 0 Vmax LIN3
High/low average total values
High total kW import 5126 2 1k W -Pmax Pmax LIN3 High total kW export 5127 2 1k W -Pmax Pmax LIN3 High total kvar import 5128 2 1kvar -Pmax Pmax LIN3 High total kvar export 5129 2 1kvar -Pmax Pmax LIN3 High total kVA 5122 2 1kVA 0 Pmax LI N3 Low total PF Lag 37892 2 0.001 0 1.000 LIN3 Low total PF Lead 37893 2 0.001 0 1.000 LIN3
High/low average auxiliary values
High neutral current 5377 2 1A 0 Imax LIN3 High frequency  5378 2 0.01Hz 0 100.00 LIN3 Low frequency  38146 2 0.01Hz 0 100.00 LIN3
High present demands
High volt demand L1/L12  5632 2 1V 0 Vmax LIN3 High volt demand L2/L23  5633 2 1V 0 Vmax LIN3 High volt demand L3/L31  5634 2 1V 0 Vmax LIN3 High ampere dem and L1 5635 2 1A 0 Imax LIN3 High ampere dem and L2 5636 2 1A 0 Imax LIN3 High ampere dem and L3 5637 2 1A 0 Imax LIN3 High block kW import demand (E) 5638 2 1kW 0 Pm ax LIN3 High block kVA demand (E) 5640 2 1kVA 0 Pm ax LIN3 High sliding window kW import demand (E) 5641 2 1kW 0 Pmax LIN3
2818 2 1=Sun 7=Sat NONE 2819 2 0 99 NONE 2820 2 1 12 NONE 2821 2 1 31 NONE 2822 2 0 23 NONE 2823 2 0 59 NONE 2824 2 0 59 NONE
31
Trigger parameter Trigger Size, Unit  Limit/s cale  Con-
ID byte Low High version
High sliding window kVA demand (E) 5643 2 1kVA 0 Pmax LIN3 High accumulated kW import dema nd (E) 5647 2 1k W 0 Pmax LIN3 High accumulated kVA demand (E) 5649 2 1kVA 0 Pmax LIN3 High predicted kW import demand (E) 5650 2 1kW 0 Pmax LIN3 High predicted kVA de m and (E) 5652 2 1kVA 0 Pmax LIN3
For parameter limits, see note  to Table 5-1
Voltages are transmitted in 1V uni t s, currents in 1 A units, and powers in 1 kW/kvar/ kVA units.
The setpoint is operated when the actual phase sequence does not m atch the indicated phase r ot ation.
The actual frequency range is 45.00 - 65.00 Hz (20.00 - 65.00 Hz - special order).
W hen the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring
mode, they will be line-to-line voltages.
(E) available in the PM171E
Table 5-30 Setpoint Actions
Action Action ID
No action 0 Operate relay #1  12288 Operate relay #2  12289 Increment co unter #1 (E) 16384 Increment co unter #2 (E) 16385 Increment co unter #3 (E) 16386 Increment co unter #4 (E) 16387 Clear counter #1 ( E ) 16896 Clear counter #2 ( E ) 16897 Clear counter #3 ( E ) 16898 Clear counter #4 ( E ) 16899 Clear all counte r s (E) 25600 Reset total energy (E) 24576 Reset all total maximum demands (E) 24832 Reset power maximum demands (E) 24833 Reset volt/amper e m aximum demands (E) 24834 Reset TOU energy (E) 25088 Reset TOU maximum demands (E) 25344 Clear Min/Max registers (E) 25856 Event log (E)  28674 Data log #1 (E) 28928 Data log #2 (E) 28929 Data log #3 (E) 28930 Data log #4 (E) 28931 Data log #5 (E) 28932 Data log #6 (E) 28933 Data log #7 (E) 28934 Data log #8 (E) 28935
(E) available in the PM171E
In the PM171E, operate/release actions via relays are automatically recorded to the event log whenever an
electrical quantity, status input, or phase reversal trigger is used.
