This document contains information highly confidential to RoyalTek Company LTD (RoyalTek). It
is provided for the sole purpose of the business discussions between supplier and RoyalTek and
is covered under the terms of the applicable Non-Disclosure Agreements. Disclosure of this
information to other parties is prohibited without the written consent of RoyalTek.
Message ID $GPGGA GGA protocol header
UTC Position 161229.487 hhmmss.sss
Latitude 3723.2475 ddmm.mmmm
N/S Indicator N N=north or S=south
Longitude 12158.3416 dddmm.mmmm
E/W Indicator W E=east or W=west
Position Fix Indicator 1 See Table 2-1
Satellites Used 07 Range 0 to 12
HDOP 1.0 Horizontal Dilution of Precision
MSL Altitude 9.0 meters
Units M meters
Geoid Separation meters
Units M meters
Age of Diff. Corr. second Null fields when DGPS is not used
Diff. Ref. Station ID 0000
Checksum *18
<CR><LF>
End of message termination
Table 2-1 Position Fix Indicator
Value Description
0 Fix not available or invalid
1 GPS SPS Mode, fix valid
2 Differential GPS, SPS Mode, fix valid
3 GPS PPS Mode, fix valid
example:$GPGLL, 3723.2475, N,
GLL-Geographic Position –
12158.3416, W, 161229.487, A*2C
Latitude/Longitude
Table 3 contains the values of the following
Table 3 GLL Data Format
Name Example Units Description
Message ID $GPGLL GLL protocol header
Latitude 3723.2475 ddmm.mmmm
N/S Indicator N N=north or S=south
Longitude 12158.3416 Dddmm.mmmm
E/W Indicator W E=east or W=west
UTC Position 161229.487 hhmmss.ss
Status A A=data valid or V=data not valid
Checksum *2C
<CR><LF> End of message termination
Message ID $GPGSA GSA protocol header
Mode 1 A See Table 4-2
Mode 2 3 See Table 4-1
Satellite Used 07 Sv on Channel 1
Satellite Used 02 Sv on Channel 2
…. ….
Satellite Used Sv on Channel 12
PDOP 1.8 Position Dilution of Precision
HDOP 1.0 Horizontal Dilution of Precision
VDOP 1.5 Vertical Dilution of Precision
Checksum *33
<CR><LF> End of message termination
Table 4-1 Mode 1
Value Description
1 Fix not available
2 2D
3 3D
Table 4-2 Mode 2
Value Description
M Manual-forced to operate in 2D or 3D mode
A Automatic-allowed to automatically switch 2D/3D
256, 42, 27, 27, 138,
GSV-GNSS Satellites in View
Table 5 contains the values of the following
example: $GPGSV, 2, 1, 07, 07, 79,
048, 42, 02, 51, 062, 43, 26, 36,
Table 5 GSV Data Format
Name Example Units Description
Message ID $GPGSV GSV protocol header
Number of Messages1 2 Range 1 to 3
Messages Number1 1 Range 1 to 3
Satellites in View 07
Satellite ID 07 Channel 1(Range 1 to 32)
Elevation 79 degrees Channel 1(Maximum 90)
Azimuth 048 degrees Channel 1(True, Range 0 to 359)
SNR (C/No) 42 dBHz Range 0 to 99, null when not tracking
…. ….
Satellite ID 27 Channel 4(Range 1 to 32)
Elevation 27 degrees Channel 4(Maximum 90)
Azimuth 138 degrees Channel 4(True, Range 0 to 359)
SNR (C/No) 42 dBHz Range 0 to 99, null when not tracking
Checksum *71
<CR><LF>
Message ID $GPRMC RMC protocol header
UTC Position 161229.487 hhmmss.sss
Status A A=data valid or V=data not valid
Latitude 3723.2475 ddmm.mmmm
N/S Indicator N N=north or S=south
Longitude 12158.3416 dddmm.mmmm
E/W Indicator W E=east or W=west
Speed Over Ground 0.13 knots
Course Over Ground 309.62 degrees True
Date 120598 ddmmyy
Magnetic Variation degrees E=east or W=west
Checksum *10
<CR><LF>
VTG-Course Over Ground and
End of message termination
example:$GPVTG, 309.62, T, , M, 0.13, N,
0.2, K*6E
Ground Speed
Table 7 contains the values of the following
Table 7 VTG Data Format
Name Example Units Description
Message ID $GPVTG VTG protocol header
Course 309.62 degrees Measured heading
Reference T True
Course degrees Measured heading
Reference M Magnetic
Speed 0.13 knots Measured horizontal speed
Units N Knots
Speed 0.2 km/hr Measured horizontal speed
Units K Kilometer per hour
Checksum *6E
<CR><LF>
Set Serial Port 100 Set PORT A Parameters and protocol
Navigation Initialization 101 Parameters required for start using X/Y/Z
Set DGPS Port 102 Set PORT B parameters for DGPS input
Query / Rate Control 103 Query standard NMEA message and/or set output rate
LLA Navigation
Initialization
Development Data On/Off 105 Development Data messages On/Off
Input coordinates must be WGS84.
