Satec PM130 Reference Manual

Page 1
PM130
Powermeters
Reference Guide
Modbus
Communications
Protocol
BG0310 Rev. A1
Page 2
SERIES PM130 POWERMETERS
COMMUNICATIONS
Modbus Communications Protocol
REFERENCE GUIDE
Page 3
Every effort has been made to ensure that the material herein is complete and accurate. However, the manufacturer is not responsible for any mistakes in printing or faulty instructions contained in this book. Notification of any errors or misprints will be received with appreciation.
For further information regarding a particular installation, operation or maintenance of equipment, contact the manufacturer or your local representative or distributor.
This book is copyrighted. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the manufacturer.
Modbus is a trademark of Modicon, Inc.
COPYRIGHT 1999, 2000
BG0310 Rev.A1
2
Page 4
Table of Contents
1 GENERAL ............................................................................................. 4
2 MODBUS FRAMING ............................................................................. 5
2.1 Transmission Mode ................................................................................................ 5
2.2 The RTU Frame Format ......................................................................................... 5
2.3 Address Field .......................................................................................................... 5
2.4 Function Field ......................................................................................................... 5
2.5 Data Field ............................................................................................................... 6
2.6 Error Check Field .................................................................................................... 6
3 MODBUS MESSAGE FORMATS ......................................................... 7
3.1 Function 03 - Read Multiple Registers ................................................................... 7
3.2 Function 04 - Read Multiple Registers ................................................................... 7
3.3 Function 06 - Write Single Register ........................................................................ 7
3.4 Function 16 - Write Multiple Registers ................................................................... 8
3.5 Function 08 - Loop-back Communications Test..................................................... 8
3.6 Exception Responses ............................................................................................. 9
4 PROTOCOL IMPLEMENTATION ....................................................... 10
4.1 Modbus Register Addresses ................................................................................ 10
4.2 Data Formats ........................................................................................................ 10
4.2.1 16-bit Integer Format ......................................................................................... 10
4.2.2 32-bit Modulo 10000 Format.............................................................................. 11
4.2.3 32-bit Long Integer Format ................................................................................ 11
4.3 User Assignable Registers ................................................................................... 11
5 POWERMETER REGISTERS DESCRIPTION.................................... 13
5.1 Basic Data Registers ............................................................................................ 13
5.2 Basic Setup........................................................................................................... 14
5.3 User Selectable Options Setup ............................................................................ 15
5.4 Communications Setup ........................................................................................ 16
5.5 Reset/Synchronization Registers ......................................................................... 16
5.6 Instrument Status.................................................................................................. 17
5.7 Extended Status ................................................................................................... 17
5.8 Extended Data Registers...................................................................................... 19
5.9 Alarm/Event Setpoints .......................................................................................... 24
5.10 Pulsing Setpoints ................................................................................................ 27
5.11 Relay Operation Control ..................................................................................... 27
5.12 Min/Max Log ....................................................................................................... 28
3
Page 5
1 GENERAL
This document specifies a subset of the Modbus serial communications protocol used to transfer data between a master computer station and the PM130. The document provides the complete information necessary to develop a third-party communications software capable of communication with the Series PM130 Powermeters. Additional information concerning communications operation, configuring the communications parameters, and communications connections is found in "Series PM130 Powermeters, Installation and Operation Manual".
IMPORTANT
In 3-wire connection schemes, the unbalanced current and phase readings for power factor, active power, and reactive power will be zeros, because they have no meaning. Only the total three-phase power values can be used. Most of the instrument advanced features are configured using multiple setup parameters that can be accessed in some contiguous registers. When writing the setup registers, it is recommended to write all the registers at once using a single request, or to clear (zero) the setup before writing into separate registers.
Specification changes
The following indicates specification changes which apply to PM130 instruments with firmware version 3.54 or later: Added 32-bit long integer format for extended data registers (see Sections 4.2 and 5.8).
4
Page 6
2 MODBUS FRAMING
2.1 Transmission Mode
The protocol uses the Modbus Remote Terminal Unit (RTU) transmission mode. In RTU mode, data is sent in 8-bit binary characters. The 8 bit even parity or 8 bit no parity data format must be selected when configuring the instrument communications. The data format is shown in the following table.
Table 2-1 RTU Data Format
Field No. of bits Start bit 1 Data bits c 8 Parity (optional) 1 Stop bit 1
Least significant bit first
c
2.2 The RTU Frame Format
Frame synchronization is maintained in RTU transmission mode by simulating a synchronization message. The receiving device monitors the elapsed time between receptions of characters. If three and one-half character times elapse without a new character or completion of the frame, then the device flushes the frame and assumes that the next byte received will be an address. The frame format is defined below. The maximum query and response message length is 256 bytes including check characters.
RTU Message Frame Format
T1 T2 T3 Address Function Data CRC Check T1 T2 T3 8 bits 8 bits N * 8 bits 16 bits
2.3 Address Field
The address field contains a user assigned address (1-247) of the instrument that is to receive a message. Address 0 is used in broadcast mode to transmit to all instruments (broadcast mode is available only for functions 06 and 16). In this case all instruments receive the message and take action on the request, but do not issue a response. In the PM130, the broadcast mode is supported only for register addresses 287-294 and 301-302 (reset energies and maximum demands), 3404-3415 (reset/clear registers), and 4352-4358 (real-time clock registers).
2.4 Function Field
The function field contains a function code that tells the instrument what action to perform. Function codes used in the protocol are shown below in Table 2-2.
Table 2-2 Modbus Function Codes
Code (decimal) 03 Read holding registers Read multiple registers 04 Read input registers Read multiple registers
5
Meaning in Modbus Action
Page 7
Code
Meaning in Modbus Action (decimal) 06 Preset single register Write single register 16 Preset multiple registers Write multiple registers 08 Loop-back test Communications test
NOTE
Broadcast mode available only for functions code 06 and 16.
2.5 Data Field
The data field contains information needed by the instrument to perform a specific function, or data collected by the instrument in response to a query.
IMPORTANT
Fields composed of two bytes are sent in the order high byte first, low byte
second.
2.6 Error Check Field
The error check field contains the Cyclical Redundancy Check (CRC) word. The start of the message is ignored in calculating the CRC. The CRC-16 error check sequence is implemented as described in the following paragraphs.
The message (data bits only, disregarding start/stop and optional parity bits) is considered one continuous binary number whose most significant bit (MSB) is transmitted first. The message is pre-multiplied by x binary number (11000000000000101). The integer quotient digits are ignored and the 16-bit remainder (initialized to all ones at the start to avoid the case of all zeros being an accepted message) is appended to the message (MSB first) as the two CRC check bytes. The resulting message including CRC, when divided by the same polynomial (x receiver will give a zero remainder if no errors have occurred. (The receiving unit recalculates the CRC and compares it to the transmitted CRC). All arithmetic is performed modulo two (no carries).
The device used to serialize the data for transmission will send the conventional LSB or right­most bit of each character first. In generating the CRC, the first bit transmitted is defined as the MSB of the dividend. For convenience, and since there are no carries used in the arithmetic, let's assume while computing the CRC that the MSB is on the right. To be consistent, the bit order of the generating polynomial must be reversed. The MSB of the polynomial is dropped since it affects only the quotient and not the remainder. This yields 1010 0000 0000 0001 (Hex A001). Note that this reversal of the bit order will have no effect whatever on the interpretation or bit order of characters external to the CRC calculations.