Either setpoint transition (both operate and release) is recorded to the event log.
5.15 Pulsing Setpoints Registers
Table 5-31 Pulsing Registers
Relay Setup registers (see Table 5-32)
Relay #1 2892-2893 Relay #2 2894-2895
32
Table 5-32 Pulsing Setup Registers
Parameter Offset Size,
byte
Output parameter ID +0 2 R/W se e Tabl e 5-33 Number of unit-h ours per pulse +1 2 R/W 1-9999
Direction Range
Table 5-33 Pulsing Output Parameters
Pulsing parameter ID
None 0 kWh im port 1 kWh export 2 kvarh import 4 kvarh export 5 kvarh total (a bso l ute) 6 kVAh total 7
5.16 Relay Operation Control Registers
These registers allow the user to manually override setpoint relay operations. Either relay may be manually operated or released using commands sent via communications.
NOTES
1. A relay allocated as a pulsing relay may not be manually operated or released. When a relay is allocated for pulsing, it automatically reverts to normal operation.
2. A relay is energized when manually operated, and is de-energized when manually released.
Table 5-34 Relay Operation Control Registers
Parameter Register Size,
Relay #1 control st atus Relay #2 control st atus
3244 2 R/W see Tabl e 5-35 3245 2 R/W see Tabl e 5-35
Table 5-35 Relay Operation Status
byte
Direction Range
Operation status Value
Normal operati on 0 Force operate 1 Force release 2
5.17 Pulse Counters Setup Registers
Table 5-36 Pulse Counters Registers
Counter Setup regi sters (see Table 5-37)
Counter #1 2940-2941 Counter #2 2942-2943 Counter #3 2944-2945 Counter #4 2946-2947
Table 5-37 Pulse Counter Setup Register s
Parameter Offset Size,
Associated digital input ID +0 2 R/W see Table 5-38 Scale factor (number of units per input pulse)
+1 2 R/W 1-9999
Direction Range
byte
33
Table 5-38 Digital Inputs Identifie r s
Discrete input ID
Not allocated 0 Digital input # 1 1 Digital input # 2 2
5.18 Log Memory Partitions Setup Registers
Table 5-39 Memory Partitions Setup Registers
Partition
Number
0 Event log 3660-3665 1 Data log #1 3668-3673 2 Data log #2 3676-3681 3 Data log #3 3684-3689 4 Data log #4 3692-3697 5 Data log #5 3700-3705 6 Data log #6 3708-3713 7 Data log #7 3716-3721 8 Data log #8 3724-3729
Table 5-40 Partition Setup Registers
The number of records in the partition The number of log parameters in the record for a data log partition (for an event log partition, write 0) Partition type +2 2 R/W 0 = non-wrap
Record size, byte +3 2 R Partition size, byte +4
These registers allow you to allocate a memory partition for logging and to specify the partition size and type. Before alloca ting a par titio n, it is recom men ded to che ck t he avail able m emor y by readin g the extend ed memo ry status registers. To help you in planning memory, Table 5-41 shows the rec ord size for each partition .
Note that the existing partition may not be resized. To change the partition properties, you should first delete a partition and then reallocate it with the desirable properties. To delete a partition, write zero into the first partition's register.
When allocating a memory partiti on, all partitio n registers must be written a t once using a sing le request. After reallocation of memory, the instrument performs the memory optimization and will not respond to the host requests for approximately 1 second per 128 Kbyte of memory.
Writing into registers at offsets +3, +4 and +5 does not affect the register contents. No error will occur.