Message
Identifier
Description
(MID)
104 Parameters required for start using Lat/Lon/Alt1
extensive command message set is
available. When a valid message is received,
Set Serial Port
This command message is used to set the
protocol (SiRF Binary or NMEA) and/or the
communication parameters (baud , data bits,
stop bits, parity). Generally, this command is
used to switch the module back to SiRF
Binary protocol mode where a more
the parameters are stored in battery-backed
SRAM and then the Evaluation Unit restarts
using the saved parameters.
Table 8 contains the input values for the
following example:Switch to SIRF Binary
protocol at 9600,8,N,1
$PSRF100,0,9600,8,1,0*0C
Table 8 Set Serial Port Data Format
Name Example Units Description
Message ID $PSRF100 PSRF100 protocol header
Protocol 0 0=SiRF Binary, 1=NMEA
Baud 9600 4800,9600,19200,38400
Data Bits 8
8,71
Stop Bits 1 0,1
Parity 0 0=None ,1=Odd,2=Even
Checksum *0C
<CR><LF> End of message termination
1
SiRF protocol is only valid for 8data bits, 1 stop bit,
Message ID $PSRF101 PSRF101 protocol header
ECEF X -2686700 Meters X coordinate position
ECEF Y -4304200 Meters Y coordinate position
ECEF Z 3851624 Meters Z coordinate position
CLK Offset 95000 Hz
Time Of Week 497260 seconds GPS Time OF Week
Week No 921 GPS Week Number
Channel Count 12 Range 1 to 12
Reset Cfh 3 See Table 10
Checksum *22
<CR><LF> End of message termination
Use 0 for last saved value if available . If this is unavailable, a default value of 96,000 will be used…
Table 12 Query/Rate Control Data Format(See example 1.)
Name Example Units Description
Message ID $PSRF103 PSRF102 protocol header
Message 00 See Table 13
Mode 01 0=Set Rate, 1=Query
Rate 00 seconds Output – off=0,max=255
Cksum Enable 01 0=Disable Checksum, 1=Enable Checksum
Checksum *25
<CR><LF> End of message termination
Table 13 Messages
Value Description
0 GGA
1 GLL
2 GSA
3 GSV
4 RMC
5 VTG
LLA Navigation Initialization
This command is used to initialize the
module for a warm start , by providing
current position(in latitude, longitude, and
altitude coordinates), clock offset, and time.
This enables the receiver to search for the
correct satellite signals at the correct signal
$PSRF103,05,00,01,01*20
3.Disable VTG message
$PSRF103,05,00,00,01*21
parameters . Correct initialization
parameters enable the receiver to acquire
signals quickly.
Table 14 contains the input values for the
following example: Start using known
position and time $PSRF104, 37.3875111,
-121.97232, 0, 95000, 237759, 922, 12,
3*3A
Table 14 LLA Navigation Initialization Data Format
Name Example Units Description
Message ID $PSRF104 PSRF104 protocol header
Lat 37.3875111 Degrees Latitude position (Range 90 to –90)
Lon -121.97232 Degrees Longitude position (Range 180 to –180)
Alt 0 Meters Altitude position
CLK Offset 95000 Hz
Time Of Week 237759 Seconds GPS Time Of Week
Week No 922 GPS Week Number
Channel Count 12 Range 1 to 12
Reset Cfg 3 See Table 15
Checksum *3A
<CR><LF> End of message termination
Use 0 for last saved value if available. If this is unavailable, a default value of 96,000 will be used.
