Rosemount Oxymitter 5000 O2 Transmitter with FOUNDATION Fieldbus Communications-Rev 1.1 Manuals & Guides

OXYMITTER 5000 OXYGEN TRANSMITTER WITH FOUNDATION FIELDBUS COMMUNICATIONS
Instruction Bulletin IB-106-350 Revision 1.1
Oxymitter 5000
Part no. _______________ Serial no. _______________ Order no. _______________
Cal Recommended
Autocal
F fieldbus
OUNDATION
28550032
HIGHLIGHTS OF CHANGES
Effective March, 1999 Rev. 1.0
PAGE SUMMARY
3-1 Added note referencing appendices for fieldbus information.
A-5 Added Table A-4.
A-6 Added Table A-5.
Effective November, 1999 Rev. 1.1
PAGE SUMMARY
Pages xxiii thru xxix Added new Quick Start Guide.
Page 1-8 Added information on electronics operating temperatures and parts for mounting.
Page 1-12 Removed Table 1-4, renumbered subsequent tables in Section I.
Page 5-2 Updated Table 5-1 to include Fault 4, A/D Comm Error.
Page 5-6 Added new Figure 5-4 and paragraph d for Fault 4, A/D Comm Error.
Pages 5-7 thru 5-21 Updated subsequent figures and paragraphs in Section V.
Page 6-4 Updated Figure 6-3 to include Fault 4, A/D Comm Error.
Page 6-5 Updated Table 6-1 to include Fault 4, A/D Comm Error.
Page 6-8 Added Note to paragraph 6-5.
IB-106-350
OXYMITTER 5000 OXYGEN TRANSMITTER WITH FOUNDATION FIELDBUS COMMUNICATIONS
NOTICE
Read this manual before working with the product. For personal and system safety, and for optimum product performance, make sure you thoroughly understand the contents before installing, using, or maintaining this product.
The products described in this document are NOT designed for nuclear-qualified applications.
Using non-nuclear-qualified products in applications that require nuclear-qualified hardware or products may cause inaccurate readings.
For information on Fisher-Rosemount nuclear-qualified products, contact your local Fisher­Rosemount Sales Representative.
Rosemount is a registered trademark of Rosemount Inc. Delta V, the Delta V logotype, PlantWeb, and the PlantWeb logotype are trademarks of Fisher-Rosemount.
OUNDATION
F
is a trademark of the Fieldbus Foundation.
Rosemount satisfies all obligations coming from legislation to harmonize the product requirements in the European Union.

ROSEMOUNT WARRANTY

Rosemount warrants that the equipment manufactured and sold by it will, upon ship­ment, be free of defects in workmanship or material. Should any failure to conform to this warranty become apparent during a period of one year after the date of shipment, Rosemount shall, upon prompt written notice from the purchaser, correct such nonconformity by repair or replacement, F.O.B. factory of the defective part or parts. Correction in the manner provided above shall constitute a fulfillment of all liabilities of Rosemount with respect to the quality of the equipment.
THE FOREGOING WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES OF QUALITY WHETHER WRITTEN, ORAL, OR IMPLIED (INCLUDING ANY WARRANTY OF MERCHANTABILITY OF FITNESS FOR PURPOSE).
The remedy(ies) provided above shall be purchaser's sole remedy(ies) for any failure of Rosemount to comply with the warranty provisions, whether claims by the purchaser are based in contract or in tort (including negligence).
Rosemount does not warrant equipment against normal deterioration due to environ­ment. Factors such as corrosive gases and solid particulates can be detrimental and can create the need for repair or replacement as part of normal wear and tear during the warranty period.
Equipment supplied by Rosemount Analytical Inc. but not manufactured by it will be subject to the same warranty as is extended to Rosemount by the original manufacturer.
At the time of installation it is important that the required services are supplied to the system and that the electronic controller is set up at least to the point where it is controlling the sensor heater. This will ensure, that should there be a delay between installation and full commissioning that the sensor being supplied with ac power and reference air will not be subjected to component deterioration.
IB-106-350
i

