Satec PM130EH SERIES Reference Manual

SERIES PM130EH POWERMETERS
COMMUNICATIONS
Modbus Communications Protocol
Every effort has been made to ensure that the material herein is complete and accurate. However, the manufacturer is not responsible for any mistakes in printing or faulty instructions contained in this book. Notification of any errors or misprints will be received with appreciation.
For further information regarding a particular installation, operation or maintenance of equipment, contact the manufacturer or your local representative or distributor.
This book is copyrighted. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the manufacturer.
This revision is applicable to Version 3.54 or later of the PM130EH instrument.
Modbus is a trademark of Modicon, Inc.
BG0373 Rev.A2
3
Table of Contents
1 GENERAL ............................................................................................. 4
2 MODBUS FRAMING ............................................................................. 5
2.1 Transmission Mode ................................................................................................ 5
2.2 The RTU Frame Format ......................................................................................... 5
2.3 Address Field.......................................................................................................... 5
2.4 Function Field ......................................................................................................... 5
2.5 Data Field ............................................................................................................... 6
2.6 Error Check Field.................................................................................................... 6
3 MODBUS MESSAGE FORMATS ......................................................... 7
3.1 Function 03 - Read Multiple Registers ................................................................... 7
3.2 Function 04 - Read Multiple Registers ................................................................... 7
3.3 Function 06 - Write Single Register........................................................................ 7
3.4 Function 16 - Write Multiple Registers ................................................................... 8
3.5 Function 08 - Loop-back Communications Test..................................................... 8
3.6 Exception Responses............................................................................................. 9
4 PROTOCOL IMPLEMENTATION ....................................................... 10
4.1 Modbus Register Addresses ................................................................................ 10
4.2 Data Formats ........................................................................................................ 10
4.2.1 16-bit Integer Format .................................................................................... 10
4.2.2 32-bit Modulo 10000 Format ........................................................................ 12
4.2.3 32-bit Long Integer Format ........................................................................... 12
4.3 User Assignable Registers ................................................................................... 12
5 POWERMETER REGISTERS DESCRIPTION.................................... 14
5.1 Basic Data Registers Set...................................................................................... 14
5.2 Basic Setup........................................................................................................... 15
5.3 User Selectable Options Setup ............................................................................ 16
5.4 Communications Setup ........................................................................................ 16
5.5 Reset/Synchronization Registers ......................................................................... 16
5.6 Instrument Status.................................................................................................. 17
5.7 Extended Status ................................................................................................... 17
5.8 Extended Data Registers...................................................................................... 19
5.9 Alarm/Event Setpoints .......................................................................................... 24
5.10 Pulsing Setpoints ................................................................................................ 26
5.11 Relay Operation Control ..................................................................................... 26
5.12 Min/Max Log ....................................................................................................... 27
4
1 GENERAL
This document specifies a subset of the Modbus serial communications protocol used to transfer data between a master computer station and the PM130EH. The document provides the complete information necessary to develop a third-party communications software capable of communication with the Series PM130EH Powermeters. Additional information concerning communications operation, configuring the communications parameters, and communications connections is found in "Series PM130EH Powermeters, Installation and Operation Manual".
IMPORTANT
In 3-wire connection schemes, the unbalanced current and phase readings for power factor, active power, and reactive power will be zeros, because they have no meaning. Only the total three-phase power values can be used.
Most of the instrument advanced features are configured using multiple setup parameters that can be accessed in some contiguous registers. When writing the setup registers, it is recommended to write all the registers at once using a single request, or to clear (zero) the setup before writing into separate registers.
5
2 MODBUS FRAMING
2.1 Transmission Mode
The protocol uses the Modbus Remote Terminal Unit (RTU) transmission mode. In RTU mode, data is sent in 8-bit binary characters. The 8 bit even parity or 8 bit no parity data format must be selected when configuring the instrument communications. The data format is shown in the following table.
Table 2-1 RTU Data Format
Field No. of bits
Start bit 1 Data bits c 8 Parity (optional) 1 Stop bit 1
c Least significant bit first
2.2 The RTU Frame Format
Frame synchronization is maintained in RTU transmission mode by simulating a synchronization message. The receiving device monitors the elapsed time between receptions of characters. If three and one-half character times elapse without a new character or completion of the frame, then the device flushes the frame and assumes that the next byte received will be an address. The frame format is defined below.
The maximum query and response message length is 256 bytes including check characters.
RTU Message Frame Format
T1 T2 T3 Address Function Data CRC Check T1 T2 T3
8 bits 8 bits N * 8 bits 16 bits
2.3 Address Field
The address field contains a user assigned address (1-247) of the instrument that is to receive a message. Address 0 is used in broadcast mode to transmit to all instruments (broadcast mode is available only for functions 06 and 16). In this case all instruments receive the message and take action on the request, but do not issue a response. In the PM130EH, the broadcast mode is supported only for register addresses 287-294 and 301-302 (reset energies and maximum demands), 3404-3415 (reset/clear registers), and 4352-4358 (real-time clock registers).
2.4 Function Field
The function field contains a function code that tells the instrument what action to perform. Function codes used in the protocol are shown below in Table 2-2.
Table 2-2 Modbus Function Codes
Code (decimal) Meaning in Modbus Action
03 Read holding registers Read multiple registers 04 Read input registers Read multiple registers 06 Preset single register Write single register 16 Preset multiple registers Write multiple registers 08 Loop-back test Communications test
NOTE Broadcast mode available only for functions code 06 and 16.
6
2.5 Data Field
The data field contains information needed by the instrument to perform a specific function, or data collected by the instrument in response to a query.
IMPORTANT Fields composed of two bytes are sent in the order high byte first, low byte second.
2.6 Error Check Field
The error check field contains the Cyclical Redundancy Check (CRC) word. The start of the message is ignored in calculating the CRC. The CRC-16 error check sequence is implemented as described in the following paragraphs.
The message (data bits only, disregarding start/stop and optional parity bits) is considered one continuous binary number whose most significant bit (MSB) is transmitted first. The message is pre-multiplied by x
16
(shifted left 16 bits), and then divided by x
16
+ x
15
+ x2 + 1 expressed as a binary number (11000000000000101). The integer quotient digits are ignored and the 16-bit remainder (initialized to all ones at the start to avoid the case of all zeros being an accepted message) is appended to the message (MSB first) as the two CRC check bytes. The resulting message including CRC, when divided by the same polynomial (x
16
+ x
15
+ x2 + 1) at the receiver will give a zero remainder if no errors have occurred. (The receiving unit recalculates the CRC and compares it to the transmitted CRC). All arithmetic is performed modulo two (no carries).
The device used to serialize the data for transmission will send the conventional LSB or right-most bit of each character first. In generating the CRC, the first bit transmitted is defined as the MSB of the dividend. For convenience, and since there are no carries used in the arithmetic, let's assume while computing the CRC that the MSB is on the right. To be consistent, the bit order of the generating polynomial must be reversed. The MSB of the polynomial is dropped since it affects only the quotient and not the remainder. This yields 1010 0000 0000 0001 (Hex A001). Note that this reversal of the bit order will have no effect whatever on the interpretation or bit order of characters external to the CRC calculations.
The step by step procedure to form the CRC-16 check bytes is as follows:
1. Load a 16-bit register with all 1's.
2. Exclusive OR the first 8-bit byte with the low order byte of the 16-bit register, putting the result in the 16-
bit register.
3. Shift the 16-bit register one bit to the right.
4a. If the bit shifted out to the right (flag) is one, exclusive OR the generating polynomial 1010 000 000
0001 with the 16-bit register.
4b. If the bit shifted out to the right is zero, return to step 3.
5. Repeat steps 3 and 4 until 8 shifts have been performed.
6. Exclusive OR the next 8-bit byte with the 16-bit register.
7. Repeat step 3 through 6 until all bytes of the message have been exclusive ORed with the 16-bit
register and shifted 8 times.
8. When the 16-bit CRC is transmitted in the message, the low order byte will be transmitted first, followed
by the high order byte.
For detailed information about CRC calculation, refer to the Modbus Protocol Reference Guide.
7
3 MODBUS MESSAGE FORMATS
3.1 Function 03 - Read Multiple Registers
This command allows the user to obtain contents of up to 125 contiguous registers from a single data table.