The step by step procedure to form the CRC-16 check bytes is as follows:
1. Load a 16-bit register with all 1's.
2. Exclusive OR the first 8-bit byte with the low order byte of the 16-bit register, putting the result in the 16-bit register.
3. Shift the 16-bit register one bit to the right.
4a. If the bit shifted out to the right (flag) is one, exclusive OR the generating polynomial 1010
000 000 0001 with the 16-bit register.
4b. If the bit shifted out to the right is zero, return to step 3.
5. Repeat steps 3 and 4 until 8 shifts have been performed.
6. Exclusive OR the next 8-bit byte with the 16-bit register.
7. Repeat step 3 through 6 until all bytes of the message have been exclusive ORed with the 16-bit register and shifted 8 times.
8. When the 16-bit CRC is transmitted in the message, the low order byte will be transmitted first, followed by the high order byte.
For detailed information about CRC calculation, refer to the Modbus Protocol Reference Guide.
16
(shifted left 16 bits), and then divided by x
16
15
+ x
+ x2 + 1 expressed as a
16
15
+ x
+ x2 + 1) at the
6
Page 8
3 MODBUS MESSAGE FORMATS
3.1 Function 03 - Read Multiple Registers
This command allows the user to obtain contents of up to 125 contiguous registers from a single data table.
Request
Instrument Address 1 byte 1 byte 2 bytes 2 bytes 2 bytes
Starting Address Word Count
Response
Instrument Address 1 byte 1 byte 1 byte 2 bytes ... 2 bytes 2 bytes
The byte count field contains quantity of bytes to be returned.
Function (03)
Address of the first register to be read
The number of contiguous words to be read
Function (03)
Starting Address
Byte Count
Data Word 1
Word Count Error Check
... Data
Word N
Error Check
3.2 Function 04 - Read Multiple Registers
This command allows the user to obtain contents of up to 125 contiguous registers from a single data table. It can be used instead of function 03.
Request
Instrument Address 1 byte 1 byte 2 bytes 2 bytes 2 bytes
Starting Address Word Count
Response
Function (04)
Address of the first register to be read
The number of contiguous words to be read
Starting Address
Word Count Error Check
Instrument Address 1 byte 1 byte 1 byte 2 bytes ... 2 bytes 2 bytes
The byte count field contains quantity of bytes to be returned.
Function (04)
Byte Count
Data Word 1
... Data
Word N
Error Check
3.3 Function 06 - Write Single Register
This command allows the user to write the contents of a data register in any data table where a register can be written.
Request
Instrument Address 1 byte 1 byte 2 bytes 2 bytes 2 bytes
Starting Address Data Value
7
Function (06)
Address of the register to be written
Starting Address
Data to be written to the register
Data Word
Error check
Page 9
Response
The normal response is the retransmission of the write request.
3.4 Function 16 - Write Multiple Registers
This request allows the user to write the contents of multiple contiguous registers to a single data table where registers can be written.
Request
Instrument Address
Function (16)
Starting Address
Word Count
Byte Count
1 byte 1 byte 2 bytes 2 bytes 1 byte
Data Word 1 ... ... ... Data Word N Error Check
2 bytes ... ... ... 2 bytes 2 bytes
Starting Address Word Count Byte Count
Address of the first register to be written
The number of contiguous words to be written
The number of bytes to be written
Response
Instrument Address
Function (16)
Starting Address
Word Count
Error Check
1 byte 1 byte 2 bytes 1 word 2 bytes
3.5 Function 08 - Loop-back Communications Test
The purpose of this request is to check the communications link between the specified instrument and PC.
Request
Instrument Address 1 byte 1 byte 2 bytes 2 bytes 2 bytes
Diagnostic Code
Data
Response
Function (08)
Designates action to be taken in Loop-back test. The protocol
supports only Diagnostic Code 0 - return query data.
Query data. The data passed in this field will be returned to the master through the instrument. The entire message returned will be identical to the message transmitted by the master, field-per­field.
Diagnostic Code (0)
Data Error
Check
Instrument Address
Function (08)
1 byte 1 byte 2 bytes 2 bytes 2 bytes
The normal response is the re-transmission of a test message.
Diagnostic Code (0)
Data Error
Check
8
Page 10
3.6 Exception Responses
The instrument sends an exception response when errors are detected in the received message. To indicate that the response is notification of an error, the high order bit of the function code is set to 1.
Exception Response
Instrument Address 1 byte 1 byte 1 byte 2 byte
Exception response codes:
- Illegal function
01
- Illegal data address
02
- Illegal data value
03
- Busy, rejected message. The message was received without errors, but the instrument is
06
being programmed from the keypad (only for requests accessing setup registers).
NOTE
error, processing of the master's request stops. The instrument will not act on or respond to the message.
When the character framing, parity, or redundancy check detects a communication
Function (high order bit is set to 1)
Exception Code
Error Check
9
Page 11
4 PROTOCOL IMPLEMENTATION
4.1 Modbus Register Addresses
The PM130 Modbus registers are referred to by using addresses in the range of 0 to 65535. From within the Modbus applications, the PM130 Modbus registers can be accessed by simulating holding registers of the Modicon 584, 884 or 984 Programmable Controller, using a 5-digit “4XXXX” or 6-digit “4XXXXX” addressing scheme. To map the PM130 register address to the range of the Modbus holding registers, add a value of 40001 to the PM130 register address. When a register address exceeds 9999, use a 6-digit addressing scheme by adding 400001 to the PM130 register address.
4.2 Data Formats
The PM130 uses three data formats to pass data between a master application and the instrument: a 16-bit integer format, a 32-bit modulo 10000 format, and a 32-bit long integer format.
4.2.1 16-bit Integer Format
A 16-bit data is transmitted in a single 16-bit Modbus register as unsigned or signed integer (whole) numbers without conversion or using pre-scaling to accommodate large-scale and fractional numbers to a 16-bit register format. Scaling can be made using either the LIN3 linear conversion, or decimal pre-scaling to pass fractional numbers in integer format.
Non-scaled data The data will be presented exactly as retrieved by the communications program from the instrument. The value range for unsigned data is 0 to 65535; for signed data the range is ­32768 to 32767.
LIN3 (Linear) Scaling This conversion maps the raw data received by the communications program in the range of 0 ­9999 onto the user-defined LO scale/HI scale range. The conversion is carried out according to the formula:
Y = (X / 9999) × (HI - LO) + LO
where: Y - the true value in engineering units X - the raw input data in the range of 0 - 9999 LO, HI - the data low and high scales in engineering units
When data conversion is necessary, the HI and LO scales, and data conversion method are indicated for the corresponding registers.