Table 5-41 Partitions' Record Size
Partition Record size, byte
Event log 14 Data log
Memory partition Setup registers
(see Table 5-40)
Parameter Offset Size,
byte
+0 2 R/W 0-65535, +1 2 R/W 0-16
4 R 0-524288
+5
8 + 4 (NUMBER OF PARAMETERS)
Direction Range
0 = delete partition
1 = wrap around
34
5.19 Data Log Setup Registers
Table 5-42 Data Log Setup Registe r s
Partition Registers (see Table 5-43)
Data log #1 1792-1807 Data log #2 1808-1823 Data log #3 1824-1839 Data log #4 1840-1855 Data log #5 1856-1871 Data log #6 1872-1887 Data log #7 1888-1903 Data log #8 1904-1919
Table 5-43 Data Log Setup
Parameter Offset Size,
Log parameter #1 ID +0 2 R/W see Table 5-18 Log parameter #2 ID +1 2 R/W see Table 5-18 Log parameter #3 ID +2 2 R/W see Table 5-18 Log parameter #4 ID +3 2 R/W see Table 5-18 Log parameter #5 ID +4 2 R/W see Table 5-18 Log parameter #6 ID +5 2 R/W see Table 5-18 Log parameter #7 ID +6 2 R/W see Table 5-18 Log parameter #8 ID +7 2 R/W see Table 5-18 Log parameter #9 ID +8 2 R/W see Table 5-18 Log parameter #10 ID +9 2 R/W see Table 5-18 Log parameter #11 ID +10 2 R/W see Table 5-18 Log parameter #12 ID +11 2 R/W see Table 5-18 Log parameter #13 ID +12 2 R/W see Table 5-18 Log parameter #14 ID +13 2 R/W see Table 5-18 Log parameter #15 ID +14 2 R/W see Table 5-18 Log parameter #16 ID +15 2 R/W see Table 5-18
Parameters that can be s elected for d ata log are l isted in Tabl e 5-18. Before setting up the parameter s for any data log, th e memor y partit ion mus t be a llocate d for the lo g (see Se ction 5.18). When writing th e data log s etup registers, only parameters that are specified in the partition record setup will be written. When reading registers, those that are not defined in the data log setup will be read as zeros.
Direction Range
byte
5.20 Event Log Registers
These registers allow you to read the packet of consequent records from the event log partition. From 1 to 10 event log records can be read at a time via the event log windows, which comprise registers 3916 through 4035. Reading from eith er event log window always ret urns the ne xt logg ed even t. Al l reg iste rs within on e wind ow must be read at once using a single request. After reading each record, the partition queue pointer is shifted forward until the last logged record has been read. After that, the exception code 98 is returned in the window register at offset +0. It should be c hecked befo re accept ing the recor d. To restore the queue to the orig in, a zero must be written to the event lo g queue reset register (se e Section 5.5).
Table 5-44 Event Log Windows Registers
Event lo g window Registers (see Table 5-45)
Event log window #1 3916-3927 Event log window #2 3928-3939 Event log window #3 3940-3951 Event log window #4 3952-3963 Event log window #5 3964-3975 Event log window #6 3976-3987 Event log window #7 3988-3999 Event log window #8 4000-4011 Event log window #9 4012-4023 Event log window #10 4024-403 5
35
Table 5-48 Event Log Window Registers
Parameter Offset Size,
byte
Second +0 2 R 0-59,
Minute +1 2 R 0 -59 Hour +2 2 R 0-23 Day +3 2 R 1-31 Month +4 2 R 1-12 Year +5 2 R 0-99 Event cause +6 2 R see Table 5-46 Event origin +7 2 R see Table 5-46 Log value (16-bi t register/32-bit counter)  Event effect +10 2 R see Table 5-46 Event target +11 2 R see Table 5- 46
The log value can be read in one or two registers depen ding on the value type. Fo r the value length and
conversion scales, refer to Table 5-26.