PURPOSE

The purpose of this manual is to provide a comprehensive understanding of the Oxymitter 5000
components, functions, installation, and maintenance.
This manual is designed to provide information about the Oxymitter 5000. We recommend that you
thoroughly familiarize yourself with the Description and Installation sections before installing your transmitter.
The description presents the basic principles of the transmitter along with its performance characteristics and components. The remaining sections contain detailed procedures and information necessary to install and service the transmitter.
Before contacting Rosemount concerning any questions, first consult this manual. It describes most situations encountered in your equipment’s operation and details necessary action.
DEFINITIONS
The following definitions apply to WARNINGS, CAUTIONS, and NOTES found throughout this publication.
Highlights an operation or maintenance procedure, practice, condition, statement, etc. If not strictly observed, could result in injury, death, or long-term health hazards of personnel.
Highlights an essential operating procedure, condition, or statement.
: EARTH (GROUND) TERMINAL
: PROTECTIVE CONDUCTOR TERMINAL
: RISK OF ELECTRICAL SHOCK
: WARNING: REFER TO INSTRUCTION BULLETIN
NOTE TO USERS
NOTE
Highlights an operation or maintenance procedure, practice, condition, statement, etc. If not strictly observed, could result in damage to or destruction of equipment, or loss of effectiveness
.
The number in the lower right corner of each illustration in this publication is a manual illustration number. It is not a part number, and is not related to the illustration in any technical manner.
IB-106-350
ii
IMPORTANT
SAFETY INSTRUCTIONS FOR THE WIRING AND
INSTALLATION OF THIS APPARATUS
The following safety instructions apply specifically to all EU member states. They should be strictly adhered to in order to assure compliance with the Low Voltage Directive. Non-EU states should also comply with the following unless superseded by local or National Standards.
1. Adequate earth connections should be made to all earthing points, internal and external, where provided.
2. After installation or troubleshooting, all safety covers and safety grounds must be replaced. The integrity of all earth terminals must be maintained at all times.
3. Mains supply cords should comply with the requirements of IEC227 or IEC245.
4. All wiring shall be suitable for use in an ambient temperature of greater than 75°C.
5. All cable glands used should be of such internal dimensions as to provide adequate cable anchorage.
6. To ensure safe operation of this equipment, connection to the mains supply should only be made through a circuit breaker which will disconnect all circuits carrying
conductors during a fault situation. The circuit breaker may also include a mechanically operated isolating switch. If not, then another means of disconnecting the equipment from the supply must be provided and clearly marked as such. Circuit breakers or switches must comply with a recognized standard such as IEC947. All wiring must conform with any local standards.
7. Where equipment or covers are marked with the symbol to the right, hazardous voltages are likely to be present beneath. These covers should only be removed when power is removed from the equipment — and then only by trained service personnel.
8. Where equipment or covers are marked with the symbol to the right, there is a danger from hot surfaces beneath. These covers should only be removed by trained service personnel when power is removed from the equipment. Certain surfaces may remain hot to the touch.
9. Where equipment or covers are marked with the symbol to the right, refer to the Operator Manual for instructions.
10. All graphical symbols used in this product are from one or more of the following standards: EN61010-1, IEC417, and ISO3864.
IB-106-350
iii
BELANGRIJK
Veiligheidsvoorschriften voor de aansluiting en installatie van dit toestel.
De hierna volgende veiligheidsvoorschriften zijn vooral bedoeld voor de EU lidstaten. Hier moet aan gehouden worden om de onderworpenheid aan de Laag Spannings Richtlijn (Low Voltage Directive) te verzekeren. Niet EU staten zouden deze richtlijnen moeten volgen tenzij zij reeds achterhaald zouden zijn door plaatselijke of nationale voorschriften.