Request
Instrument Address
Function (03)
Starting Address
Word Count Error Check
1 byte 1 byte 2 bytes 2 bytes 2 bytes
Starting Address Address of the first register to be read Word Count The number of contiguous words to be read
Response
Instrument Address
Function (03)
Byte Count
Data Word 1
... Data
Word N
Error Check
1 byte 1 byte 1 byte 2 bytes ... 2 bytes 2 bytes
The byte count field contains quantity of bytes to be returned.
3.2 Function 04 - Read Multiple Registers
This command allows the user to obtain contents of up to 125 contiguous registers from a single data table. It can be used instead of function 03.
Request
Instrument Address
Function (04)
Starting Address
Word Count Error Check
1 byte 1 byte 2 bytes 2 bytes 2 bytes
Starting Address Address of the first register to be read Word Count The number of contiguous words to be read
Response
Instrument Address
Function (04)
Byte Count
Data Word 1
... Data
Word N
Error Check
1 byte 1 byte 1 byte 2 bytes ... 2 bytes 2 bytes
The byte count field contains quantity of bytes to be returned.
3.3 Function 06 - Write Single Register
This command allows the user to write the contents of a data register in any data table where a register can be written.
Request
Instrument Address
Function (06)
Starting Address
Data Word
Error check
1 byte 1 byte 2 bytes 2 bytes 2 bytes
Starting Address Address of the register to be written Data Value Data to be written to the register
8
Response
The normal response is the retransmission of the write request.
3.4 Function 16 - Write Multiple Registers
This request allows the user to write the contents of multiple contiguous registers to a single data table where registers can be written.
Request
Instrument Address
Function (16)
Starting Address
Word Count
Byte Count
1 byte 1 byte 2 bytes 2 bytes 1 byte
Data Word 1 ... ... ... Data Word N Error Check
2 bytes ... ... ... 2 bytes 2 bytes
Starting Address Address of the first register to be written Word Count The number of contiguous words to be written Byte Count The number of bytes to be written
Response
Instrument Address
Function (16)
Starting Address
Word Count
Error Check
1 byte 1 byte 2 bytes 1 word 2 bytes
3.5 Function 08 - Loop-back Communications Test
The purpose of this request is to check the communications link between the specified instrument and PC.
Request
Instrument Address
Function (08)
Diagnostic Code (0)
Data Error
Check
1 byte 1 byte 2 bytes 2 bytes 2 bytes
Diagnostic Code Designates action to be taken in Loop-back test. The protocol
supports only Diagnostic Code 0 - return query data.
Data Query data. The data passed in this field will be returned to the
master through the instrument. The entire message returned will be identical to the message transmitted by the master, field-per­field.
Response
Instrument Address
Function (08)
Diagnostic Code (0)
Data Error
Check
1 byte 1 byte 2 bytes 2 bytes 2 bytes
The normal response is the re-transmission of a test message.
9
3.6 Exception Responses
The instrument sends an exception response when errors are detected in the received message. To indicate that the response is notification of an error, the high order bit of the function code is set to 1.
Exception Response
Instrument Address
Function (high order bit is set to 1)
Exception Code
Error Check
1 byte 1 byte 1 byte 2 byte
Exception response codes:
01 - Illegal function 02 - Illegal data address 03 - Illegal data value 06 - Busy, rejected message. The message was received without errors, but the instrument is being
programmed from the keypad (only for requests accessing setup registers).
NOTE When the character framing, parity, or redundancy check detects a communication error, processing of the master's request stops. The instrument will not act on or respond to the message.
10
4 PROTOCOL IMPLEMENTATION
4.1 Modbus Register Addresses
The PM130EH Modbus registers are referred to by using addresses in the range of 0 to 65535. From within the Modbus applications, the PM130EH Modbus registers can be accessed by simulating holding registers of the Modicon 584, 884 or 984 Programmable Controller, using a 5-digit “4XXXX” or 6-digit “4XXXXX” addressing scheme. To map the PM130EH register address to the range of the Modbus holding registers, add a value of 40001 to the PM130EH register address. When a register address exceeds 9999, use a 6-digit addressing scheme by adding 400001 to the PM130EH register address.
4.2 Data Formats
The PM130EH uses three data formats to pass data between a master application and the instrument: a 16-bit integer format, a 32-bit modulo 10000 format, and a 32-bit long integer format.
4.2.1 16-bit Integer Format
A 16-bit data is transmitted in a single 16-bit Modbus register as unsigned (UINT16) or signed (INT16) integer (whole) numbers without conversion or using pre-scaling to accommodate large-scale and fractional numbers to a 16-bit register format. Scaling can be made using either the LIN3 linear conversion, or decimal pre-scaling to pass fractional numbers in integer format.
Non-scaled data
The data will be presented exactly as retrieved by the communications program from the instrument. The value range for unsigned data is 0 to 65535; for signed data the range is -32768 to 32767.
LIN3 (Linear) Scaling
This conversion maps the raw data received by the communications program in the range of 0-9999 onto the user-defined LO scale/HI scale range. The conversion is carried out according to the formula:
LO
9999
)LOHI(Data_Raw
Value_Units_gEngineerin +
×
=
where:
Engineering_Units_Value - the true value in engineering units Raw_Data - the raw input data in the range of 0 - 9999 LO, HI - the data low and high scales in engineering units
When data conversion is necessary, the HI and LO scales, and data conversion method are indicated for the corresponding registers.
Conversion Examples
1. Voltage readings
a) Assume device settings (690V input, direct wiring): PT ratio = 1.
Voltage engineering scales (see Note 1 to Table 5-1 ):
HI = Vmax = 828V LO = 0V
If the raw data reading is 1449 then the voltage reading in engineering units will be as follows:
Volts reading = 1449 × (828 - 0)/9999 + 0 = 120V
b) Assume device settings (wiring via PT): PT ratio = 14,400V : 120V = 120.
Voltage engineering scales:
HI = Vmax = 144 × PT ratio = 144 × 120 = 17,280V
11
LO = 0V
If the raw data reading is 8314 then the voltage reading in engineering units will be as follows:
Volts reading = 8314 × (17,280 - 0)/9999 + 0 = 14,368V
2. Current readings
Assume device settings: CT primary current = 200A; current input overload = 150% (7.5A).
Current engineering scales:
HI = Imax = CT primary current × 1.5 = 200 × 1.5 = 300A LO = 0A
If the raw data reading is 250 then the current reading in engineering units will be as follows:
Amps reading = 250 × (300 - 0)/9999 + 0 = 7.5A
3. Power readings
a) Assume device settings (690V input, direct wiring): wiring configuration 4LN3; PT = 1; CT primary current = 200A.
Active Power engineering scales:
HI = Pmax = Vmax × Imax × 3 = 828 × (200 × 1.5) × 3 = 745,200W = 745.2kW LO = -Pmax = -745.2kW
If the raw data reading is 5500 then the power reading in engineering units will be as follows:
Watts reading = 5500 × (745.2 - (-745.2))/9999 + (-745.2) = 74.6kW
If the raw data reading is 500 then the power reading in engineering units will be as follows:
Watts reading = 500 × (745.2 - (-745.2))/9999 + (-745.2) = -670.67kW
b) Assume device settings (wiring via PT): wiring configuration 4LL3; PT = 120; CT primary current = 200A.
Active Power engineering scales:
HI = Pmax = Vmax × Imax × 2 = (144 × 120) × (200.00 × 1.5) × 2/1000 = 10368kW LO = -Pmax = -10368kW
If the raw data reading is 5500 then the power reading in engineering units will be as follows:
Watts reading = 5500 × (10368 - (-10368))/9999 + (-10368) = 1037.9kW
If the raw data reading is 500 then the power reading in engineering units will be as follows:
Watts reading = 500 × (10368 - (-10368))/9999 + (-10368) = -9331.1kW
4. Power Factor readings
Power factor engineering scales:
HI = 1.000. LO = -1.000.
If the raw data reading is 8900 then the power factor in engineering units will be as follows:
Power factor reading = 8900 × (1.000 - (-1.000))/9999 + (-1.000) = 0.78
Decimal Scaling
Decimal pre-scaling can be used to accommodate fractional numbers to an integer register format. Fractional numbers pre-multiplied by 10 in power N, where N is the number of digits in the fractional part. For example, the frequency reading of 50.01 Hz is transmitted as 5001, having been pre-multiplied by 100. Whenever a data register contains a fractional number, the register measurement unit is given with a multiplier ×0.1, ×0.01 or ×0.001, showing an actual register resolution (the weight of the least significant decimal digit). To get an actual fractional number with specified precision, scale the register value with the given multiplier. To write a fractional number into the register, divide the number by the given multiplier.