0 x 80 128 Initialize Data Source
0 x 81 129 Switch to NMEA Protocol
0 x 82 130 Set Almanac
0 x 84 132 Software Version
0x 85 133 DGPS Source Control
0x 86 134 Set Main Serial Port
0 x 88 136 Mode Control
0 x 89 137 DOP Mask Control
0 x 8A 138 DGPS Mode
0 x 8B 139 Elevation Mask
0 x 8C 140 Power Mask
0 x 8D 141 Editing Residual
0 x 8E 142 Steady-State Detection
0 x 8F 143 Static Navigation
0 x 90 144 Clock Status
0 x 91 145 Set DGPS Serial Port
0 x 92 146 Almanac
0 x 93 147 Ephemeris
0 x 95 149 Set Ephemeris
0 x 96 150 Switch Operating Mode
0 x 97 151 Set Trickle Power Parameters
0 x 98 152 Navigation Parameters (Poll)
0x A5 165 Change UART Configuration
0x A6 166 Set Message Rate
0x A7 167 Low Power Acquisition Parameters
Initialize Data Source-Message I.D.
128
Table 18 contains the input values for the
following example:Warm start the receiver
with the following initialization data:ECEF
WYZ (-2686727 m,-4304282 m,3851642
m),Clock Offset (75,000 Hz),Time of
Week(86,400 s),Week Number(924),Week
Number(924),and Channels(12). Raw
track data Debug data enabled.
Example:
A0A20019-Start Sequence and Payload
Length
80FFD700F9FFBE5266003AC57A000124
F80083S600039C0C33- Payload
0A91B0B3-Message Checksum and End
Sequence
Table 20 Initialize Data Source
Name
Message ID 1 80 ASCII 128
ECEF X 4 FFD700F9 meters
ECEF Y 4 FFBE5266 meters
ECEF Z 4 003AC57A meters
Clock Offset 4 000124F8 Hz
Time of Week 4 *100 0083D600 seconds
Week Number 2 039C
Channels 1 0C Range 1-12
Reset Config. 1 33 See Table 19
Payload Length: 25 bytes
Table 21 Initialize Data Source
Bit Description
0 Data valid flag-set warm/hot start
1 Clear ephemeris-set warm start
2 Clear memory-set cold start
3 Factory Reset
4 Enable Nav Lib data (YES=1,NO=0)
5 Enable debug data for SiRF binary protocol(YES=1,NO=0)
6 Enable debug data for NMEA protocol(YES=1,NO=0)
7 Reserved (must be 0)
Bytes
Binary(Hex)
Scale Example
NL Initialize Data (MID 31). All messages are
Units
Description
Note - If Nav Lib data is ENABLED then the
resulting messages are enabled. Clock
Status (MID 7), 50 BPS (MID 8), Raw DGPS
(17), NL Measurement Data (MID 28), GPS
Data (MID 29), SV State Data (MID 30), and
21
sent at 1 Hz and the baud rate will be
automatically set to 57600.
Auto scanning of all frequencies and bit rates are
performed.
Auto scanning of all frequencies and specified bit rate
are performed.
Auto scanning of all bit rates and specified frequency
are performed.
Only the specified frequency and bit rate search are
performed.
Length
860000258008010000—Payload
0134B0B3—Message Checksum and End
Sequence
Example:
A0A20009—Start Sequence and Payload
Table B- 10 Set Main Serial Port
Name
Message ID 1 86 Message identifier
Baud 4 00002580
Data Bits 1 08 8,7
Stop Bit 1 01 0,1
Parity 1 00 None=0, Odd=1, Even=2
Pad 1 00 Reserved
Message ID 1 88 ASCII 136
3D Mode 1 01 1 (always true=1)
Alt Constraint 1 01 YES = 1,NO = 0
Degraded Mode 1 01 See Table C-7
TBD 1 01 Reserved
DR Mode 1 01 YES = 1,NO = 0
Altitude 2 0000 Meters Range –1,000 to 10,000
Alt Hold Mode 1 00 Auto = 0,Always=1,Disable=2
Alt Source 1 02 Last Computed=0,Fixed to=1
Coast Time Out 1 14 Seconds 0 to 120
Degraded Time
Out
Dr Time Out 1 01 Seconds 0 to 120
Track Smoothing 1 01 YES = 1,NO = 0
Payload Length:14 bytes
Table 25 Degraded Mode Byte Value
Byte Value Description
0 Use Direction then Clock Hold
1 Use Clock then Direction Hold
2 Direction(Curb)Hold Only
3 Clock(Time)Hold Only
4 Disable Degraded Modes
Bytes
1 05 Seconds 0 to 120
Binary(Hex)
Scale Example
Units
Description
Example:
DOP Mask Control – Message I.D. 137
Table 26 contains the input values for the
following example:
Auto Pdop/Hdop, Gdop =
8(default),Pdop=8,Hdop=8
Table 26 DOP Mask Control
Name
Message ID 1 88 ASCII 137
DOP Selection 1 00 See Table 25
GDOP Value 1 08 Range 1 to 50
PDOP Value 1 08 Range 1 to 50
HDOP Value 1 08 Range 1 to 50
Payload Length: 5 bytes
Table 27 DOP Selection
Byte Value Description
0 Auto PDOP/HDOP
1 PDOP
2 HDOP
3 GDOP
4 Do Not Use
Message ID 1 97 ASCII 151
Push To FixMode 2 0000 ON=1, OFF=0
Duty Cycle 2 *10 00C8 % % Time on
Milli Seconds On
Time
Payload Length: 9bytes.