EXAMPLE Suppose you have read a value of 5000 from register 256 that contains a voltage reading (see Table 5-1). If your instrument has the 144V input option, and you use potential transformers
with the ratings of 22,000V : 110V = 200, then the voltage high scale is HI = 144×200 = 28,800,
and in accordance with the above formula, the voltage reading in engineering units will be as follows:
5000 × (28800 - 0)/9999 + 0 = 14401V
When a value is written to the instrument, the conversion is carried out in reverse to produce the written value in the range of 0 - 9999:
X = 9999 × (Y - LO) / (HI - LO)
10
Page 12
Decimal Scaling Decimal pre-scaling can be used to accommodate fractional numbers to an integer register format. Fractional numbers pre-multiplied by 10 in power N, where N is the number of digits in the fractional part. For example, the frequency reading of 50.01 Hz is transmitted as 5001, having been pre-multiplied by 100. Whenever a data register contains a fractional number, the
register measurement unit is given with a multiplier ×0.1, ×0.01 or ×0.001, showing an actual
register resolution (the weight of the least significant decimal digit). To get an actual fractional number with specified precision, scale the register value with the given multiplier. To write a fractional number into the register, divide the number by the given multiplier.
4.2.2 32-bit Modulo 10000 Format
The short energy registers 287-294, and 301-302 are transmitted in two contiguous 16-bit registers in modulo 10000 format. The first (low order) register contains the value mod 10000, and the second (high order) register contains the value/10000. To get the true energy reading, the high order register value should be multiplied by 10,000 and added to the low order register.
4.2.3 32-bit Long Integer Format
In a 32-bit long integer format, data is transmitted in two adjacent 16-bit Modbus registers as unsigned or signed long integer (whole) numbers. The first register contains the low-order word (lower 16 bits) and the second register contains the high order word (higher 16 bits) of the 32-bit long number. The low-order word always starts at an even Modbus address. The value range for unsigned data is 0 to 4,294,967,295; for signed data the range is -2,147,483,648 to 2,147,483,647.
A 32-bit data can be transmitted without conversion as is, or by using decimal pre-scaling to transform fractional numbers to an integer format as described above (see Decimal Scaling in Section 4.2.1).
4.3 User Assignable Registers
The PM130 contains the 120 user assignable registers in the address range of 0 to 119 (see Table 4-1), any of which you can map to either register address accessible in the instrument. Registers that reside in different locations may be accessed by a single request by re-mapping them to adjacent addresses in the user assignable registers area.
The actual addresses of the assignable registers which are accessed via addresses 0 to 119 are specified in the user assignable register map (see Table 4-2). This map occupies addresses from 120 to 239, where map register 120 should contain the actual address of the register accessed via assignable register 0, register 121 should contain the actual address of the register accessed via assignable register 1, and so on. Note that the assignable register addresses and the map register addresses may not be re-mapped.
To build your own register map, write to map registers (120 to 239) the actual addresses you want to read from or write to via the assignable area (0 to 119). Note that long word registers should always be aligned at even addresses. For example, if you want to read registers 7136 (real-time voltage of phase A, word) and 7576/7577 (kWh import, long word) via registers 0-2, then do the following:
- write 7576 to register 120
- write 7577 to register 121
- write 7136 to register 122
Reading from registers 0-2 will return the kWh reading in registers 0 (low word) and 1 (high word), and the voltage reading in register 2.
11
Page 13
Table 4-1 User Assignable Registers
Register contents Address Size, byte Direction Range User definable data 0 0 User definable data 1 1 User definable data 2 ...
2 ...
User definable data 119 119
c c c
...
c
c c c
...
c
c c c
...
c
c - depends on the mapped register
Table 4-2 User Assignable Register Map
Register contents Address Size, byte Direction Range Register address for user data 0 120 2 R/W 240 to 9999 Register address for user data 1 121 2 R/W 240 to 9999 Register address for user data 2 ... Register address for user data
122 ...
2 ...
R/W ...
240 to 9999 ...
239 2 R/W 240 to 9999
119
12
Page 14
5 POWERMETER REGISTERS DESCRIPTION
5.1 Basic Data Registers
Table 5-1 Basic Data Registers
c
Parameter Add- Size, Direc- Unit
Scale ress byte tion Low High version Voltage L1/L12 g 256 2 R V 0 Vmax LIN3 Voltage L2/L23 g 257 2 R V 0 Vmax LIN3 Voltage L3/L31 g 258 2 R V 0 Vmax LIN3 Current L1 259 2 R A 0 Imax LIN3 Current L2 260 2 R A 0 Imax LIN3 Current L3 261 2 R A 0 Imax LIN3 kW L1 (P) 262 2 R kW -Pmax Pmax LIN3 kW L2 (P) 263 2 R kW -Pmax Pmax LIN3 kW L3 (P) 264 2 R kW -Pmax Pmax LIN3 kvar L1 (P) 265 2 R kvar -Pmax Pmax LIN3 kvar L2 (P) 266 2 R kvar -Pmax Pmax LIN3 kvar L3 (P) 267 2 R kvar -Pmax Pmax LIN3 kVA L1 (P) 268 2 R kVA -Pmax Pmax LIN3 kVA L2 (P) 269 2 R kVA -Pmax Pmax LIN3 kVA L3 (P) 270 2 R kVA -Pmax Pmax LIN3 Power factor L1 (P) 271 2 R 0.001 -1.000 1.000 LIN3 Power factor L2 (P) 272 2 R 0.001 -1.000 1.000 LIN3 Power factor L3 (P) 273 2 R 0.001 -1.000 1.000 LIN3 Total power factor (P) 274 2 R 0.001 -1.000 1.000 LIN3 Total kW (P) 275 2 R kW -Pmax Pmax LIN3 Total kvar (P) 276 2 R kvar -Pmax Pmax LIN3 Total kVA (P) 277 2 R kVA -Pmax Pmax LIN3 Neutral current 278 2 R A 0 Imax LIN3 Frequency 279 2 R 0.01 Hz 45.00 65.00 LIN3 Maximum sliding window kW demand f (E) Accumulated kW demand (E) Maximum sliding window kVA demand f (E) Accumulated kVA demand (E) Max. ampere demand L1 Max. ampere demand L2 Max. ampere demand L3 kWh import (low) (E) 287 2 R/W kWh 0 9999 NONE kWh import (high) (E) 288 2 R/W kWh x104 0 9999 x104 kWh export (low) (E) 289 2 R/W kWh 0 9999 NONE kWh export (high) (E) 290 2 R/W kWh x104 0 9999 x104 +kvarh net (low) d (E) 291 2 R/W kvarh 0 9999 NONE +kvarh net (high) d (E) 292 2 R/W kvarh x1040 9999 x104
280 2 R/W kW -Pmax Pmax LIN3
281 2 R/W kW -Pmax Pmax LIN3
282 2 R/W kVA -Pmax Pmax LIN3
283 2 R/W kVA -Pmax Pmax LIN3
284 2 R/W A 0 Imax LIN3
285 2 R/W A 0 Imax LIN3
286 2 R/W A 0 Imax LIN3
Con-
13
Page 15
c
Parameter Add- Size, Direc- Unit
Scale ress byte tion Low High version
-kvarh net (low) e (E) 293 2 R/W kvarh 0 9999 NONE
-kvarh net (high) e (E) 294 2 R/W kvarh x1040 999 x104 Reserved 295 2 R Reserved 296 2 R Reserved 297 2 R Reserved 298 2 R Reserved 299 2 R Reserved 300 2 R kVAh (low) (E) 301 2 R/W kVAh 0 9999 NONE kVAh (high) (E) 302 2 R/W kVAh x1040 9999 x104 Present sliding window kW demand f (E) Present sliding window kVA demand f (E) PF at maximum siding window kVA demand (E) Reserved 306 2 R Reserved 307 2 R Reserved 308 2 R
The parameter limits are as follows:
c
(690 V input option) = 828V @ PT Ratio = 1
Vmax
(690 V input option) = 144 × PT Ratio [V] @ PT Ratio > 1
Vmax Vmax Imax Pmax Pmax
Positive readings of kvarh net
d e Negative readings of kvarh net
To get block interval demand readings, specify the number of demand periods equal to 1
f
(see Table 5-2)
When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any
g
other wiring mode, they will be line-to-line voltages. (P) available in the PM130P and PM130E (E) available in the PM130E
NOTE
Writing a zero to one of registers 287-294 and 301-302 causes reset of all accumulated energies.