12
4.2.2 32-bit Modulo 10000 Format
The short energy registers 287-294, and 301-302 are transmitted in two contiguous 16-bit registers in modulo 10000 format. The first (low order) register contains the value mod 10000, and the second (high order) register contains the value/10000. To get the true energy reading, the high order register value should be multiplied by 10,000 and added to the low order register.
4.2.3 32-bit Long Integer Format
In a 32-bit long integer format, data is transmitted in two adjacent 16-bit Modbus registers as unsigned (UINT32) or signed (INT32) long integer (whole) numbers. The first register contains the low-order word (lower 16 bits) and the second register contains the high order word (higher 16 bits) of the 32-bit long number. The low-order word always starts at an even Modbus address. The value range for unsigned data is 0 to 4,294,967,295; for signed data the range is -2,147,483,648 to 2,147,483,647.
Negative values are transmitted in a two's complement code. This means that a negative value is added to 4,294,967,296, that is 2 to power 32.
Fractional numbers are premultiplied by 10 to power N, where N is the number of decimal places, and are transmitted as whole numbers.
If your Modbus driver does not support a 32-bit long integer format, you can read the two 16-bit registers separately, and then convert them into a 32-bit value as follows (using C notation):
32-bit value = (signed short)high_order_register × 65536L + (unsigned short)low_order_register
Examples
1. Unsigned 32-bit Values
If you read unsigned Voltage V1 of 69,000V from registers 13952-13953, then the register readings will be as follows:
(13952) = 3464 (13953) = 1
The 32-bit value is (1 x 65536 + 3464) = 69000V.
2. Signed 32-bit Values
If you read signed kW of -789kW from registers 14336-14337, then the register readings will be:
(14336) = 64747 (unsigned) (14337) = 65535 (unsigned) or -1(signed value).
To take the high order register as a signed value, compare it with 32767. If the value is less or equal to 32767, use it as is. If it is greater than 32767, then this is a negative number in a two's complement code (like in our example) - just subtract it from 65536 to get the original negative value.
The 32-bit reading is (-1 x 65536 + 64747) = -789kW.
4.3 User Assignable Registers
The PM130EH contains the 120 user assignable registers in the address range of 0 to 119 (see Table 4-1), any of which you can map to either register address accessible in the instrument. Registers that reside in different locations may be accessed by a single request by re-mapping them to adjacent addresses in the user assignable registers area.
The actual addresses of the assignable registers which are accessed via addresses 0 to 119 are specified in the user assignable register map (see Table 4-2). This map occupies addresses from 120 to 239, where map register 120 should contain the actual address of the register accessed via assignable register 0, register 121 should contain the actual address of the register accessed via assignable register 1, and so on. Note that the assignable register addresses and the map register addresses may not be re-mapped.
To build your own register map, write to map registers (120 to 239) the actual addresses you want to read from or write to via the assignable area (0 to 119). Note that long word registers should always be aligned at even addresses. For example, if you want to read registers 7136 (real-time voltage of phase A, word) and 7576/7577 (kWh import, long word) via registers 0-2, then do the following:
13
- write 7576 to register 120
- write 7577 to register 121
- write 7136 to register 122
Reading from registers 0-2 will return the kWh reading in registers 0 (low word) and 1 (high word), and the voltage reading in register 2.
Table 4-1 User Assignable Registers
Address Register contents Type
0 Assigned register #0 INT16 1
Assigned register #1 INT16
2
Assigned register #2 INT16
… …
119
Assigned register #119 INT16
Table 4-2 User Assignable Register Map
Address Register contents Type R/W Range
120 Mapped address for register #0 UINT16 R/W 256 to 65535 121
Mapped address for register #1 UINT16
R/W 256 to 65535
122
Mapped address for register #2 UINT16
R/W 256 to 65535
… …
… …
239
Mapped address for register #119 UINT16
R/W 256 to 65535
14
5 POWERMETER REGISTERS DESCRIPTION
5.1 Basic Data Registers Set
Table 5-1 Basic Data Registers
Address Parameter Type R/W Unit Scale 1 Con-
Low High version
256 Voltage L1/L12
5
UINT16 R V 0 Vmax LIN3
257 Voltage L2/L23
5
UINT16 R V 0 Vmax LIN3
258 Voltage L3/L31
5
UINT16 R V 0 Vmax LIN3 259 Current L1 UINT16 R A 0 Imax LIN3 260 Current L2 UINT16 R A 0 Imax LIN3 261 Current L3 UINT16 R A 0 Imax LIN3 262 kW L1 UINT16 R kW -Pmax Pmax LIN3 263 kW L2 UINT16 R kW -Pmax Pmax LIN3 264 kW L3 UINT16 R kW -Pmax Pmax LIN3 265 kvar L1 UINT16 R kvar -Pmax Pmax LIN3 266 kvar L2 UINT16 R kvar -Pmax Pmax LIN3 267 kvar L3 UINT16 R kvar -Pmax Pmax LIN3 268 kVA L1 UINT16 R kVA -Pmax Pmax LIN3 269 kVA L2 UINT16 R kVA -Pmax Pmax LIN3 270 kVA L3 UINT16 R kVA -Pmax Pmax LIN3 271 Power factor L1 UINT16 R 0.001 -1.000 1.000 LIN3 272 Power factor L2 UINT16 R 0.001 -1.000 1.000 LIN3 273 Power factor L3 UINT16 R 0.001 -1.000 1.000 LIN3 274 Total power factor UINT16 R 0.001 -1.000 1.000 LIN3 275 Total kW UINT16 R kW -Pmax Pmax LIN3 276 Total kvar UINT16 R kvar -Pmax Pmax LIN3 277 Total kVA UINT16 R kVA -Pmax Pmax LIN3 278 Neutral current UINT16 R A 0 Imax LIN3 279 Frequency UINT16 R 0.01Hz 45.00 65.00 LIN3 280 Maximum sliding window kW demand 4 UINT16 R/W kW -Pmax Pmax LIN3 281 Accumulated kW demand UINT16 R/W kW -Pmax Pmax LIN3 282 Maximum sliding window kVA demand 4 UINT16 R/W kVA -Pmax Pmax LIN3 283 Accumulated kVA demand UINT16 R/W kVA -Pmax Pmax LIN3 284 Max. ampere demand L1 UINT16 R/W A 0 Imax LIN3 285 Max. ampere demand L2 UINT16 R/W A 0 Imax LIN3 286 Max. ampere demand L3 UINT16 R/W A 0 Imax LIN3 287 kWh import (low) UINT16 R/W kWh 0 9999 NONE 288 kWh import (high) UINT16 R/W 10,000 kWh 0 9999 x104 289 kWh export (low) UINT16 R/W kWh 0 9999 NONE 290 kWh export (high) UINT16 R/W 10,000 kWh 0 9999 x104 291 +kvarh net (low) 2 UINT16 R/W kvarh 0 9999 NONE 292 +kvarh net (high) 2 UINT16 R/W 10,000 kvarh 0 9999 x104 293 -kvarh net (low) 3 UINT16 R/W kvarh 0 9999 NONE 294 -kvarh net (high) 3 UINT16 R/W 10,000 kvarh 0 999 x104 295 Voltage THD L1/L12 6 UINT16 R 0.1% 0 999.9 LIN3 296 Voltage THD L2/L23 6 UINT16 R 0.1% 0 999.9 LIN3 297 Voltage THD L3 6 UINT16 R 0.1% 0 999.9 LIN3 298 Current THD L1 UINT16 R 0.1% 0 999.9 LIN3 299 Current THD L2 UINT16 R 0.1% 0 999.9 LIN3 300 Current THD L3 UINT16 R 0.1% 0 999.9 LIN3 301 kVAh (low) UINT16 R/W kVAh 0 9999 NONE 302 kVAh (high) UINT16 R/W 10,000 kVAh 0 9999 x104 303 Present sliding window kW demand 4 UINT16 R kW -Pmax Pmax LIN3 304 Present sliding window kVA demand 4 UINT16 R kVA -Pmax Pmax LIN3 305 PF at maximum siding window kVA demand UINT16 R 0.001 -1.000 1.000 LIN3 306 Current TDD L1 UINT16 R 0.1% 0 100.0 LIN3 307 Current TDD L2 UINT16 R 0.1% 0 100.0 LIN3 308 Current TDD L3 UINT16 R 0.1% 0 100.0 LIN3
15
1
The parameter limits are as follows:
Imax (x150% over-range) = 1.5 × CT primary current [A]
Direct wiring (PT Ratio = 1):
Vmax (690 V input option) = 828 V Vmax (120 V input option) = 144 V
Wiring via PTs (PT Ratio > 1):
Vmax (690 V input option) = 144 × PT Ratio [V] Vmax (120 V input option) = 144 × PT Ratio [V]
Pmax = (Imax × Vmax × 3)/1000 [kW] if wiring mode is 4LN3 or 3LN3 Pmax = (Imax × Vmax × 2)/1000 [kW] if wiring mode is 4LL3, 3OP2, 3DIR2, 3OP3 or 3LL3
2
Positive readings of kvarh net
3
Negative readings of kvarh net
4
To get block interval demand readings, specify the number of demand periods equal to 1 (see Table 5-2)
5
When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode,
they will be line-to-line voltages.