+8 +9
4 R see Table 5-46
Direction Range
97 = record corrupted 98 = no more events 99 = no events logged
Table 5-46 Event Log Parameters
Event cause
Setpoint event
Comm. activity Front panel activity Self-check 93 Data location code
External event
Event cause code Event origin
(location)
Trigger para meter ID high byte (see Table 5-29)
91 Data location code 92 Data location code
99 0 = power down
Trigger para m eter ID low byte (se e T able 5-29)
(see Table 5-47) (see Table 5-47) (see Table 5-47) 8 = power up
Log value Event ef fect Event target
Trigger parameter value (see Table 5-29) N/A See Table 5-48 See Table 5-48
N/A See Table 5-48 See Table 5-48 N/A See Table 5-48 See Table 5-48 N/A N/A N/A
225 = setpoint operated 226 = setpoint released
Setpoint number = 0-15
Table 5-47 Data Location Codes
Location code Description
3 Data keeping memory 8 Real-time clock 16 Event/alarm setpoint
Table 5-48 Event Effect Codes
Effect code Description Target
96 Clear energy regist ers N/A 97 Clear maximum demand
registers
98 Clear TOU energy registers N/A 99 Clear TOU maximum demand
registers
100 Clear counters 0 = all counters 101 Clear Min/Max log registers N/A
102 Clear event log N/A 103 Clear data log 0-7 = log #1-#8
225 Setpoint operated 0-15 = setpoint #1-#16 226 Setpoint released 0-15 = setpoint #1-#16 241 Setpoint disabled 0-1 5 = setpoint #1-#16 245 RTC set N/A
0 = all demands 1 = power deman ds 2 = volt/ampere demands
N/A
1-4 = counter #1-#4
16 = all data logs
36
5.21 Data Log Registers
Data log records are read via a data log window, one for each data log partition. Reading from this window always returns t he ne xt rec ord lo gg ed in th e pa rtit ion. Al l reg is te rs with in on e window mus t be rea d at on ce us ing a single reque st. After reading eac h record, the partition queue pointer is sh ifted forward until the la st logged record has been read. After that, the exception code 98 is returned in the re cord's first regist er. It should be checked before accepting the record. To restore the queue to the origin, a zero must be written to the partition queue reset reg i ster (see Section 5.5).
Table 5-49 Data Logs Window Registers
Data log window Registers (see Table 5-50)
Data log #1 window 1120-1161 Data log #2 window 1162-1203 Data log #3 window 1204-1245 Data log #4 window 1246-1287 Data log #5 window 1288-1329 Data log #6 window 1330-1371 Data log #7 window 1372-1413 Data log #8 window 1414-1455
Table 5-50 Data Log Window Registers
Parameter Offset Size,
byte
Trigger setpoint number +0 2 R 1-16,
Hundredths of se cond +1 2 R 0-99 Second +2 2 R 0-59 Minute +3 2 R 0-59 Hour +4 2 R 0-23 Day +5 2 R 1-31 Month +6 2 R 1-12 Year +7 2 R 0-99 Reserved +8 2 R 0 The number of parameters in the record Log parameter #1 valu e  +11
Log parameter #2 valu e  +13 ...
Log parameter #16 value  +40
The log parameter value is read as 16-bit ordinal register or 32-bit counter. For the value range and
conversion scales, refer to Table 5-18.
When reading the data log window registers, those that reside outside of the specified partition record size will be read as zeros. The actual number o f parameters in t he record is indic ated in the log window register at offs et +10.
+10 2 R 1-16
4 R see Table 5-18
+12
4 R see Table 5-18
+14
4 R see Table 5-18
+41
Direction Range
97 = record corrupted 98 = no more records 99 = no records logged
5.22 Min/Max Log Registers
These registers allow you to read time-stamped Min/Max logs in 16-bit Modbus registers using LIN3 conversion. From 1 to 12 adjacen t records c an be read at a tim e via the Min/Max log windows. The start ing window #1 can be mapped to any Min/Max log parameter listed in Table 5-18 by writing the parameter ID to the Min/Max log mapping register. This register must be written before reading the Min/Max log windows. Note that through Min/Max log windows, you can read onl y adjacent par ameters within the sa me Min/Max log data group. Re ading parameters outside of the selected Min/Max log data group will return zero.