(120 V input option) =144 × PT Ratio [V]
(50% over-range) = 1.5 × CT primary current [A]
= (Imax × Vmax × 3)/1000 [kW] if wiring mode is 4LN3 or 3LN3
= (Imax × Vmax × 2)/1000 [kW] if wiring mode is 4LL3, 3OP2, 3DIR2, 3OP3 or 3LL3
Writing a zero to one of registers 280-286 causes reset of all maximum demands.
303 2 R kW -Pmax Pmax LIN3
304 2 R kVA -Pmax Pmax LIN3
305 2 R 0.001 -1.000 1.000 LIN3
Con-
5.2 Basic Setup
Table 5-2 Basic Setup Registers
Parameter Add-
Wiring mode c 2304 2 R/W 0 = 3OP2, 1 = 4LN3,
PT ratio 2305 2 R/W CT primary current 2306 2 R/W 1 to 50000 A
ress
Size, byte
Direc­tion
Range
2 = 3DIR2, 3 = 4LL3, 4 = 3OP3, 5 = 3LN3, 6 = 3LL3
10 to 65000 × 0.1
14
Page 16
Parameter Add-
Power demand period (E)
ress
Size, byte
Direc­tion
Range
2307 2 R/W 1,2,5,10,15,20,30,60
min, 255 = external synchronization d
Volt/ampere demand
2308 2 R/W 0 to 1800 sec period Averaging buffer size 2309 2 R/W 8, 16, 32 Reset enable/disable 2310 2 R/W 0 = disable, 1 = enable Reserved 2311 2 R Read as 65535 The number of demand
2312 2 R/W 1 to 15 periods (E) Reserved 2313 2 R Read as 65535 Reserved 2314 2 R Read as 65535 Nominal frequency 2315 2 R/W 50, 60 Hz Reserved 2316 2 R Read as 65535
The wiring mode options are as follows:
c
3OP2 - 3-wire open delta using 2 CTs (2 element) 4LN3 - 4-wire WYE using 3 PTs (3 element), line to neutral voltage readings 3DIR2 - 3-wire direct connection using 2 CTs (2 element) 4LL3 - 4-wire WYE using 3 PTs (3 element), line to line voltage readings 3OP3 - 3-wire open delta using 3 CTs (2 1/2 element) 3LN3 - 4-wire WYE using 2 PTs (2 1/2 element), line to neutral voltage readings 3LL3 - 4-wire WYE using 2 PTs (2 1/2 element), line to line voltage readings
Synchronization of power demand interval can be made through communications using the
d
Synchronize power demand interval command (see Table 5-5) (E) available in the PM130E
5.3 User Selectable Options Setup
Table 5-3 User Selectable Options Registers
Parameter Add-
ress
Power calculation mode (P) 2376 2 R/W 0 = using reactive
Energy roll value (E) c 2377 2 R/W
Phase energy calculation
2378 2 R/W 0 = disable, 1 = enable
mode (E)
(P) available in the PM130P and PM130E (read as 65535 in the PM130) (E) available in the PM130E (read as 65535 in the PM130 and PM130P)
For short energy registers (see Table 5-1), the maximum roll value will be 1×10
c
readings and 1×10
7
for negative readings.
Size, byte
Direc­tion
Range
power, 1 = using non-active power
0 = 1×10 1 = 1×10 2 = 1×10 3 = 1×10 4 = 1×10
4 5 6 7 8
8
for positive
15
Page 17
5.4 Communications Setup
Table 5-4 Communications Setup Registers
Parameter Add-
Reserved 2344 2 R Read as 65535 Interface 2345 2 R/W 2 = RS-485 (not
Address 2346 2 R/W 1 to 247 Baud rate 2347 2 R/W 0 = 110 bps
Data format 2348 2 R/W 1 = 8 bits/no parity
When changing the instrument address, baud rate or data format, the new communications parameters will take effect 100 ms after the instrument responds to the master’s request.
ress
Size, byte
Direc­tion
Range
changeable)
1 = 300 bps 2 = 600 bps 3 = 1200 bps 4 = 2400 bps 5 = 4800 bps 6 = 9600 bps 7 = 19200 bps
2 = 8 bits/even parity
5.5 Reset/Synchronization Registers
Table 5-5 Reset/Synchronization Registers
Register function Add-
ress Clear total energy registers (E) 3404 2 W 0 Clear total maximum demand registers
Reserved 3406- 2 3407 Clear event/time counters (E) 3408 2 W 0 = all counters
Clear Min/Max log 3409 2 W 0 Reserved 3410- 2 3419 Synchronize power demand interval (E) c
1) If the power demand period is set to External Synchronization (see Table 5-2), writing a
c
zero to this location will simulate an external synchronization pulse denoting the start of the next demand interval. The synchronization requests should not follow in intervals of less than 30 seconds, or the request will be rejected.
2) If the power demand period is specified in minutes, writing a zero to this location provides synchronization of the instrument’s internal timer with the time of reception of the master’s request. If the time expired from the beginning of the current demand interval is more than 30 seconds, the new demand interval starts immediately, otherwise synchronization is delayed until the next demand interval.
(E) - available in the PM130E
3405 2 W 0 = all maximum
3420 2 W 0
Size byte
Direc­tion
Reset value
demands 1 = power demands (E) 2 = volt/ampere demands
1-4 = counter #1 - #4
16
Page 18
5.6 Instrument Status
Table 5-6 Instrument Status Registers
Parameter Address Size, Direc- Unit Range
byte tion Instrument reset register c
Reserved 2561 2 R Read as 0 Relay status 2562 2 R see Table 5-7 Reserved 2563 2 R Read as 0 Reserved 2564 2 R Firmware version number Instrument options 1 2566 2 R see Table 5-8 Instrument options 2 2567 2 R see Table 5-8
Writing a value of 65535 into register 2560 will cause the instrument to perform a warm
c
restart.