6
In the 4LN3, 4LL3, 3LN3, 3LL3 and 3DIR2 wiring modes, the harmonic voltages will represent line-to-neutral
voltages; in the 3OP2 and 3OP3 wiring modes, they will comprise L12 and L23 line-to-line voltages.
NOTE Writing a zero to one of registers 280-286 causes reset of all maximum demands. Writing a zero to one of registers 287-294 and 301-302 causes reset of all accumulated energies.
5.2 Basic Setup
Table 5-2 Basic Setup Registers
Parameter Address Type R/W Range
Wiring mode 1 2304 UINT16 R/W 0 = 3OP2, 1 = 4LN3, 2 = 3DIR2, 3 = 4LL3, 4 = 3OP3, 5 =
3LN3, 6 = 3LL3
PT ratio 2305 UINT16 R/W
10 to 65000 × 0.1 CT primary current 2306 UINT16 R/W 1 to 10000 A Power demand period 2307 UINT16 R/W 1,2,5,10,15,20,30,60 min, 255 = external synchronization 2 Volt/ampere demand period 2308 UINT16 R/W 0 to 1800 sec Averaging buffer size 2309 UINT16 R/W 8, 16, 32 Reset enable/disable 2310 UINT16 R/W 0 = disable, 1 = enable Reserved 2311 UINT16 R Read as 65535 The number of demand periods 2312 UINT16 R/W 1 to 15 Reserved 2313 UINT16 R Read as 65535 Reserved 2314 UINT16 R Read as 65535 Nominal frequency 2315 UINT16 R/W 50, 60 Hz Maximum demand load current 2316 UINT16 R/W 0 to 10000 A (0 = CT primary current)
1
The wiring mode options are as follows:
3OP2 - 3-wire open delta using 2 CTs (2 element) 4LN3 - 4-wire WYE using 3 PTs (3 element), line to neutral voltage readings 3DIR2 - 3-wire direct connection using 2 CTs (2 element) 4LL3 - 4-wire WYE using 3 PTs (3 element), line to line voltage readings 3OP3 - 3-wire open delta using 3 CTs (2 1/2 element) 3LN3 - 4-wire WYE using 2 PTs (2 1/2 element), line to neutral voltage readings 3LL3 - 4-wire WYE using 2 PTs (2 1/2 element), line to line voltage readings
2
Synchronization of power demand interval can be made through communications using the synchronize power
demand interval command (see Table 5-5)
16
5.3 User Selectable Options Setup
Table 5-3 User Selectable Options Registers
Parameter Address Type R/W Range
Power calculation mode 2376 UINT16 R/W 0 = using reactive power,
1 = using non-active power
Energy roll value 1 2377 UINT16 R/W
0 = 1×104 1 = 1×105 2 = 1×106 3 = 1×107 4 = 1×108
Phase energy calculation mode 2378 UINT16 R/W 0 = disable, 1 = enable
1
For short energy registers (see Table 5-1), the maximum roll value will be 1×108 for positive readings and 1×107 for
negative readings.
5.4 Communications Setup
Table 5-4 Communications Setup Registers
Parameter Address Type R/W Range
Reserved 2344 UINT16 R Read as 65535 Interface 2345 UINT16 R/W 2 = RS-485 (not changeable) Address 2346 UINT16 R/W 1 to 247 Baud rate 2347 UINT16 R/W 0 = 110 bps
1 = 300 bps 2 = 600 bps 3 = 1200 bps 4 = 2400 bps 5 = 4800 bps 6 = 9600 bps 7 = 19200 bps
Data format 2348 UINT16 R/W 1 = 8 bits/no parity
2 = 8 bits/even parity
When changing the instrument address, baud rate or data format, the new communications parameters will take effect 100 ms after the instrument responds to the master’s request.
5.5 Reset/Synchronization Registers
Table 5-5 Reset/Synchronization Registers
Register function Address Type R/W Reset value
Clear total energy registers 3404 UINT16 W 0 Clear total maximum demand registers 3405 UINT16 W 0 = all maximum demands
1 = power demands
2 = volt/ampere demands Reserved 3406-3407 UINT16 Clear event/time counters 3408 UINT16 W 0 = all counters
1-4 = counter #1 - #4 Clear Min/Max log 3409 UINT16 W 0 Reserved 3410-3419 UINT16 Synchronize power demand interval 1 3420 UINT16 W 0
1
1) If the power demand period is set to External Synchronization (see Table 5-2), writing a zero to this location will simulate an external synchronization pulse denoting the start of the next demand interval. The synchronization requests should not follow in intervals of less than 30 seconds, or the request will be rejected.
2) If the power demand period is specified in minutes, writing a zero to this location provides synchronization of the instrument’s internal timer with the time of reception of the master’s request. If the time expired from the beginning of the current demand interval is more than 30 seconds, the new demand interval starts immediately, otherwise synchronization is delayed until the next demand interval.
17
5.6 Instrument Status
Table 5-6 Instrument Status Registers
Parameter Address Type R/W Range
Instrument reset register 1 2560 UINT16 R/W 0 (when read)
65535 (when written) = reset the
instrument Reserved 2561 UINT16 R Read as 0 Relay status 2562 UINT16 R see Table 5-7 Reserved 2563 UINT16 R Read as 0 Reserved 2564 UINT16 R Firmware version number 2565 UINT16 R 0-65535 Instrument options 1 2566 UINT16 R See Table 5-8 Instrument options 2 2567 UINT16 R See Table 5-8
1
Writing a value of 65535 into register 2560 will cause the instrument to perform a warm restart.
Table 5-7 Relay Status
Bit number Description
0-6 Not used (permanently set to 1) 7 Relay status 8-15 Not used (permanently set to 0)
Bit meaning: 0 = relay operated, 1 = relay released
Table 5-8 Instrument Options
Options register Bit Description
Options1 0 120V option 1 690V option 2-4 Reserved 5 150% current over-range 6-8 Reserved 9 Relays option 10-15 Reserved Options 2 0-2 Number of relays - 1 3-15 Reserved
5.7 Extended Status
Table 5-9 Extended Status Registers
Register description Address Type R/W Value range
Relay status 3452 UINT16 R See Table 5-10 Reserved 3453- UINT16 R Read as 0 3454 UINT16 Setpoints status 3455 UINT16 R See Table 5-11 Log status 3456 UINT16 R See Table 5-12 Reserved 3457-3473 UINT16 R Read as 0 Setpoint alarm status 3474 UINT16 R/W See Table 5-13 Self-check alarm status 3475 UINT16 R/W See Table 5-14
Table 5-10 Relay Status
Bit Description
0 Relay status 1-15 Not used (permanently set to 0)
Bit meaning: 0 = relay released, 1 = relay operated
18
Table 5-11 Setpoints Status
Bit Description
0 Setpoint # 1 status 1 Setpoint # 2 status 2 Setpoint # 3 status 3 Setpoint # 4 status 4 Setpoint # 5 status 5 Setpoint # 6 status 6 Setpoint # 7 status 7 Setpoint # 8 status 8 Setpoint # 9 status 9 Setpoint # 10 status 10 Setpoint # 11 status 11 Setpoint # 12 status 12 Setpoint # 13 status 13 Setpoint # 14 status 14 Setpoint # 15 status 15 Setpoint # 16 status
Bit meaning: 0 = setpoint is released, 1 = setpoint is operated
Table 5-12 Log Status
Bit Description
0 Reserved 1 New Min/Max Log 2-15 Not used (permanently set to 0)
Bit meaning: 0 = no new logs, 1 = new log recorded (the new log flag is reset when the user reads the first log record after the flag has been set)
Table 5-13 Setpoint Alarm Status
Bit Description
0 Alarm #1 1 Alarm #2 2 Alarm #3 3 Alarm #4 4 Alarm #5 5 Alarm #6 6 Alarm #7 7 Alarm #8 8 Alarm #9 9 Alarm #10 10 Alarm #11 11 Alarm #12 12 Alarm #13 13 Alarm #14 14 Alarm #15 15 Alarm #16
Bit meaning: 1 = setpoint has been operated
The setpoint alarm register stores the status of the operated setpoints by setting the appropriate bits to 1. The alarm status bits can be reset all together by writing zero to the setpoint alarm register. It is possible to reset each alarm status bit separately by writing back the contents of the alarm register with a corresponding alarm bit set to 0.
