The new Sartorius Density Determination Kit is a highquality accessory to your electronic balance�
With this accessory, Sartorius is making your daily work
easier�
Please read through the set-up and user’s manual
carefully before setting up the balance and starting
your work with the density determination kit�
If you equip your balance with a density
determination program, the program will then
determine the density for you.
In this particular case, please refer exclusively to the
set-up guide and work instructions.
The density determination should then be carried out as
described in the instructions for the density
determination program�
4
Kit Components
1 Beam
2 Coverplate
3 Immersionframe
4 Sample holder (pan hanger assembly)
5 Container
6 Thermometer
7
Fastening clamp
5
Getting Started
The YDK04 density determination kit can be used with
the following balances:
– Secura
– Quintix
– Practum
Preparing the Balance
Before placing the beam on the balance, the balance
will need to be modified�
®
Type 1102, 2102, 3102, 5102
®
Type 612, 1102, 2102, 3102, 5102
®
Type 612, 1102, 2102
t Remove the weighing pan and pan support for the
balance�
Installing the Density Determination Kit
To install the density determination kit on the balance,
proceed as follows:
t Mount the beam on the stud of the balance�
6
t Mount the cover plate on the beam you have just
attached�
When doing this, ensure the cover plate is exactly
positioned and centered�
t Fill the container with liquid (e�g� water or ethanol)
and place the container on the mounted cover plate�
t Insert the sample holder (pan hanger assembly) into
the immersion frame�
t Attach the immersion frame, with the sample holder
mounted on it, to the beam�
Make sure that the sample holder is fully immersed
in the liquid� Add more liquid if necessary�
When immersing the sample holder, make sure that
there are no air bubbles in the sample holder�
t Use the fastening clamp to fasten the thermometer
to the container (where this is required)�
7
Method Used to Determine Density
To determine the density of a solid object,
the measurement system employed here
uses the “Archimedes’ principle”:
An object immersed in liquid will be subject
to an upward buoyant force� This force is
equal to the weight of the liquid displaced
by the object�
Using a hydrostatic balance, which enables
you to weigh the solid object in air and
in water, it is possible to determine the density of a solid object, if the densityof
the buoyancy medium is known:
W(a) ∙ ρ (fl)
ρ =
W (a) – W (fl)
Where:
ρ =thedensityof the solid object
ρ (fl) =thedensityof the liquid
W (a) = the weight of the solid object
in air
W (fl) = the weight of the solid object
in liquid
8
8
Sources of Error and Options for Correction
The above formula to determine the
density of solid objects is sufficiently
accurate for determining the density
to two decimal places depending on
samples volume� This density kit is
designed for determining density of
10 g – 2 kg weight of samples�
Depending on the accuracy required, the
following error and correction factors will
need to be considered:
– effect of temperature on the density of
the bouyancy liquid
– air bouyancy when weighing in air
– changes in the immersion depth of the
immersion frame when immersing the
sample
– adhesion of the liquid to the immersion
frame
– air bubbles sticking to the sample�
Some of the errors can be corrected
mathematically� To do this, you have to:
– measure the temperature of the liquid
and correct the liquid density
accordingly�
Effect of Temperature on the Liquid
Density
The density of the buoyancy liquid is
temperature dependent� The density
change per °C temperature change is
of the order of:
– 0�02% for distilled water
– 0�1% for alcohols and hydrocarbons�
In other words, this can show up in the
third decimal place during density
determination�
To correct the liquid density based on
temperature, proceed as follows:
– measure the temperature of the liquid
using the thermometer supplied�
– the density of the most common
buoyancy liquids, water and ethanol,
at the measured temperature can then
be found in the table provided and used
for ρ (fl)�
9
9
Air Buoyancy
Depending on the temperature, humidity
and air pressure, a 1 cm
3
volume of air will
have a weight of around 1�2 mg� When
weighing in air, the object experiences
a corresponding buoyancy per cm
3
of its
volume� The error that results if the air
buoyancy is not allowed for shows up in
the third decimal place and should
therefore be corrected�
Immersion Depth
The sample holder to collect and/or
immerse the sample during the weighing in
liquid is fastened rigidly to two wires and
plunges about 30 mm deep into the liquid�
Since the balance is tared prior to each
measurement, the additional buoyancy
from the submerged part of the
measurement setup is not factored