Table 5-7 Relay Status
Bit number Description 0-6 Not used (permanently set to 1) 7 Relay status 8-15 Not used (permanently set to 0)
Bit meaning: 0 = relay operated, 1 = relay released
Table 5-8 Instrument Options
2560 2 R/W 0 (when read)
65535 (when written) = reset the instrument
2565 2 R 0-65535
Options register Bit Description Options1
Options 2
0 1 2-4 5 6-8 9 10-15 0-2 3-15
120V option 690V option Reserved 150% current over-range Reserved Relays option Reserved Number of relays - 1 Reserved
5.7 Extended Status
Table 5-9 Extended Status Registers
Register description Address Size,
Relay status 3452 2 R see Table 5-10 Reserved 3453- 2 R Read as 0 3454 2 Setpoints status 3455 2 R see Table 5-11 Log status 3456 2 R see Table 5-12 Reserved 3457-
3473 Setpoint alarm status 3474 2 R/W see Table 5-13 Self-check alarm status 3475 2 R/W see Table 5-14
Direction Value range
byte
2 R Read as 0
17
Page 19
Table 5-10 Relay Status
Bit Description 0 Relay status 1-15 Not used (permanently set to 0)
Bit meaning: 0 = relay released, 1 = relay operated
Table 5-11 Setpoints Status
Bit Description 0 Setpoint # 1 status 1 Setpoint # 2 status 2 Setpoint # 3 status 3 Setpoint # 4 status 4 Setpoint # 5 status 5 Setpoint # 6 status 6 Setpoint # 7 status 7 Setpoint # 8 status 8 Setpoint # 9 status 9 Setpoint # 10 status 10 Setpoint # 11 status 11 Setpoint # 12 status 12 Setpoint # 13 status 13 Setpoint # 14 status 14 Setpoint # 15 status 15 Setpoint # 16 status
Bit meaning: 0 = setpoint is released, 1 = setpoint is operated
Table 5-12 Log Status
Bit Description 0 Reserved 1 New Min/Max Log 2-15 Not used (permanently set to 0)
Bit meaning: 0 = no new logs, 1 = new log recorded (the new log flag is reset when the user reads the first log record after the flag has been set)
Table 5-13 Setpoint Alarm Status
Bit Description 0 Alarm #1 1 Alarm #2 2 Alarm #3 3 Alarm #4 4 Alarm #5 5 Alarm #6 6 Alarm #7 7 Alarm #8 8 Alarm #9 9 Alarm #10 10 Alarm #11 11 Alarm #12 12 Alarm #13 13 Alarm #14 14 Alarm #15 15 Alarm #16
Bit meaning: 1 = setpoint has been operated
18
Page 20
The setpoint alarm register stores the status of the operated setpoints by setting the appropriate bits to 1. The alarm status bits can be reset all together by writing zero to the setpoint alarm register. It is possible to reset each alarm status bit separately by writing back the contents of the alarm register with a corresponding alarm bit set to 0.
Table 5-14 Self-check Alarm Status
Bit Description 0 1 2 3 4 5 6 7 8 9
Reserved ROM error RAM error Watchdog timer reset Sampling failure Out of control trap Reserved Timing failure Loss of power (power up) External reset (warm restart)
10 Configuration corrupted 11-15 Reserved
The self-check alarm register indicates possible problems with the instrument hardware or setup configuration. The hardware problems are indicated by the appropriate bits which are set whenever the instrument fails self-test diagnostics or in the event of loss of power. The setup configuration problems are indicated by the dedicated bit which is set when either configuration register is corrupted. In this event, the instrument will use the default configuration. The configuration corrupt bit may also be set as a result of the legal changes in the setup configuration since the instrument might implicitly change or clear other setups if they are affected by the changes made.
Hardware fault bits can be reset by writing zero to the self-check alarm register. The configuration corrupt status bit is also reset automatically when you change setup either via the front panel or through communications.
5.8 Extended Data Registers
The following table lists all registers containing the data measured by the instrument. Notice that these registers are arranged into groups which are not located at adjacent addresses. You can re-map these registers into adjacent addresses to access multiple data from different data groups by using a single request. Refer to Section 2.9 for information on the user assignable registers.
Along with the register address, the table shows for each data item its data identifier (ID). This is a one word containing a data group ID in the high byte and the parameter offset in a group in the low byte. Data IDs are used to specify input or output parameters whenever a data parameter specification is needed, for example, when selecting analog output parameters or reading Min/Max log records.
19
Page 21
Table 5-16 Extended Data Registers
Parameter 16-bit Register 32-bit Data Dir. Unitd Range/Scale
c
Reg. Conv. Register ID Low High None None 6656 11776-11777 0 R 0 0 Relays Relay status (see Table 5-10)
6976 12800-12801 2048 R 0 3
Event/time counters Counter #1 7056
13056-13057 2560 R/W 0 99999
7057
Counter #2 7058
13058-13059 2561 R/W 0 99999
7059
Counter #3 7060
13060-13061 2562 R/W 0 99999
7061
Counter #4 7062
13062-13063 2563 R/W 0 99999
7063 Real-time values per phase (power values - P) Voltage L1/L12 g 7136 LIN3 13312-13313 3072 R V 0 Vmax Voltage L2/L23 g 7137 LIN3 13314-13315 3073 R V 0 Vmax Voltage L3/L31 g 7138 LIN3 13316-13317 3074 R V 0 Vmax Current L1 7139 LIN3 13318-13319 3075 R A 0 Imax Current L2 7140 LIN3 13320-13321 3076 R A 0 Imax Current L3 7141 LIN3 13322-13323 3077 R A 0 Imax kW L1 7142 LIN3 13324-13325 3078 R kW -Pmax Pmax kW L2 7143 LIN3 13326-13327 3079 R kW -Pmax Pmax kW L3 7144 LIN3 13328-13329 3080 R kW -Pmax Pmax kvar L1 7145 LIN3 13330-13331 3081 R kvar -Pmax Pmax kvar L2 7146 LIN3 13332-13333 3082 R kvar -Pmax Pmax kvar L3 7147 LIN3 13334-13335 3083 R kvar -Pmax Pmax kVA L1 7148 LIN3 13336-13337 3084 R kVA 0 Pmax kVA L2 7149 LIN3 13338-13339 3085 R kVA 0 Pmax kVA L3 7150 LIN3 13340-13341 3086 R kVA 0 Pmax Power factor L1 7151 LIN3 13342-13343 3087 R 0.001 -1.000 1.000 Power factor L2 7152 LIN3 13344-13345 3088 R 0.001 -1.000 1.000 Power factor L3 7153 LIN3 13346-13347 3089 R 0.001 -1.000 1.000 Reserved 7154 13348-13349 3090 R 0 0 Reserved 7155 13350-13351 3091 R 0 0 Reserved 7156 13352-13353 3092 R 0 0 Reserved 7157 13354-13355 3093 R 0 0 Reserved 7158 13356-13357 3094 R 0 0 Reserved 7159 13358-13359 3095 R 0 0 Reserved 7160 13360-13361 3096 R 0 0 Reserved 7161 13362-13363 3097 R 0 0 Reserved 7162 13364-13365 3098 R 0 0 Reserved 7163 13366-13367 3099 R 0 0 Reserved 7164 13368-13369 3100 R 0 0 Reserved 7165 13370-13371 3101 R 0 0 Voltage L12 7166 LIN3 13372-13373 3102 R V 0 Vmax Voltage L23 7167 LIN3 13374-13375 3103 R V 0 Vmax Voltage L31 7168 LIN3 13376-13377 3104 R V 0 Vmax Real-time total values (P) Total kW 7256 LIN3 13696-13697 3840 R kW -Pmax Pmax Total kvar 7257 LIN3 13698-13699 3841 R kvar -Pmax Pmax Total kVA 7258 LIN3 13700-13701 3842 R kVA 0 Pmax