Bytes
4 000000C8 ms Range 200 ~ 500 ms
Binary(Hex)
Scale Example
Computation of Duty Cycle and On
Time.
The Duty Cycle is the desired time to be
spent tracking.The On Time is the duration
of each tracking period (range is 200 - 900
ms). To calculate the TricklePower update
rate as a function of Duty cycle and On
Length
97000000C8000000C8—Payload
0227B0B3—Message Checksum and End
Sequence
Units
Time, use the following formula:
Off Time = (On Time - (Duty Cycle * On
Time)) / Duty Cycle
Update rate = Off Time + On Time
Note – On Time inputs of > 900 ms will
default to 1000 ms
Following are some examples of
selections:
Description
Table 39 Example of selections for Trickle Power Mode of Operation
Mode On Time (ms) Duty Cycle (%) Update rate (1/Hz)
Continuous 1000 100 1
Trickle Power 200 20 1
Trickle Power 200 10 2
Trickle Power 300 10 3
Trickle power 500 5 10
See Table 40 for supported/unsupported settings.
Table 40 Trickle Power Mode Settings
On
Time
(ms)
200 Y Y N N N N N N
300 Y Y Y Y Y Y N N
400 Y Y Y Y Y Y Y Y
500 Y Y Y Y Y Y Y Y
600 Y Y Y Y Y Y Y Y
700 Y Y Y Y Y Y Y Y
800 Y Y Y Y Y Y Y Y
900 Y Y Y Y Y Y Y Y
Message ID 1 A5 Decimal 165
Port 1 00 For UART 0
In Protocol1 1 01 For UART 0
Out Protocol 1 01 For UART 0 (Set to In protocol)
Baud Rate2 4 00002580 For UART 0
Data bits3 1 08 For UART 0
Stop bits4 1 01 For UART 0
Parity5 1 00 For UART 0
Reserved 1 00 For UART 0
Reserved 1 00 For UART 0
Port 1 00 For UART 1
In Protocol 1 01 For UART 1
Out Protocol 1 01 For UART 1
Baud Rate 4 0000E100 For UART 1
Data bits 1 08 For UART 1
Stop bits 1 01 For UART 1
Parity 1 00 For UART 1
Reserved 1 00 For UART 1
Reserved 1 00 For UART 1
Port 1 00 For UART 1
In Protocol 1 01 For UART 2
Out Protocol 1 01 For UART 2
Baud Rate 4 00000000 For UART 2
Data bits 1 08 For UART 2
Stop bits 1 01 For UART 2
Parity 1 00 For UART 2
Reserved 1 00 For UART 2
Reserved 1 00 For UART 2
Port 1 00 For UART 3
In Protocol 1 01 For UART 3
Out Protocol 1 01 For UART 3
Baud Rate 4 00000000 For UART 3
Data bits 1 08 For UART 3
Stop bits 1 01 For UART 3
Parity 1 00 For UART 3
Reserved 1 00 For UART 3
Reserved 1 00 For UART 3
Maximum time for sleep mode
Max. satellite search time
Output Messages for SiRF Binary Protocol
Note – All output messages are received in BINARY format. SiRF demo interprets the binary data
and saves if to the log file in ASCII format.