Table 5-14 Self-check Alarm Status
Bit Description
0 Reserved 1 ROM error 2 RAM error
19
Bit Description
3 Watchdog timer reset 4 Sampling failure 5 Out of control trap 6 Reserved 7 Timing failure 8 Loss of power (power up) 9 External reset (warm restart) 10 Configuration corrupted 11-15 Reserved
The self-check alarm register indicates possible problems with the instrument hardware or setup configuration. The hardware problems are indicated by the appropriate bits which are set whenever the instrument fails self-test diagnostics or in the event of loss of power. The setup configuration problems are indicated by the dedicated bit which is set when either configuration register is corrupted. In this event, the instrument will use the default configuration. The configuration corrupt bit may also be set as a result of the legal changes in the setup configuration since the instrument might implicitly change or clear other setups if they are affected by the changes made.
Hardware fault bits can be reset by writing zero to the self-check alarm register. The configuration corrupt status bit is also reset automatically when you change setup either via the front panel or through communications.
5.8 Extended Data Registers
The following table lists all registers containing the data measured by the instrument. Notice that these registers are arranged into groups which are not located at adjacent addresses. You can re-map these registers into adjacent addresses to access multiple data from different data groups by using a single request. Refer to Section 2.9 for information on the user assignable registers.
Along with the register address, the table shows for each data item its point identifier (ID). This is a one word containing a data group ID in the high byte and the parameter offset in a group in the low byte. Point IDs are used to specify input or output parameters whenever a data parameter specification is needed, for example, when selecting analog output parameters or reading Min/Max log records.
Table 5-15 Extended Data Registers
Parameter 16-bit Register 32-bit Point R/W Unit Range/Scale 1
Reg. Cnv. Register ID Low High
None
None 6656 11776-11777 0x0000 R 0 0
Relays
Relay status (see Table 5-10) 6976 12800-12801 0x0800 R 0 3
Event/time counters
Counter #1 7056-
7057
13056-13057 0x0A00 R/W 0 99999
Counter #2 7058-
7059
13058-13059 0x0A01 R/W 0 99999
Counter #3 7060-
7061
13060-13061 0x0A02 R/W 0 99999
Counter #4 7062-
7063
13062-13063 0x0A03 R/W 0 99999
Real-time values per phase
Voltage L1/L12 5 7136 LIN3 13312-13313 0x0C00 R V 0 Vmax Voltage L2/L23 5 7137 LIN3 13314-13315 0x0C01 R V 0 Vmax Voltage L3/L31 5 7138 LIN3 13316-13317 0x0C02 R V 0 Vmax Current L1 7139 LIN3 13318-13319 0x0C03 R A 0 Imax Current L2 7140 LIN3 13320-13321 0x0C04 R A 0 Imax Current L3 7141 LIN3 13322-13323 0x0C05 R A 0 Imax kW L1 7142 LIN3 13324-13325 0x0C06 R kW -Pmax Pmax kW L2 7143 LIN3 13326-13327 0x0C07 R kW -Pmax Pmax kW L3 7144 LIN3 13328-13329 0x0C08 R kW -Pmax Pmax
20
Parameter 16-bit Register 32-bit Point R/W Unit Range/Scale 1
Reg. Cnv. Register ID Low High
kvar L1 7145 LIN3 13330-13331 0x0C09 R kvar -Pmax Pmax kvar L2 7146 LIN3 13332-13333 0x0C0A R kvar -Pmax Pmax kvar L3 7147 LIN3 13334-13335 0x0C0B R kvar -Pmax Pmax kVA L1 7148 LIN3 13336-13337 0x0C0C R kVA 0 Pmax kVA L2 7149 LIN3 13338-13339 0x0C0D R kVA 0 Pmax kVA L3 7150 LIN3 13340-13341 0x0C0E R kVA 0 Pmax Power factor L1 7151 LIN3 13342-13343 0x0C0F R 0.001 -1.000 1.000 Power factor L2 7152 LIN3 13344-13345 0x0C10 R 0.001 -1.000 1.000 Power factor L3 7153 LIN3 13346-13347 0x0C11 R 0.001 -1.000 1.000 Voltage THD L1/L12 6 7154 LIN3 13348-13349 0x0C12 R 0.1% 0 999.9 Voltage THD L2/L23 6 7155 LIN3 13350-13351 0x0C13 R 0.1% 0 999.9 Voltage THD L3 6 7156 LIN3 13352-13353 0x0C14 R 0.1% 0 999.9 Current THD L1 7157 LIN3 13354-13355 0x0C15 R 0.1% 0 999.9 Current THD L2 7158 LIN3 13356-13357 0x0C16 R 0.1% 0 999.9 Current THD L3 7159 LIN3 13358-13359 0x0C17 R 0.1% 0 999.9 K-Factor L1 7160 LIN3 13360-13361 0x0C18 R 0.1 1.0 999.9 K-Factor L2 7161 LIN3 13362-13363 0x0C19 R 0.1 1.0 999.9 K-Factor L3 7162 LIN3 13364-13365 0x0C1A R 0.1 1.0 999.9 Current TDD L1 7163 LIN3 13366-13367 0x0C1B R 0.1% 0 100.0 Current TDD L2 7164 LIN3 13368-13369 0x0C1C R 0.1% 0 100.0 Current TDD L3 7165 LIN3 13370-13371 0x0C1D R 0.1% 0 100.0 Voltage L12 7166 LIN3 13372-13373 0x0C1E R V 0 Vmax Voltage L23 7167 LIN3 13374-13375 0x0C1F R V 0 Vmax Voltage L31 7168 LIN3 13376-13377 0x0C20 R V 0 Vmax
Real-time total values
Total kW 7256 LIN3 13696-13697 0x0F00 R kW -Pmax Pmax Total kvar 7257 LIN3 13698-13699 0x0F01 R kvar -Pmax Pmax Total kVA 7258 LIN3 13700-13701 0x0F02 R kVA 0 Pmax Total PF 7259 LIN3 13702-13703 0x0F03 R 0.001 -1.000 1.000
Real-time auxiliary values
Reserved 7296 13824-13825 0x1000 R 0 0 Neutral current 7297 LIN3 13826-13827 0x1001 R A 0 Imax Frequency 7298 LIN3 13828-13829 0x1002 R 0.01Hz 0 100.00
2
Voltage unbalance 7299 LIN3 13830-13831 0x1003 R 1% 0 300 Current unbalance 7300 LIN3 13832-13833 0x1004 R 1% 0 300
Phasors 7
Voltage L1/L12 7316 LIN3 13864-13865 0x1080 R V 0 Vmax Voltage L2/L23 7317 LIN3 13866-13867 0x1081 R V 0 Vmax Voltage L3/L31 7318 LIN3 13868-13869 0x1082 R V 0 Vmax Reserved 7319 LIN3 13870-13871 0x1083 R V 0 Vmax Current L1 7320 LIN3 13872-13873 0x1084 R A 0 Imax Current L2 7321 LIN3 13874-13875 0x1085 R A 0 Imax Current L3 7322 LIN3 13876-13877 0x1086 R A 0 Imax Reserved 7323 LIN3 13878-13879 0x1087 R A 0 Imax V1/V12 Voltage angle 7324 LIN3 13880-13881 0x1088 R 0.1º -180.0 180.0 V2/V23 Voltage angle 7325 LIN3 13882-13883 0x1089 R 0.1º -180.0 180.0 V3/V31 Voltage angle 7326 LIN3 13884-13885 0x108A R 0.1º -180.0 180.0 Reserved 7327 LIN3 13886-13887 0x108B R -180.0 180.0 I1 Current angle 7328 LIN3 13888-13889 0x108C R 0.1º -180.0 180.0 I2 Current angle 7329 LIN3 13890-13891 0x108D R 0.1º -180.0 180.0 I3 Current angle 7330 LIN3 13892-13893 0x108E R 0.1º -180.0 180.0 Reserved 7331 LIN3 13894-13895 0x108F R -180.0 180.0