20
Page 22
Parameter 16-bit Register 32-bit Data Dir. Unitd Range/Scale
c
Reg. Conv. Register ID Low High Total PF 7259 LIN3 13702-13703 3843 R 0.001 -1.000 1.000 Reserved 7260 13704-13705 3844 R 0 Reserved 7261 13706-13707 3845 R 0 Real-time auxiliary values Reserved 7296 13824-13825 4096 R 0 0 Neutral current 7297 LIN3 13826-13827 4097 R A 0 Imax Frequency d 7298 LIN3 13828-13829 4098 R 0.01Hz 0 100.00 Voltage unbalance (P) 7299 LIN3 13830-13831 4099 R 1% 0 300 Current unbalance (P) 7300 LIN3 13832-13833 4100 R 1% 0 300 Average values per phase (power values - P) Voltage L1/L12 g 7336 LIN3 13952-13953 4352 R V 0 Vmax Voltage L2/L23 g 7337 LIN3 13954-13955 4353 R V 0 Vmax Voltage L3/L31 g 7338 LIN3 13956-13957 4354 R V 0 Vmax Current L1 7339 LIN3 13958-13959 4355 R A 0 Imax Current L2 7340 LIN3 13960-13961 4356 R A 0 Imax Current L3 7341 LIN3 13962-13963 4357 R A 0 Imax kW L1 7342 LIN3 13964-13965 4358 R kW -Pmax Pmax kW L2 7343 LIN3 13966-13967 4359 R kW -Pmax Pmax kW L3 7344 LIN3 13968-13969 4360 R kW -Pmax Pmax kvar L1 7345 LIN3 13970-13971 4361 R kvar -Pmax Pmax kvar L2 7346 LIN3 13972-13973 4362 R kvar -Pmax Pmax kvar L3 7347 LIN3 13974-13975 4363 R kvar -Pmax Pmax kVA L1 7348 LIN3 13976-13977 4364 R kVA 0 Pmax kVA L2 7349 LIN3 13978-13979 4365 R kVA 0 Pmax kVA L3 7350 LIN3 13980-13981 4366 R kVA 0 Pmax Power factor L1 7351 LIN3 13982-13983 4367 R 0.001 -1.000 1.000 Power factor L2 7352 LIN3 13984-13985 4368 R 0.001 -1.000 1.000 Power factor L3 7353 LIN3 13986-13987 4369 R 0.001 -1.000 1.000 Reserved 7354 13988-13989 4370 R 0 0 Reserved 7355 13990-13991 4371 R 0 0 Reserved 7356 13992-13993 4372 R 0 0 Reserved 7357 13994-13995 4373 R 0 0 Reserved 7358 13996-13997 4374 R 0 0 Reserved 7359 13998-13999 4375 R 0 0 Reserved 7360 14000-14001 4376 R 0 0 Reserved 7361 14002-14003 4377 R 0 0 Reserved 7362 14004-14005 4378 R 0 0 Reserved 7363 14006-14007 4379 R 0 0 Reserved 7364 14008-14009 4380 R 0 0 Reserved 7365 14010-14011 4381 R 0 0 Voltage L12 7366 LIN3 14012-14013 4382 R V 0 Vmax Voltage L23 7367 LIN3 14014-14015 4383 R V 0 Vmax Voltage L31 7368 LIN3 14016-14017 4384 R V 0 Vmax Average total values (P) Total kW 7456 LIN3 14336-14337 5120 R kW -Pmax Pmax Total kvar 7457 LIN3 14338-14339 5121 R kvar -Pmax Pmax Total kVA 7458 LIN3 14340-14341 5122 R kVA 0 Pmax Total PF 7459 LIN3 14342-14343 5123 R 0.001 -1.000 1.000 Reserved 7460 14344-14345 5124 R 0 0 Reserved 7461 14346-14347 5125 R 0 0 Average auxiliary values Reserved 7496 14464-14465 5376 R 0 0 Neutral current 7497 LIN3 14466-14467 5377 R A 0 Imax Frequency d 7498 LIN3 14468-14469 5378 R 0.01Hz 0 100.00
21
Page 23
Parameter 16-bit Register 32-bit Data Dir. Unitd Range/Scale
c
Reg. Conv. Register ID Low High Voltage unbalance (P) 7499 LIN3 14470-14471 5379 R 1% 0 300 Current unbalance (P) 7500 LIN3 14472-14473 5380 R 1% 0 300 Present demands Volt demand L1/L12 (P) g 7536 LIN3 14592-14593 5632 R V 0 Vmax Volt demand L2/L23 (P) g 7537 LIN3 14594-14595 5633 R V 0 Vmax Volt demand L3/L31 (P) g 7538 LIN3 14596-14597 5634 R V 0 Vmax Ampere demand L1 7539 LIN3 14598-14599 5635 R A 0 Imax Ampere demand L2 7540 LIN3 14600-14601 5636 R A 0 Imax Ampere demand L3 7541 LIN3 14602-14603 5637 R A 0 Imax Block kW demand (E) 7542 LIN3 14604-14605 5638 R kW 0 Pmax Reserved 7543 14606-14607 5639 R 0 0 Block kVA demand (E) 7544 LIN3 14608-14609 5640 R kVA 0 Pmax Sliding window kW demand
7545 LIN3 14610-14611 5641 R kW 0 Pmax (E) Reserved 7546 14612-14613 5642 R 0 0 Sliding window kVA demand
7547 LIN3 14614-14615 5643 R kVA 0 Pmax (E) Reserved 7548 14616-14617 5644 R 0 0 Reserved 7549 14618-14619 5645 R 0 0 Reserved 7550 14620-14621 5646 R 0 0 Accumulated kW demand
7551 LIN3 14622-14623 5647 R kW 0 Pmax (import) (E) Reserved 7552 14624-14625 5648 R 0 0 Accumulated kVA demand 7553 LIN3 14626-14627 5649 R kVA 0 Pmax Predicted sliding window kW
7554 LIN3 14628-14629 5650 R kW 0 Pmax demand Reserved 7555 14630-14631 5651 R 0 0 Predicted sliding window kVA
7556 LIN3 14632-14633 5652 R kVA 0 Pmax demand (E) PF at maximum sliding
7557 LIN3 14634-14635 5653 R 0.001 -1.000 1.000 window kVA demand (E) Total energies (E) kWh import 7576
14720-14721 5888 R kWh 0 108-1
7577 kWh export f 7578
14722-14723 5889 R kWh 0 108-1
7579 Reserved 7580
14724-14725 5890 R 0 0
7581 Reserved 7582
14726-14727 5891 R 0 0
7583 kvarh import 7584
14728-14729 5892 R kvarh 0 108-1
7585 kvarh export f 7586
14730-14731 5893 R kvarh 0 108-1
7587 Reserved 7588
14732-14733 5894 R 0 0
7589 Reserved 7590
14734-14735 5895 R 0 0
7591 kVAh total 7592
14736-14737 5896 R kVAh 0 108-1
7593 Phase energies (E) kWh import L1 7616
14848-14849 6144 R kWh 0 108-1
7617
22
Page 24
Parameter 16-bit Register 32-bit Data Dir. Unitd Range/Scale
c
Reg. Conv. Register ID Low High kWh import L2 7618
14850-14851 6145 R kWh 0 108-1
7619 kWh import L3 7620
14852-14853 6146 R kWh 0 108-1
7621 kvarh import L1 7622
14854-14855 6147 R kvarh 0 108-1
7623 kvarh import L2 7624
14856-14857 6148 R kvarh 0 108-1
7625 kvarh import L3 7626
14858-14859 6149 R kvarh 0 108-1
7627 kVAh total L1 7628
14860-14861 6150 R kVAh 0 108-1
7629 kVAh total L2 7630
14862-14863 6151 R kVAh 0 108-1
7631 kVAh total L3 7632
14864-14865 6152 R kVAh 0 108-1
7633 Reserved Reserved 8296
...