into the determination of the density�
The buoyancy force is taken into account
in the following formula:
W(a) ∙ [ρ (fl) – ρ (a)]
ρ =+ ρ (a)�
W (a) – W (fl)
Where ρ (a) = 0�0012 g/cm
3
= density of
air under normal conditions (temperature
20°C, pressure 101�325 kPa)�
When weighing in liquid, a volume of
liquid corresponding to the volume of the
sample body gets displaced�
This causes the fastening wires on the pan
to plunge deeper and generate additional
buoyancy, creating an error in the density
determination�
The following formula will correct the
error:
W(a) ∙ [ρ (fl) – ρ (a)]
ρ =+ ρ (a)
Corr [W (a) – W (fl)]
10
10
Adhesion of the Liquid to the Wire
When immersing the sample holderin the
buoyancy liquid, liquid creeps up the wire
because of adhesion forces and creates a
few additional milligrams of weight�
Since the sample holder is in the
buoyancy medium both when weighing in
air and when weighing in liquid, and the
balance is tared at the beginning of each
measurement, the influence of the liquid
meniscus can be ignored�
In order to reduce the surface tension and
the friction of the liquid on the wire,
around three drops of a surfactant (Mirasol
Antistatic or a conventional detergent) are
added to the vessel’s distilled water
contents�
With the buoyancy liquid creeping up the
wire, the weight value may still slowly
change after the “g” has appeared�
For this reason, the weight value should be
read as soon as the “g” appears�
Air Bubbles
The measurement errors which occur as
a result of air bubbles sticking to the
sample can be evaluated as follows: If the
air bubble has a diameter of 0�5 mm, this
will produce an additional buoyancy of less
than 0�1 mg when weighing in water� If the
air bubble has a diameter of 1 mm, the
additional buoyancy will be around 0�5 mg,
and if the diameter is around 2 mm,
roughly 4�2 mg� It is therefore imperative
that larger air bubbles are taken off with
a fine brush or similar�
Moisture can also be added in advance in
a separate container�
11
11
Density Determination
Determining Density of Solid Objects
Preparation
(the description uses distilled water)
– Align the container in the center of the
base plate; the beam acts as the stopper
at the back�
– Fill with distilled water up to approx�
5 mm below the edge�
– Add three drops of surfactant to the
distilled water�
– Use the clamp to fasten the
thermometer to the edge of the beaker�
– Clean the sample holder with solvent
(paying particular attention to the
immersed wires) and hook on to the
beam�
Measurement Procedure
Determining the Sample Weight in Air
– Tare the balance�
– Place the sample on the beam weighing
pan and weigh it�
– Make a note of the weight value W (a)�
Determining the Buoyancy
G = W (a) – W (fl)
– Tare the balance with the sample on the
beam�
– Lay the sample in the sample holder
1
)�
– Make a note of the absolute value of
buoyancy G, with a minus sign in front�
Calculating the Density
– Read off the temperature�
– Locate the density value ρ (fl) in the table
using the temperature you have read off�
– Calculate the density using the following
formula:
W(a) ∙ [ρ (fl) – 0�0012 g/cm3]
ρ =+
Corr G
0�0012 g/cm
W (a) and G in g; ρ (fl) in g/cm3
G = W (a) – W (fl)
3
12
12
1
) (If you have to remove the sample holder
from the measurement equipment to do
this, make sure that no additional air
bubbles become attached upon
re-immersion in the liquid; it is better to
add the sample directly with forceps or
similar�)
To gain a better understanding of the
process, the theory behind the formulas
and the correction factor is explained here�
Basic Principles
Mass (g)
Density =
Volume (cm
The
Archimedes’ principle states:
An object immersed in liquid will be
subject to a buoyant force (G)� This force is
equal to the weight of the liquid displaced
by the object�
The volume of the immersed object V (k) is
equal to the volume of the displaced
liquid
V (fl)�
The following are determined:
1� Weight in air W (a)
2� Buoyancy of the object in the liquid (G)
The density of an object is:
mass of object
ρ = =
volume of object
If the density ρ (fl) of the displaced liquid
is known:
Mass (fl)
V (fl) = =
ρ (fl)
Thus:
W(a) ∙ ρ (fl)
ρ =
G
3
)
W (a)
V (s)
G
ρ(fl)
=
W (a)
V (fl)
Calculation
The density of a solid object is calculated
based on the ratio
ρ : W (a) =ρ (fl) : W (a) – W (fl)
Thus:
W(a) ∙ ρ (fl)
ρ =
W (a) – W (fl)
W (a) – W (fl) = G =
Where:
ρ =thedensityof the solid object
ρ (fl) =thedensityof the liquid
W (a) = the weight of the solid object
in air
W (fl) = the weight of the solid object
in liquid
buoyancy of the sample
15
15
Packing the Density Determination Kit
for Shipping
To pack the density determination kit
for shipping, proceed as follows:
Make sure to place the container and
cover plate in the inner foam piece
exactly as shown in the illustration.