Average values per phase
Voltage L1/L12 5 7336 LIN3 13952-13953 0x1100 R V 0 Vmax Voltage L2/L23 5 7337 LIN3 13954-13955 0x1101 R V 0 Vmax Voltage L3/L31 5 7338 LIN3 13956-13957 0x1102 R V 0 Vmax Current L1 7339 LIN3 13958-13959 0x1103 R A 0 Imax Current L2 7340 LIN3 13960-13961 0x1104 R A 0 Imax Current L3 7341 LIN3 13962-13963 0x1105 R A 0 Imax kW L1 7342 LIN3 13964-13965 0x1106 R kW -Pmax Pmax
21
Parameter 16-bit Register 32-bit Point R/W Unit Range/Scale 1
Reg. Cnv. Register ID Low High
kW L2 7343 LIN3 13966-13967 0x1107 R kW -Pmax Pmax kW L3 7344 LIN3 13968-13969 0x1108 R kW -Pmax Pmax kvar L1 7345 LIN3 13970-13971 0x1109 R kvar -Pmax Pmax kvar L2 7346 LIN3 13972-13973 0x110A R kvar -Pmax Pmax kvar L3 7347 LIN3 13974-13975 0x110B R kvar -Pmax Pmax kVA L1 7348 LIN3 13976-13977 0x110C R kVA 0 Pmax kVA L2 7349 LIN3 13978-13979 0x110D R kVA 0 Pmax kVA L3 7350 LIN3 13980-13981 0x110E R kVA 0 Pmax Power factor L1 7351 LIN3 13982-13983 0x110F R 0.001 -1.000 1.000 Power factor L2 7352 LIN3 13984-13985 0x1110 R 0.001 -1.000 1.000 Power factor L3 7353 LIN3 13986-13987 0x1111 R 0.001 -1.000 1.000 Voltage THD L1/L12 6 7354 LIN3 13988-13989 0x1112 R 0.1% 0 999.9 Voltage THD L2/L23 6 7355 LIN3 13990-13991 0x1113 R 0.1% 0 999.9 Voltage THD L3 6 7356 LIN3 13992-13993 0x1114 R 0.1% 0 999.9 Current THD L1 7357 LIN3 13994-13995 0x1115 R 0.1% 0 999.9 Current THD L2 7358 LIN3 13996-13997 0x1116 R 0.1% 0 999.9 Current THD L3 7359 LIN3 13998-13999 0x1117 R 0.1% 0 999.9 K-Factor L1 7360 LIN3 14000-14001 0x1118 R 0.1 1.0 999.9 K-Factor L2 7361 LIN3 14002-14003 0x1119 R 0.1 1.0 999.9 K-Factor L3 7362 LIN3 14004-14005 0x111A R 0.1 1.0 999.9 Current TDD L1 7363 LIN3 14006-14007 0x111B R 0.1% 0 100.0 Current TDD L2 7364 LIN3 14008-14009 0x111C R 0.1% 0 100.0 Current TDD L3 7365 LIN3 14010-14011 0x111D R 0.1% 0 100.0 Voltage L12 7366 LIN3 14012-14013 0x111E R V 0 Vmax Voltage L23 7367 LIN3 14014-14015 0x111F R V 0 Vmax Voltage L31 7368 LIN3 14016-14017 0x1120 R V 0 Vmax
Average total values
Total kW 7456 LIN3 14336-14337 0x1400 R kW -Pmax Pmax Total kvar 7457 LIN3 14338-14339 0x1401 R kvar -Pmax Pmax Total kVA 7458 LIN3 14340-14341 0x1402 R kVA 0 Pmax Total PF 7459 LIN3 14342-14343 0x1403 R 0.001 -1.000 1.000
Average auxiliary values
Reserved 7496 14464-14465 0x1500 R 0 0 Neutral current 7497 LIN3 14466-14467 0x1501 R A 0 Imax Frequency 7498 LIN3 14468-14469 0x1502 R 0.01Hz 0 100.00
2
Voltage unbalance 7499 LIN3 14470-14471 0x1503 R 1% 0 300 Current unbalance 7500 LIN3 14472-14473 0x1504 R 1% 0 300
Present demands
Volt demand L1/L12 5 7536 LIN3 14592-14593 0x1600 R V 0 Vmax Volt demand L2/L23 5 7537 LIN3 14594-14595 0x1601 R V 0 Vmax Volt demand L3/L31 5 7538 LIN3 14596-14597 0x1602 R V 0 Vmax Ampere demand L1 7539 LIN3 14598-14599 0x1603 R A 0 Imax Ampere demand L2 7540 LIN3 14600-14601 0x1604 R A 0 Imax Ampere demand L3 7541 LIN3 14602-14603 0x1605 R A 0 Imax Block kW demand 7542 LIN3 14604-14605 0x1606 R kW 0 Pmax Reserved 7543 14606-14607 0x1607 R 0 0 Block kVA demand 7544 LIN3 14608-14609 0x1608 R kVA 0 Pmax Sliding window kW demand 7545 LIN3 14610-14611 0x1609 R kW 0 Pmax Reserved 7546 14612-14613 0x160A R 0 0 Sliding window kVA demand 7547 LIN3 14614-14615 0x160B R kVA 0 Pmax Reserved 7548 14616-14617 0x160C R 0 0 Reserved 7549 14618-14619 0x160D R 0 0 Reserved 7550 14620-14621 0x160E R 0 0 Accumulated kW demand (import)
7551 LIN3 14622-14623 0x160F R kW 0 Pmax
Reserved 7552 14624-14625 0x1610 R 0 0 Accumulated kVA demand 7553 LIN3 14626-14627 0x1611 R kVA 0 Pmax Predicted sliding window kW demand
7554 LIN3 14628-14629 0x1612 R kW 0 Pmax
Reserved 7555 14630-14631 0x1613 R 0 0
22
Parameter 16-bit Register 32-bit Point R/W Unit Range/Scale 1
Reg. Cnv. Register ID Low High
Predicted sliding window kVA demand
7556 LIN3 14632-14633 0x1614 R kVA 0 Pmax
PF at maximum sliding window kVA demand
7557 LIN3 14634-14635 0x1615 R 0.001 -1.000 1.000
Total energies
kWh import 7576
7577
14720-14721 0x1700 R kWh 0 108-1
kWh export 4 7578
7579
14722-14723 0x1701 R kWh 0 108-1
Reserved 7580
7581
14724-14725 0x1702 R 0 0
Reserved 7582
7583
14726-14727 0x1703 R 0 0
kvarh import 7584
7585
14728-14729 0x1704 R kvarh 0 108-1
kvarh export 4 7586
7587
14730-14731 0x1705 R kvarh 0 108-1
Reserved 7588
7589
14732-14733 0x1706 R 0 0
Reserved 7590
7591
14734-14735 0x1707 R 0 0
kVAh total 7592
7593
14736-14737 0x1708 R kVAh 0 108-1
Phase energies
kWh import L1 7616
7617
14848-14849
0x1800
R kWh 0 108-1
kWh import L2 7618
7619
14850-14851
0x1801
R kWh 0 108-1
kWh import L3 7620
7621
14852-14853
0x1802
R kWh 0 108-1
kvarh import L1 7622
7623
14854-14855
0x1803
R kvarh 0 108-1
kvarh import L2 7624
7625
14856-14857
0x1804
R kvarh 0 108-1
kvarh import L3 7626
7627
14858-14859
0x1805
R kvarh 0 108-1
kVAh total L1 7628
7629
14860-14861
0x1806
R kVAh 0 108-1
kVAh total L2 7630
7631
14862-14863
0x1807
R kVAh 0 108-1
kVAh total L3 7632
7633
14864-14865
0x1808
R kVAh 0 108-1
Fundamental's (H01) real-time values per phase
Voltage L1/L12 6 8296 LIN3 17024-17025 0x2900 R V 0 Vmax Voltage L2/L23 6 8297 LIN3 17026-17027 0x2901 R V 0 Vmax Voltage L3 6 8298 LIN3 17028-17029 0x2902 R V 0 Vmax Current L1 8299 LIN3 17030-17031 0x2903 R A 0 Imax Current L2 8300 LIN3 17032-17033 0x2904 R A 0 Imax Current L3 8301 LIN3 17034-17035 0x2905 R A 0 Imax kW L1 8302 LIN3 17036-17037 0x2906 R kW -Pmax Pmax kW L2 8303 LIN3 17038-17039 0x2907 R kW -Pmax Pmax kW L3 8304 LIN3 17040-17041 0x2908 R kW -Pmax Pmax kvar L1 8305 LIN3 17042-17043 0x2909 R kvar -Pmax Pmax kvar L2 8306 LIN3 17044-17045 0x290A R kvar -Pmax Pmax kvar L3 8307 LIN3 17046-17047 0x290B R kvar -Pmax Pmax kVA L1 8308 LIN3 17048-17049 0x290C R kVA 0 Pmax kVA L2 8309 LIN3 17050-17051 0x290D R kVA 0 Pmax kVA L3 8310 LIN3 17052-17053 0x290E R kVA 0 Pmax Power factor L1 8311 LIN3 17054-17055 0x290F R 0.001 -1.000 1.000 Power factor L2 8312 LIN3 17056-17055 0x2910 R 0.001 -1.000 1.000 Power factor L3 8313 LIN3 17058-17059 0x2911 R 0.001 -1.000 1.000