8313
17024-17025
... 17058-17059
10496 ... 10513
R 0 0
Reserved Reserved 8336
...
8339
17152-17153
... 17158-17159
10752 ... 10755
R 0 0
Minimum real-time values per phase (M) Voltage L1/L12 g 8416 LIN3 17408-17409 11264 R V 0 Vmax Voltage L2/L23 g 8417 LIN3 17410-17411 11265 R V 0 Vmax Voltage L3/L31 g 8418 LIN3 17412-17413 11266 R V 0 Vmax Current L1 (P) 8419 LIN3 17414-17415 11267 R A 0 Imax Current L2 (P) 8420 LIN3 17416-17417 11268 R A 0 Imax Current L3 (P) 8421 LIN3 17418-17419 11269 R A 0 Imax Minimum real-time total values (M) (P) Total kW 8456 LIN3 17536-17537 11520 R kW -Pmax Pmax Total kvar 8457 LIN3 17538-17539 11521 R kvar -Pmax Pmax Total kVA 8458 LIN3 17540-17541 11522 R kVA 0 Pmax Total PF e 8459 LIN3 17542-17543 11523 R 0.001 0 1.000 Minimum real-time auxiliary values (M) Reserved 8496 17664-17665 11776 R 0 0 Neutral current (P) 8497 LIN3 17666-17667 11777 R A 0 Imax Frequency (P) d 8498 LIN3 17668-17669 11778 R 0.01Hz 0 100.00 Minimum demands (M) - Reserved Reserved 8536
...
8547
17792-17793
... 18814-18815
12032 ... 12043
R 0 0
Maximum real-time values per phase (M) Voltage L1/L12 g 8736 LIN3 18432-18433 13312 R V 0 Vmax Voltage L2/L23 g 8737 LIN3 18434-18435 13313 R V 0 Vmax Voltage L3/L31 g 8738 LIN3 18436-18437 13314 R V 0 Vmax Current L1 (P) 8739 LIN3 18438-18439 13315 R A 0 Imax Current L2 (P) 8740 LIN3 18440-18441 13316 R A 0 Imax Current L3 (P) 8741 LIN3 18442-18443 13317 R A 0 Imax Maximum real-time total values (M) (P) Total kW 8776 LIN3 18560-18561 13568 R kW -Pmax Pmax
23
Page 25
Parameter 16-bit Register 32-bit Data Dir. Unitd Range/Scale Reg. Conv. Register ID Low High Total kvar 8777 LIN3 18562-18563 13569 R kvar -Pmax Pmax Total kVA 8778 LIN3 18564-18565 13570 R kVA 0 Pmax Total PF e 8779 LIN3 18566-18567 13571 R 0.001 0 1.000 Maximum real-time auxiliary values (M) Reserved 8816 18688-18689 13824 R 0 Neutral current (P) 8817 LIN3 18680-18681 13825 R A 0 Imax Frequency (P) d 8818 LIN3 18682-18683 13826 R 0.01Hz 0 100.00 Maximum demands (M) Max. volt demand L1/L12 (P)
g
Max. volt demand L2/L23 (P)
g
Max. volt demand L3/L31 (P)
g
Max. ampere demand L1 8859 LIN3 18822-18823 14083 R A 0 Imax Max. ampere demand L2 8860 LIN3 18824-18825 14084 R A 0 Imax Max. ampere demand L3 8861 LIN3 18826-18827 14085 R A 0 Imax Reserved 8862 18828-18829 14086 R 0 0 Reserved 8863 18830-18831 14087 R 0 0 Reserved 8864 18832-18833 14088 R 0 0 Max. sliding window kW demand (E) Reserved 8866 18836-18837 14090 R 0 0 Max. sliding window kVA demand (E)
For the parameter limits, see note c to Table 5-1
c
The actual frequency range is 45.00 - 65.00 Hz
d
Absolute min/max value (lag or lead)
e
The exported energy registers are read as positive unsigned long (32-bit) integers
f
When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any
g
other wiring mode, they will be line-to-line voltages. (M) These parameters are logged to the Min/Max log (P) available in the PM130P and PM130E (E) available in the PM130E
8856 LIN3 18816-18817 14080 R V 0 Vmax
8857 LIN3 18818-18819 14081 R V 0 Vmax
8858 LIN3 18820-18821 14082 R V 0 Vmax
8865 LIN3 18834-18835 14089 R kW 0 Pmax
8867 LIN3 18838-18839 14091 R kVA 0 Pmax
c
5.9 Alarm/Event Setpoints
Table 5-16 Setpoint Registers
Setpoint Setup registers (see Table 5-17) Setpoint #1 2576-2583 Setpoint #2 2584-2591 Setpoint #3 2592-2599 Setpoint #4 2600-2607 Setpoint #5 2608-2615 Setpoint #6 2616-2623 Setpoint #7 2624-2631 Setpoint #8 2632-2639 Setpoint #9 2640-2647 Setpoint #10 2648-2655 Setpoint #11 2656-2663 Setpoint #12 2664-2671 Setpoint #13 2672-2679 Setpoint #14 2680-2687 Setpoint #15 2688-2695 Setpoint #16 2696-2703
24
Page 26
Table 5-17 Setpoint Setup Registers
Parameter Offset Size,
Direction Range
byte Trigger parameter ID +0 2 R/W see Table 5-18 Action +1 2 R/W see Table 5-19 Operate delay +2 2 R/W Release delay +3 2 R/W Operate limit +4
4 R/W see Table 5-18
0-9999 (× 0.1 sec)
0-9999 (× 0.1 sec)
+5
Release limit +6
4 R/W see Table 5-18
+7 The setpoint is disabled when its trigger parameter is set to NONE. To disable the setpoint, write zero into this register. When writing the setpoint registers (except the event when the setpoint is to be disabled), it is recommended to write all the setpoint registers using a single request, or disable the setpoint before writing into separate registers. Each value being written is checked for compatibility with the other setpoint parameters; if the new value does not conform to these, the request will be rejected. Operate and release limits for the trigger parameters and their conversion scales are indicated in Table 5-18. Each limit value occupies two contiguous registers, the first of which (low word) contains the limit value, and the second (high word) is reserved for long parameters. This register is always read as zero. When written, its value is ignored. Limits indicated in Table 5-18 by a N/A mark are read as zeros. When writing, they can be omitted or should be written as zeros. When a setpoint action is directed to a relay allocated to output energy pulses, an attempt to re­allocate it for a setpoint will result in a negative response.