Table 42 lists the message list for the SiRF output messages
Hex ASCII Name Description
0x02 2 Measured Navigation Data Position, velocity, and time
0x04 4 Measured Tracking Data Signal to noise information
0x05 5 Raw Track Data Measurement information
0x06 6 SW version Receiver software
0x07 7 Clock Status
0x08 8 50 BPS Subframe Date Standard ICD format
0x1F 31
0x64 100 RoyalTek Navigation Data UTC , lat , lon, validate output
0xFF 255 Development Data Various data messages
Nav. Lib. Measurement Data Measurement Data
Nav. Lib. DGPS Data Differential GPS Data
Nav. Lib. SV State Data Satellite State Data
Nav. Lib. Initialization Data Initialization Data
Received from DGPS broadcast
CPU ON / OFF (Trickle Power)
Response to Poll
Measure Navigation Data Out –
Message I.D.2
Output Rate: 1 Hz
Table 43 lists the binary and ASCII
message data format for the measured
navigation data
Example:
A0A20029 – Start Sequence and Payload
Length
Table 43 Measured Navigation Data Out – Binary & ASCII Message Data Format
Name
Message ID 1 02 2
X – position 4 FFD6F78C M -2689140
Y – position 4 FFBE536E M -4304018
Z – position 4 003AC004 M 3850244
X – velocity 2 *8 00 M/s Vx/8 0
Y – velocity 2 *8 03 M/s Vy/8 0.375
Z – velocity 2 *8 01 M/s /8 0.125
Mode1 1 04 Bitmap1 4
DOP2 1 *5 A /5 2.0
Mode3 1 00 Bitmap3 0
GPS Week 2 036B 875
GPS TOW 4 *100 039780E3 seconds /100 602605.79
SVs in Fix 1 06 6
CH 1 1 12 18
CH 2 1 19 25
CH 3 1 0E 14
CH 4 1 16 22
CH 5 1 0F 15
CH 6 1 04 4
CH 7 1 00 0
CH 8 1 00 0
CH 9 1 00 0
CH 10 1 00 0
Table 47 Trk. to NAV Struct. Trk._status Field Definition
Field Definition Hex Value Description
ACQ_SUCCESS 0x0001 Set if acq/reacq if done successfully
DELTA_CARPHASE_VALID 0x0002 Integrated carrier phase is valid
BIT_SYNC_DONE 0x0004 Bit sync completed flag
SUBFRAME_SYNC_DONE 0x0008 Subframe sync has been done
CARRIER_PULLIN_DONE 0x0010 Carrier pull in done
CODE_LOCKED 0x0020 Code locked
ACQ_FAILED 0x0040 Failed to acquire S/V
GOT_EPHEMERIS 0x0080 Ephemeris data available
Note – When a channel is fully locked and all data is valid , the status shown is 0xBF
Raw Tracker Data Out – Message
I.D.5
Output Rate:1 Hz
Table 48 lists the binary and ASCII
message data format for the raw tracker
data .
Example:
zero values
A0A20033 – Start Sequence and Payload
Length
05000000070013003F00EA1BD4000D03
9200009783000DF45E000105B5FF90F5
C20000242827272327242427290500000
0070013003F – Payload
0B2DB0B3 – Message Checksum and
End Sequence
Table 48 Raw Tracker Data Out
Name
Message ID 1 05 5
Channel 4 00000007 7
SVID 2 0013 19
State 2 003F Bitmap1 63
Payload Length:51 bytes per satellite tracked (up to 12)
-16
2
-10
2
00009783 Chip
000DF45E Rad/2ms
FF90F5C2 Cycles
-16
/2
-10
/2
-10
/2
38787
914526
-7277118
1.For further information,go to Table 45
2.Multiply by (1000÷4π)÷2
16
to convert to Hz.
The meaning of I.D.5 is described as following table
Message ID: Each SiRF binary message is defined based on the ID.
Channel: Receiver channel where data was measured (range 1-12).
SVID: PRN number of the satellite on current channel.
State: Current channel tracking state (see Table 45)
Bit Number: Number of GPS bits transmitted since Sat-Sun midnight (in Greenwich)
at a 50 bps rate.
Millisecond
Number:
Number of milliseconds of elapsed time since the last received bit(20
ms between bits)
Chip Number: Current C/A code symbol being transmitted (range 0 to 1023
chips;1023 chips=1 ms).
Code Phase: Fractional chip of the C/A code symbol at the time of sampling(scaled
by 2
-16
,=1/65536)
Carrier Doppler: The current value of the carrier frequency as maintained by the
tracking loops.
Receiver Time
Tag:
This is the count of the millisecond interrupts from the start of the
receiver (power on) until the measurement sample is taken. The ms
interrupts are generated by the receiver clock.
Delta Carrier
Phase:
The difference between the carrier phase(current) and the carrier
phase(previous). Units are in carrier cycles with the LSB= 0.00185 carrier
cycles. The delta time for the accumulation must be known.