37
Table 5-51 Min/Max Log Windows Registers
Min/Max log window Registers (see Table 5-52)
Min/Max log window #1 4174-4181 Min/Max log window #2 4182-4189 Min/Max log window #3 4190-4197 Min/Max log window #4 4198-4205 Min/Max log window #5 4206-4213 Min/Max log window #6 4214-4221 Min/Max log window #7 4222-4229 Min/Max log window #8 4230-4237 Min/Max log window #9 4238-4245 Min/Max log window #10 4246-4253 Min/Max log window #11 4254-4261 Min/Max log window #12 4262-4269
Table 5-52 Min/Max Log Window Registers
Parameter Offset Size,
Second +0 2 R 0-59 Minute +1 2 R 0-59 Hour +2 2 R 0-23 Day +3 2 R 1-31 Month +4 2 R 1-12 Year +5 2 R 0-99 Parameter value  +6 2 R see Table 5- 18 Reserved +7 2 R 0
The Min/Max parameter value is r ead in a 16-b it re gist er. Fo r the value rang e and c onversi on sc ales , refer to
Table 5-18.
Direction Range
byte
Table 5-53 Min/Max Log Mapping Register
Parameter Register Size,
Min/Max log start param eter ID for window #1
4172 2 R/W see Table 5-18
Direction Range
byte
5.23 Real Time Clock Registers
Table 5-54 RTC Registers
Parameter Register Size,
byte
Seconds 4352 2 R/W 0-59 Minutes 4353 2 R/W 0-59 Hour 4354 2 R/W 0-23 Day of month 4355 2 R/W 1-31 Month 4356 2 R/W 1-12 Year 4357 2 R/W 0-99 Day of week 4358 2 R/W 1-7 (1=Sunday)
The day of week is not checked when written. It is set automatically when you change the date.
38
Direction Range
5.24 TOU System Registers Setup
Table 5-55 TOU System Setup Registers
TOU system register Setup registers
(see Table 5-56)
TOU energy register #1 4564-4565 TOU energy register #2 4566-4567 TOU energy register #3 4568-4569 TOU energy register #4 4570-4571 TOU energy register #5 4572-4573 TOU energy register #6 4574-4575 TOU energy register #7 4576-4577 TOU energy register #8 4578-4579 TOU Maximum kW demand register 4580-4581 N/A  4582-4583 TOU Maximum kVA demand register 4584-4585
Writing to this register is ignored. No error will occur.
Table 5-56 TOU Register Setup
Parameter Offset Size,
TOU register input id entifier +0 2 R/W see Tables 5-57, 5-58 For a pulse input = numb e r of unit-hours per pulse. Otherwise, set to 0.
1. Each TOU register consists of 16 tariff registers.
2. If a pulse input is assigned to an energy register, the register's input ID must be written first.
+1 2 R/W 0-9999
Table 5-57 TOU Energy Registe rs Inputs
Register input Input ID
None 0 kWh import 1 kWh export 2 N/A  3 N/A  4 kvarh import 5 kvarh export 6 N/A  7 N/A  8 kVAh total 9 Pulse input #1 10 Pulse input #2 11
Specifying this input will be accepted as NONE. No error will occur.
Table 5-58 TOU Demand Registers Inputs
Register input Input ID
None 0 N/A  1 Maximum sliding window demand 2 N/A  3
Specifying this input will be accepted as NONE. No error will occur.