Table 5-18 Setpoint Trigger Parameters
Trigger parameter Trigger Size, Unit
Limit/scale
c
Con­ ID byte Low High version None None 0 2 N/A N/A NONE Phase reversal Positive phase rotation reversal 35073 2 N/A N/A NONE
Negative phase rotation
35074 2 N/A N/A NONE reversal High/low real-time values on any phase High voltage f 3584 2 V 0 Vmax LIN3 Low voltage f 36096 2 V 0 Vmax LIN3 High current 3585 2 A 0 Imax LIN3 Low current 36097 2 A 0 Imax LIN3 Reserved 3591 2 Reserved 3592 2 Reserved 3593 2 Reserved 3594 2 High/low real-time auxiliary values High frequency e 4098 2 0.01Hz 0 100.00 LIN3 Low frequency e 36866 2 0.01Hz 0 100.00 LIN3 High/low average values per phase High current L1 4355 2 A 0 Imax LIN3 High current L2 4356 2 A 0 Imax LIN3 High current L3 4357 2 A 0 Imax LIN3 Low current L1 37123 2 A 0 Imax LIN3 Low current L2 37124 2 A 0 Imax LIN3
25
Page 27
Trigger parameter Trigger Size, Unit
Limit/scale
c
Con­ ID byte Low High version Low current L3 37125 2 A 0 Imax LIN3 High/low average values on any phase High voltage f 4864 2 V 0 Vmax LIN3 Low voltage f 37376 2 V 0 Vmax LIN3
High current 4865 2 V 0 Vmax LIN3 Low current 37377 2 V 0 Vmax LIN3 High/low average total values (P) High total kW import 5126 2 kW -Pmax Pmax LIN3 High total kW export 5127 2 kW -Pmax Pmax LIN3 High total kvar import 5128 2 kvar -Pmax Pmax LIN3 High total kvar export 5129 2 kvar -Pmax Pmax LIN3 High total kVA 5122 2 kVA 0 Pmax LIN3 Low total PF Lag 37892 2 0.001 0 1.000 LIN3 Low total PF Lead 37893 2 0.001 0 1.000 LIN3 High/low average auxiliary values High neutral current 5377 2 A 0 Imax LIN3 High frequency e 5378 2 0.01Hz 0 100.00 LIN3 Low frequency e 38146 2 0.01Hz 0 100.00 LIN3 High present demands High volt demand L1/L12 (P) f 5632 2 V 0 Vmax LIN3 High volt demand L2/L23 (P) f 5633 2 V 0 Vmax LIN3 High volt demand L3/L31 (P) f 5634 2 V 0 Vmax LIN3 High ampere demand L1 5635 2 A 0 Imax LIN3 High ampere demand L2 5636 2 A 0 Imax LIN3 High ampere demand L3 5637 2 A 0 Imax LIN3 High block kW demand (E) 5638 2 kW 0 Pmax LIN3 High block kVA demand (E) 5640 2 kVA 0 Pmax LIN3 High sliding window kW
5641 2 kW 0 Pmax LIN3 demand (E) High sliding window kVA
5643 2 kVA 0 Pmax LIN3 demand (E) High accumulated kW demand
5647 2 kW 0 Pmax LIN3 (E) High accumulated kVA demand
5649 2 kVA 0 Pmax LIN3 (E) High predicted kW demand (E) 5650 2 kW 0 Pmax LIN3 High predicted kVA demand (E) 5652 2 kVA 0 Pmax LIN3
For parameter limits, see Note c to Table 5-1
c
The setpoint is operated when the actual phase sequence does not match the indicated
d
phase rotation
The actual frequency range is 45.00 - 65.00 Hz
e
When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any
f
other wiring mode, they will be line-to-line voltages. (P) available in the PM130P and PM130E (E) available in the PM130E
Table 5-19 Setpoint Actions
Action ID No action 0 Operate relay 12288 Increment counter #1 16384 Increment counter #2 16385 Increment counter #3 16386
26
Page 28
Action ID Increment counter #4 16387 Count operating time using counter #1 c 17408
Count operating time using counter #2
c
Count operating time using counter #3
c
Count operating time using counter #4
c
This action converts a common event counter to the time counter which measures time at
c
0.1 hour resolution while the setpoint is in the operated state. Each time counter has a non­volatile shadow counter which counts time at 1 second resolution before the corresponding time counter is incremented.
17409
17410
17411
5.10 Pulsing Setpoints
Table 5-20 Pulsing Registers
Setup registers (see Table 5-21) 2892-2893
Table 5-21 Pulsing Setup Registers
Parameter Offset Size,
byte Output parameter ID +0 2 R/W see Table 5-22 Number of unit-hours per pulse
Table 5-22 Pulsing Output Parameters
+1 2 R/W 1-9999
Direction Range
Pulsing parameter ID None 0 kWh import 1 kWh export 2 kvarh import 4 kvarh export 5 kvarh total (absolute) 6 kVAh total 7
5.11 Relay Operation Control
These registers allow the user to manually override a relay operation that is normally operated via alarm setpoints.
A relay allocated as a pulsing relay may not be manually operated or released. When a relay is allocated for pulsing, it automatically reverts to normal operation.
Table 5-23 Relay Operation Control Registers
Parameter Address Size,
byte Relay control status 3244 2 R/W see Table 5-24
Direction Range
27
Page 29
Table 5-24 Relay Operation Status
Operation status Value Normal operation 0 Force operate 1 Force release 2
5.12 Min/Max Log
The Min/Max log registers are supported only for compatibility with other models of instruments. Because the Min/Max log is not time stamped in the PM130, reading these registers returns you only values of the Min/Max log parameters which you can read directly via extended data registers (see Table 5-15).
Table 5-25 Min/Max Log Windows Registers
Min/Max log window Registers (see Table 5-26) Min/Max log window #1 4174-4181 Min/Max log window #2 4182-4189 Min/Max log window #3 4190-4197 Min/Max log window #4 4198-4205 Min/Max log window #5 4206-4213 Min/Max log window #6 4214-4221 Min/Max log window #7 4222-4229 Min/Max log window #8 4230-4237 Min/Max log window #9 4238-4245 Min/Max log window #10 4246-4253 Min/Max log window #11 4254-4261 Min/Max log window #12 4262-4269
Table 5-26 Min/Max Log Window Registers
Parameter Offset Size,
byte Second +0 2 R 0 Minute +1 2 R 0 Hour +2 2 R 0 Day +3 2 R 0 Month +4 2 R 0 Year +5 2 R 0 Parameter value c +6
4 R see Table 5-15
+7
The Min/Max parameter value can be read in one or two registers depending on the value
c
type. For the value length and conversion scales, refer to Table 5-15. The time stamp is not available in the PM130 and is read as zeros.
Table 5-27 Min/Max Log Mapping Register
Parameter Address Size,
byte Min/Max log start parameter
4172 2 R/W see Table 5-15
ID for window #1
From 1 to 12 adjacent Min/Max log records can be read at a time via the Min/Max log windows. The starting window #1 can be mapped to any Min/Max log parameter listed in Table 5-15 by writing the parameter ID to the Min/Max log mapping register. This must be written before reading the Min/Max log windows. Note that through Min/Max log windows, you can read only adjacent parameters within the same Min/Max log data group. Reading parameters outside of the selected Min/Max log data group will return zero.
Direction Range
Direction Range
28
Loading...