Otherwise you will not be able to place
the density determination kit in its
correct position in the carrying case.
Mit diesem Sartorius-Dichtebestimmungsset haben Sie
ein hochwertiges Zubehör zu Ihrer elektronischen
Waage erworben�
Sartorius erleichtert Ihnen mit diesem Zubehör die
tägliche Arbeit�
Bitte lesen Sie die Aufstellungs- und Betriebs anleitung
aufmerksam durch, bevor Sie mit dem Einrichten der
Waage und der Arbeit mit dem Dichtebestimmungsset
beginnen�
Bei Ausrüstung Ihrer Waage mit einem Dichtebestimmungsprogramm können Sie die Berechnung
der Dichte vom Programm erledigen lassen.
Beachten Sie in diesem Fall bitte nur die
Einrichtungs- und Arbeitshinweise.
Die Durchführung der Dichtebestimmung sollte dann
erfolgen, wie in der Anleitung des Dichte bestimmungsprogramms beschrieben�
1818
Die Bestandteile
1 Gestell
2 Abdeckblech
3 Tauchbügel
4 Tauchkorb
5 Behälter
6 Thermometer
7
Befestigungs klemme
19
Inbetriebnahme
Das Dichtebestimmungsset YDK04 kann mit folgenden
Waagen verwendet werden:
– Secura
– Quintix
– Practum
Waage vorbereiten
Bevor das Gestell auf die Waage aufgesetzt wird, muss
die Waage modifiziert werden�
®
Typ 1102, 2102, 3102, 5102
®
,
Typ 612, 1102, 2102, 3102, 5102
®
Typ 612, 1102, 2102
t Demontieren Sie die zur Waage gehörenden Waag-
schale und Unterschale�
20
Dichtebestimmungsset installieren
Gehen Sie bei der Installation des Dichtebestimmungssets auf der Waage wie folgt vor:
t Montieren Sie das Gestell auf dem Zapfen der
Waage�
t Montieren Sie die Abdeckblech auf dem zuvor ange-
brachten Gestell�
Achten Sie dabei auf exakte Positionierung und Zentrierung�
t Füllen Sie den Behälter mit der Flüssigkeit
(z�B� Wasser oder Ethanol) und setzen Sie den
Behälter auf die montierte Abdeckblech�
t Setzen Sie den Tauchkorb in den Tauchbügel ein�
t Hängen Sie den Tauchbügel mit montiertem Tauch-
korb an das Gestell�
Achten Sie dabei darauf, dass der Tauchkorb
komplett in er Flüssigkeit eintaucht� Füllen Sie ggf�
Flüssigkeit nach�
Achten Sie beim Eintauchen des Tauchkorbes
darauf, dass sich keine Luftblasen am Tauchkorb
befinden�
t Befestigen Sie das Thermometer mit der
Befestigungsklemme am Behälter (bei Bedarf)�
21
Verfahren zur Dichtebestimmung
Zur Bestimmung der Dichte eines
Fest körpers wird bei der vorliegenden
Messeinrichtung das »Archimedische
Prinzip« herangezogen:
Ein in eine Flüssigkeit getauchter Körper
erfährt eine nach oben gerichtete Auftriebskraft� Diese Kraft ist dem Betrag nach
gleich der Gewichtskraft der durch
das Volumen des Körpers verdrängten
Flüssigkeit�
Mit einer hydrostatischen Waage, die es
gestattet den Festkörper sowohl in Luft
als auch in Wasser zu wägen, ist es möglich, die Dichte eines Festkörpers zu
bestimmen, wenn die Dichte des Auftriebsmediums bekannt ist:
W(a) ∙ ρ (fl)
ρ =
W (a) – W (fl)
Dabei ist:
ρ =dieDichtedes Festkörpers
ρ (fl)=dieDichte der Flüssigkeit
W (a) = das Gewicht des Festkörpers
in Luft
W (fl) = das Gewicht des Festkörpers
in der Flüssigkeit
22
Loading...
+ 51 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.