Direction Range
byte
39
5.25 TOU Daily Profiles Registers
Table 5-59 TOU Daily Profiles Registers
TOU daily profile Setup registers
(see Table 5- 60 )
TOU daily profile #1 2048-2063 TOU daily profile #2 2064-2079 TOU daily profile #3 2080-2095 TOU daily profile #4 2096-2111 TOU daily profile #5 2112-2127 TOU daily profile #6 2128-2143 TOU daily profile #7 2144-2159 TOU daily profile #8 2160-2175 TOU daily profile #9 2176-2191 TOU daily profile #10 2192-2207 TOU daily profile #11 2208-2223 TOU daily profile #12 2224-2239 TOU daily profile #13 2240-2255 TOU daily profile #14 2256-2271 TOU daily profile #15 2272-2287 TOU daily profile #16 2288-2303
Table 5-60 TOU Profile Setup Registe r s
Parameter
1st tariff change Tariff start time +0 2 R/W 0 Active tariff number +1 2 R/W 0-15 2nd tariff change Tariff start time +2 2 R/W see Table 5-61 Active tariff number +3 2 R/W 0-15 3rd tariff change Tariff start time +4 2 R/W see Table 5-61 Active tariff number +5 2 R/W 0-15 4th tariff change Tarif f start time +6 2 R/W see Table 5-61 Active tariff number +7 2 R/W 0-15 5th tariff change Tarif f start time +8 2 R/W see Table 5-61 Active tariff number +9 2 R/W 0-15 6th tariff change Tarif f start time +10 2 R/W see Table 5-61 Active tariff number +11 2 R/W 0-15 7th tariff change Tarif f start time +12 2 R/W see Table 5-61 Active tariff number +13 2 R/W 0-15 8th tariff change Tarif f start time +14 2 R/W see Table 5-61 Active tariff number +15 2 R/W 0-15
Table 5-61 Tariff Start Time Register
Parameter Bits Range
Tariff start minute 0-7 0-45 Tariff sta rt ho ur 8-15 0-23
The daily start time for each tariff is specified with a resolution of 15 minutes. If another value is specified, it will be truncated to the lower value divisible by 15 minutes. No error will occur. The first daily tariff change time is always 00:00. It is pre served internally and cannot be changed.
Offset Size,
byte
Direction Range
40
5.26 TOU Calendar Registers
Table 5-62 TOU Calendars Registers
TOU calendar Calendar month Setup registers
(see Table 5-63)
TOU calendar #1 January 4368-4375 February 4376-4383 March 4384-4391 April 4392-4399 May 4400-4407 June 4408-4415 July 4416-4423 August 4424-4431 September 4432-4439 October 4440-4447 November 4448-4455 December 4456-4463
TOU calendar #2 January 4464-4471 February 4472-4479 March 4480-4487 April 4488-4495 May 4496-4503 June 4504-4511 July 4512-4519 August 4520-4527 September 4528-4535 October 4536-4543 November 4544-4551 December 4552-4559
Table 5-64 TOU Calendar Setup Re gis t e rs
Parameter Offset Size, byte Direction Range
1-4 day profiles +0 2 R/W see Table 5-65 5-8 day profiles +1 2 R/W see Table 5-65 9-12 day profil es +2 2 R/W see Table 5-65 13-16 day profiles +3 2 R/W see Table 5-65 17-20 day profiles +4 2 R/W see Table 5-65 21-24 day profiles +5 2 R/W see Table 5-65 25-28 day profiles +6 2 R/W see Table 5-65 29-31 day profiles +7 2 R/W see Table 5-65
Table 5-65 TOU Calendar Profile Format
Parameter Bits Range
1st day profile number 0-3 0-15 2nd day profile number 4-7 0-15 3rd day profile num ber 8-11 0-15 4th day profile number 12-15 0-15
Each profile regi ster defines daily profil es for four days of month.
5.27 TOU Calendar Years Registers
These registers allow to associate calend ar years with two TOU annual calendars.
Table 5-66TOU Calendar Years Registers
Parameter Register Size, byte Direction Range
1st annual calendar year 4560 2 R/W 0-99 2nd annual calendar year 4561 2 R/W 0-99
41
NOTES
42
Loading...