Note –Carrier phase measurements are not necessarily in sync with
code phase measurement for each measurement epoch.
Search Count: This is the number of times the tracking software has completed full
satellite signal searche.s
C/No: Ten measurements of carrier to noise ratio(C/No) values in dBHZ at
input to the receiver.Each value represents 100 ms of tracker data and
its sampling time is not necessarily in sync with the code phase
measurement.
Power Loss
Count:
The number of times the power detectors fell below the threshold between the
present code phase sample and the previous code phase sample. This task is
performed every 20 ms (max count is 50).
The number of time the phase lock fell below the threshold between the
present code phase sample and the previous code phase sample. This task is
performed every 20 ms (max count is 50).
The time in ms for carrier phase accumulation . This is the time difference (as
calculated by the user clock) between the Carrier Phase(current) and the
Carrier Phase(previous).
The tracking Loops are run at 2 ms and 10 ms intervals. Extrapolation values
for each interval is 1 ms and 5 ms for range computations.
1. 0 = Use no corrections, 1 = Use WAAS channel, 2 = Use external source, 3 = Use Internal
Beacon, 4 = Set DGPS Corrections
4
4 3CAAAAAB m/s
4
Navigation Library SV State Data Message I.D. 30
Output Rate: Every measurement cycle (full
power / continuous : 1Hz)
Example:
Table B- 56 SV State Data
Name
Message ID 1 1E 30
Satellite ID
GPS Time 8 s
Position X 8 m
Position Y 8 m
Position Z 8 m
Velocity X 8 m/s
Velocity Y 8 m/s
Velocity Z 8 m/s
Clock Bias 8 s
Clock Drift 4
Ephemeris Flag
Reserved
Ionospheric Delay
Payload Length: 83 bytes
1
Bytes
1 15 21
1
8
4
Scale Example
BFC97C67
3FBFFE12
m
s
A0A20053—Start Sequence and Payload
Length
3217652839
1017817771
1069547026
1E15....2C64E99D01....408906C8—Paylo
ad
2360B0B3—Message Checksum and End
Sequence
Binary(Hex) ASCII(Decimal)
2C64E99D
01
408906C8
Units
s
m
Scale Example
744810909
1
1082721992
1. 0 = no valid SV state, 1 = SV state calculated from ephemeris, 2 = Satellite state calculated from almanac
1F....00000000000001001E000F....00....000
Navigation Library Initialization Data Message I.D. 31
DGPS Selection
DGPS Timeout
Elevation Nav. Mask
Reserved
Reserved
Reserved
Reserved
Reserved
Static Nav. Mode
Reserved
Position X
Position Y
Position Z
Position Init. Source
GPS Time
GPS Week
Time Init. Source 7
Drift
Drift Init. Source 8
1. GPS signal will be affected by weather and environment conditions, thus suggest to use the GPS
receiver under less shielding environments to ensure GPS receiver has better receiving performance.
2. When GPS receiver is moving, it will prolong the time to fix the position, so suggest to wait for the
satellite signals to be locked at a fixed point when first power-on the GPS receiver to ensure to lock
the GPS signal at the shortest time.
3. The following situation will affect the GPS receiving performance:
a. Solar control filmed windows.
b. Metal shielded, such as umbrella, or in vehicle.
c. Among high buildings.
d. Under bridges or tunnels.
e. Under high voltage cables or near by radio wave sources, such as mobile phone base
stations.
f. Bad or heavy cloudy weather.
4. If the satellite signals can not be locked or encounter receiving problem (while in the urban area), the
following steps are suggested:
a. Please plug the external active antenna into GPS receiver and put the antenna on outdoor or the
roof of the vehicle for better receiving performance.
b. Move to another open space or reposition GPS receiver toward the direction with less blockage.
c. Move the GPS receiver away from the interferences resources.
d. Wait until the weather condition is improved.
5. While a GPS with a backup battery, the GPS receiver can fix a position immediately at next power-on
if the build-in backup battery is full-recharged.
Contact Information Section
Contact : sales@royaltek.com
HEADQUARTER :
Add : 1071 Chung Cheng Rd., Suite 9F-1
Tao Yuan City , Taiwan , R.O.C.
Tel :886 – 3 - 3569666
Fax :886 – 3 - 3560900
Web Site : www.royaltek.com
Customer Service mail : sales@royaltek.com
46
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.