23
Parameter 16-bit Register 32-bit Point R/W Unit Range/Scale 1
Reg. Cnv. Register ID Low High
Fundamental's (H01) real-time total values
Total fundamental kW 8336 LIN3 17152-17153 0x2A00 R kW -Pmax Pmax Total fundamental kvar 8337 LIN3 17154-17155 0x2A01 R kvar -Pmax Pmax Total fundamental kVA 8338 LIN3 17156-17157 0x2A02 R kVA 0 Pmax Total fundamental PF 8339 LIN3 17158-17159 0x2A03 R 0.001 -1.000 1.000
Minimum real-time values per phase (M)
Voltage L1/L12 5 8416 LIN3 17408-17409 0x2C00 R V 0 Vmax Voltage L2/L23 5 8417 LIN3 17410-17411 0x2C01 R V 0 Vmax Voltage L3/L31 5 8418 LIN3 17412-17413 0x2C02 R V 0 Vmax Current L1 8419 LIN3 17414-17415 0x2C03 R A 0 Imax Current L2 8420 LIN3 17416-17417 0x2C04 R A 0 Imax Current L3 8421 LIN3 17418-17419 0x2C05 R A 0 Imax
Minimum real-time total values (M)
Total kW 8456 LIN3 17536-17537 0x2D00 R kW -Pmax Pmax Total kvar 8457 LIN3 17538-17539 0x2D01 R kvar -Pmax Pmax Total kVA 8458 LIN3 17540-17541 0x2D02 R kVA 0 Pmax Total PF 3 8459 LIN3 17542-17543 0x2D03 R 0.001 0 1.000
Minimum real-time auxiliary values (M)
Reserved 8496 17664-17665 0x2E00 R 0 0 Neutral current 8497 LIN3 17666-17667 0x2E01 R A 0 Imax Frequency 8498 LIN3 17668-17669 0x2E02 R 0.01Hz 0 100.00
2
Maximum real-time values per phase (M)
Voltage L1/L12 5 8736 LIN3 18432-18433 0x3400 R V 0 Vmax Voltage L2/L23 5 8737 LIN3 18434-18435 0x3401 R V 0 Vmax Voltage L3/L31 5 8738 LIN3 18436-18437 0x3402 R V 0 Vmax Current L1 8739 LIN3 18438-18439 0x3403 R A 0 Imax Current L2 8740 LIN3 18440-18441 0x3404 R A 0 Imax Current L3 8741 LIN3 18442-18443 0x3405 R A 0 Imax
Maximum real-time total values (M)
Total kW 8776 LIN3 18560-18561 0x3500 R kW -Pmax Pmax Total kvar 8777 LIN3 18562-18563 0x3501 R kvar -Pmax Pmax Total kVA 8778 LIN3 18564-18565 0x3502 R kVA 0 Pmax Total PF 3 8779 LIN3 18566-18567 0x3503 R 0.001 0 1.000
Maximum real-time auxiliary values (M)
Reserved 8816 18688-18689 0x3600 R 0 Neutral current 8817 LIN3 18680-18681 0x3601 R A 0 Imax Frequency 8818 LIN3 18682-18683 0x3602 R 0.01Hz 0 100.00
2
Maximum demands (M)
Max. volt demand L1/L12 5 8856 LIN3 18816-18817 0x3700 R V 0 Vmax Max. volt demand L2/L23 5 8857 LIN3 18818-18819 0x3701 R V 0 Vmax Max. volt demand L3/L31 5 8858 LIN3 18820-18821 0x3702 R V 0 Vmax Max. ampere demand L1 8859 LIN3 18822-18823 0x3703 R A 0 Imax Max. ampere demand L2 8860 LIN3 18824-18825 0x3704 R A 0 Imax Max. ampere demand L3 8861 LIN3 18826-18827 0x3705 R A 0 Imax Reserved 8862 18828-18829 0x3706 R 0 0 Reserved 8863 18830-18831 0x3707 R 0 0 Reserved 8864 18832-18833 0x3708 R 0 0 Max. sliding window kW demand 8865 LIN3 18834-18835 0x3709 R kW 0 Pmax Reserved 8866 18836-18837 0x370A R 0 0 Max. sliding window kVA demand
8867 LIN3 18838-18839 0x370B R kVA 0 Pmax
1
For the parameter limits, see Note1 to Table 5-1
2
The actual frequency range is 45.00 - 65.00 Hz
3
Absolute min/max value (lag or lead)
4
The exported energy registers are read as positive unsigned long (32-bit) integers
5
When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode,
they will be line-to-line voltages.
6
In the 4LN3, 4LL3, 3LN3, 3LL3 and 3DIR2 wiring modes, the harmonic voltages will represent line-to-neutral
voltages; in the 3OP2 and 3OP3 wiring modes, they will comprise L12 and L23 line-to-line voltages.
24
7
Available in Version 3.55 and later. Phase angles are referenced to Voltage V1 in 4-wire (4LN3, 4LL3, 3LN3 and
3LL3 wiring modes), and to Voltage V12 in 3-wire connections (3DIR2, 3OP2 and 3OP3 wiring modes).
(M) These parameters are recorded to the Min/Max log
5.9 Alarm/Event Setpoints
Table 5-16 Setpoint Registers
Setpoint Setup registers (see Table 5-17)
Setpoint #1 2576-2583 Setpoint #2 2584-2591 Setpoint #3 2592-2599 Setpoint #4 2600-2607 Setpoint #5 2608-2615 Setpoint #6 2616-2623 Setpoint #7 2624-2631 Setpoint #8 2632-2639 Setpoint #9 2640-2647 Setpoint #10 2648-2655 Setpoint #11 2656-2663 Setpoint #12 2664-2671 Setpoint #13 2672-2679 Setpoint #14 2680-2687 Setpoint #15 2688-2695 Setpoint #16 2696-2703
Table 5-17 Setpoint Setup Registers
Parameter Offset Type Direction Range
Trigger parameter ID +0 UINT16 R/W See Table 5-18 Action +1 UINT16 R/W See Table 5-19 Operate delay +2 UINT16 R/W
0-9999 (× 0.1 sec)
Release delay +3 UINT16 R/W
0-9999 (× 0.1 sec) Operate limit +4, 5 INT32 R/W See Table 5-18 Release limit +6, 7 INT32 R/W See Table 5-18
The setpoint is disabled when its trigger parameter is set to NONE. To disable the setpoint, write zero into this register.
When writing the setpoint registers (except the event when the setpoint is to be disabled), it is recommended to write all the setpoint registers using a single request, or disable the setpoint before writing into separate registers. Each value being written is checked for compatibility with the other setpoint parameters; if the new value does not conform to these, the request will be rejected.
Operate and release limits for the trigger parameters and their conversion scales are indicated in Table 5-
18. Each limit value occupies two contiguous registers, the first of which (low word) contains the limit value, and the second (high word) is reserved for long parameters. This register is always read as zero. When written, its value is ignored.
Limits indicated in Table 5-18 by a N/A mark are read as zeros. When writing, they can be omitted or should be written as zeros.
When a setpoint action is directed to a relay allocated to output energy pulses, an attempt to re-allocate it for a setpoint will result in a negative response.
Table 5-18 Setpoint Trigger Parameters
Trigger parameter Trigger Type Unit Limit/scale 1 Con-
ID Low High version
None
None 0x0000 UINT16 N/A N/A NONE
Phase reversal
Positive phase rotation reversal 2
0x8901
UINT16 N/A N/A NONE
25
Trigger parameter Trigger Type Unit Limit/scale 1 Con-
ID Low High version
Negative phase rotation reversal 2
0x8902
UINT16 N/A N/A NONE
High/low real-time values on any phase
High voltage 4
0x0E00
UINT16 V 0 Vmax LIN3
Low voltage 4
0x8D00
UINT16 V 0 Vmax LIN3
High current
0x0E01
UINT16 A 0 Imax LIN3 Low current 0x8D01 UINT16 A 0 Imax LIN3 High voltage THD 5 0x0E07 UINT16 0.1% 0 999.9 LIN3 High current THD 0x0E08 UINT16 0.1% 0 999.9 LIN3 High K-Factor 0x0E09 UINT16 0.1 1.0 999.9 LIN3 High current TDD 0x0E0A UINT16 0.1% 0 100.0 LIN3
High/low real-time auxiliary values
High frequency
0x1002
UINT16 0.01Hz 0 100.00 3 LIN3 Low frequency
0x9002
UINT16 0.01Hz 0 100.00 3 LIN3
High/low average values per phase
High current L1
0x1103
UINT16 A 0 Imax LIN3 High current L2
0x1104
UINT16 A 0 Imax LIN3 High current L3
0x1105
UINT16 A 0 Imax LIN3 Low current L1
0x9103
UINT16 A 0 Imax LIN3 Low current L2
0x9104
UINT16 A 0 Imax LIN3 Low current L3
0x9105
UINT16 A 0 Imax LIN3
High/low average values on any phase
High voltage 4
0x1300
UINT16 V 0 Vmax LIN3 Low voltage 4
0x9200
UINT16 V 0 Vmax LIN3 High current
0x0301
UINT16 A 0 Vmax LIN3 Low current
0x8201
UINT16 A 0 Vmax LIN3
High/low average total values
High total kW import
0x1406
UINT16 kW -Pmax Pmax LIN3 High total kW export
0x1407
UINT16 kW -Pmax Pmax LIN3 High total kvar import
0x1408
UINT16 kvar -Pmax Pmax LIN3 High total kvar export
0x1409
UINT16 kvar -Pmax Pmax LIN3 High total kVA
0x1402
UINT16 kVA 0 Pmax LIN3 Low total PF Lag
0x9404
UINT16 0.001 0 1.000 LIN3 Low total PF Lead
0x9405
UINT16 0.001 0 1.000 LIN3
High/low average auxiliary values
High neutral current
0x1501
UINT16 A 0 Imax LIN3 High frequency
0x1502
UINT16 0.01Hz 0 100.00 3 LIN3 Low frequency
0x9502
UINT16 0.01Hz 0 100.00 3 LIN3
High present demands
High volt demand L1/L12 4
0x1600
UINT16 V 0 Vmax LIN3 High volt demand L2/L23 4
0x1601
UINT16 V 0 Vmax LIN3 High volt demand L3/L31 4
0x1602
UINT16 V 0 Vmax LIN3 High ampere demand L1
0x1603
UINT16 A 0 Imax LIN3 High ampere demand L2
0x1604
UINT16 A 0 Imax LIN3 High ampere demand L3
0x1605
UINT16 A 0 Imax LIN3 High block kW demand
0x1606
UINT16 kW 0 Pmax LIN3 High block kVA demand
0x1608
UINT16 kVA 0 Pmax LIN3 High sliding window kW
demand
0x1609
UINT16 kW 0 Pmax LIN3
High sliding window kVA demand
0x160B
UINT16 kVA 0 Pmax LIN3
High accumulated kW demand
0x160F
UINT16 kW 0 Pmax LIN3 High accumulated kVA demand
0x1611
UINT16 kVA 0 Pmax LIN3 High predicted kW demand
0x1612
UINT16 kW 0 Pmax LIN3 High predicted kVA demand
0x1614
UINT16 kVA 0 Pmax LIN3
1
For parameter limits, see Note1 to Table 5-1
2
The setpoint is operated when the actual phase sequence does not match the indicated phase rotation
26
3
The actual frequency range is 45.00 - 65.00 Hz
4
When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode,
they will be line-to-line voltages.
5
In the 4LN3, 4LL3, 3LN3, 3LL3 and 3DIR2 wiring modes, the harmonic voltages will represent line-to-neutral
voltages; in the 3OP2 and 3OP3 wiring modes, they will comprise L12 and L23 line-to-line voltages.
Table 5-19 Setpoint Actions
Action Action ID
No action 0x0000 Operate relay 0x3000 Increment counter #1 0x4000 Increment counter #2 0x4001 Increment counter #3 0x4002 Increment counter #4 0x4003 Count operating time using counter #1 1 0x4400 Count operating time using counter #2 1 0x4401 Count operating time using counter #3 1 0x4402 Count operating time using counter #4 1 0x4403
1
This action converts a common event counter to the time counter which measures time at 0.1 hour resolution while
the setpoint is in the operated state. Each time counter has a non-volatile shadow counter which counts time at 1 second resolution before the corresponding time counter is incremented.
5.10 Pulsing Setpoints
Table 5-20 Pulsing Registers
Setup registers (see Table 5-21)
2892-2893
Table 5-21 Pulsing Setup Registers
Parameter Offset Type R/W Range
Output parameter ID +0 UINT16 R/W See Table 5-22 Number of unit-hours per pulse +1 UINT16 R/W 1-9999
Table 5-22 Pulsing Output Parameters
Pulsing parameter ID
None 0 kWh import 1 kWh export 2 kvarh import 4 kvarh export 5 kvarh total (absolute) 6 kVAh total 7
5.11 Relay Operation Control
These registers allow the user to manually override a relay operation that is normally operated via alarm setpoints.
A relay allocated as a pulsing relay may not be manually operated or released. When a relay is allocated for pulsing, it automatically reverts to normal operation.
Table 5-23 Relay Operation Control Registers
Parameter Address Type R/W Range
Relay control status 3244 UINT16 R/W See Table 5-24
27
Table 5-24 Relay Operation Status
Operation status Value
Normal operation 0 Force operate 1 Force release 2
5.12 Min/Max Log
The Min/Max log registers are supported only for compatibility with other models of instruments. Because the Min/Max log is not time stamped in the PM130EH, reading these registers returns you only values of the Min/Max log parameters which you can read directly via extended data registers (see Table 5-15).
Table 5-25 Min/Max Log Windows Registers
Min/Max log window Registers (see Table 5-26)
Min/Max log window #1 4174-4181 Min/Max log window #2 4182-4189 Min/Max log window #3 4190-4197 Min/Max log window #4 4198-4205 Min/Max log window #5 4206-4213 Min/Max log window #6 4214-4221 Min/Max log window #7 4222-4229 Min/Max log window #8 4230-4237 Min/Max log window #9 4238-4245 Min/Max log window #10 4246-4253 Min/Max log window #11 4254-4261 Min/Max log window #12 4262-4269
Table 5-26 Min/Max Log Window Registers
Parameter Offset Type R/W Range
Second +0 UINT16 R 0 Minute +1 UINT16 R 0 Hour +2 UINT16 R 0 Day +3 UINT16 R 0 Month +4 UINT16 R 0 Year +5 UINT16 R 0 Parameter value 1 +6 UINT16 R See Table 5-15 Reserved +7 UINT16 R 0
1
The Min/Max parameter value is read as a 16-bit scaled value using LIN3 conversion. For the conversion
scales, refer to Table 5-15. The time stamp is not available in the PM130EH and is read as zeros.
Table 5-27 Min/Max Log Mapping Register
Parameter Address Type R/W Range
Min/Max log start parameter ID for window #1
4172 UINT16 R/W See Table 5-15
From 1 to 12 adjacent Min/Max log records can be read at a time via the Min/Max log windows. The starting window #1 can be mapped to any Min/Max log parameter listed in Table 5-15 by writing the parameter ID to the Min/Max log mapping register. This must be written before reading the Min/Max log windows. Note that through Min/Max log windows, you can read only adjacent parameters within the same Min/Max log data group. Reading parameters outside of the selected Min/Max log data group will return zero.
Loading...