1. Degelijke aardingsaansluitingen moeten gemaakt worden naar alle voorziene aardpunten, intern en extern.
2. Na installatie of controle moeten alle veiligheidsdeksels en -aardingen terug geplaatst wor­den. Ten alle tijde moet de betrouwbaarheid van de aarding behouden blijven.
3. Voedingskabels moeten onderworpen zijn aan de IEC227 of de IEC245 voorschriften.
4. Alle bekabeling moet geschikt zijn voor het gebruik in omgevingstemperaturen, hoger dan 75°C.
5. Alle wartels moeten zo gedimensioneerd zijn dat een degelijke kabel bevestiging verzekerd is.
6. Om de veilige werking van dit toestel te verzekeren, moet de voeding door een stroomon­derbreker gevoerd worden (min 10A) welke alle draden van de voeding moet onderbreken. De stroomonderbreker mag een mechanische schakelaar bevatten. Zoniet moet een andere mogelijkheid bestaan om de voedingsspanning van het toestel te halen en ook duidelijk zo zijn aangegeven. Stroomonderbrekers of schakelaars moeten onderworpen zijn aan een erk­ende standaard zoals IEC947.
7. Waar toestellen of deksels aangegeven staan met het symbool is er meestal hoogspanning aanwezig. Deze deksels mogen enkel verwijderd worden nadat de voedingsspanning werd afgelegd en enkel door getraind onderhoudspersoneel.
8. Waar toestellen of deksels aangegeven staan met het symbool is er gevaar voor hete oppervlakken. Deze deksels mogen enkel verwijderd worden door getraind onderhoudspersoneel nadat de voedingsspanning verwi­jderd werd. Sommige oppper-vlakken kunnen 45 minuten later nog steeds heet aanvoelen.
9. Waar toestellen of deksels aangegeven staan met het symbool gelieve het handboek te raadplegen.
10. Alle grafische symbolen gebruikt in dit produkt, zijn afkomstig uit een of meer van devol­gende standaards: EN61010-1, IEC417 en ISO3864.
IB-106-350
iv
VIGTIGT
Sikkerhedsinstruktion for tilslutning og installering af dette udstyr.
Følgende sikkerhedsinstruktioner gælder specifikt i alle EU-medlemslande. Instruktion­erne skal nøje følges for overholdelse af Lavsspændingsdirektivet og bør også følges i ikke EU-lande medmindre andet er specificeret af lokale eller nationale standarder.
1. Passende jordforbindelser skal tilsluttes alle jordklemmer, interne og eksterne, hvor disse forefindes.
2. Efter installation eller fejlfinding skal alle sikkerhedsdæksler og jordforbindelser ree­tableres.
3. Forsyningskabler skal opfylde krav specificeret i IEC227 eller IEC245.
4. Alle ledningstilslutninger skal være konstrueret til omgivelsestemperatur højere end 75° C.
5. Alle benyttede kabelforskruninger skal have en intern dimension, så passende kabelaflast­ning kan etableres.
6. For opnåelse af sikker drift og betjening skal der skabes beskyttelse mod indirekte berøring gennem afbryder (min. 10A), som vil afbryde alle kredsløb med elektriske ledere i fejlsitua­tion. Afbryderen skal indholde en mekanisk betjent kontakt. Hvis ikke skal anden form for afbryder mellem forsyning og udstyr benyttes og mærkes som sådan. Afbrydere eller kon­takter skal overholde en kendt standard som IEC947.
7. Hvor udstyr eller dæksler er mærket med dette symbol, er farlige spændinger normalt forekom-mende bagved. Disse dæksler bør kun afmonteres, når for­syningsspændingen er frakoblet - og da kun af instrueret servicepersonale.
8. Hvor udstyr eller dæksler er mærket med dette symbol, forefindes meget varme overflader bagved. Disse dæksler bør kun afmonteres af instrueret servicepersonale, når forsyningsspænding er frakoblet. Visse overflader vil stadig være for varme at berøre i op til 45 minutter efter frakobling.
9. Hvor udstyr eller dæksler er mærket med dette symbol, se da i betjeningsman­ual for instruktion.
10. Alle benyttede grafiske symboler i dette udstyr findes i én eller flere af følgende standarder:­EN61010-1, IEC417 & ISO3864.
IB-106-350
v
BELANGRIJK
Veiligheidsinstructies voor de bedrading en installatie van dit apparaat.
Voor alle EU lidstaten zijn de volgende veiligheidsinstructies van toepassing. Om aan de geldende richtlijnen voor laagspanning te voldoen dient men zich hieraan strikt te houden. Ook niet EU lidstaten dienen zich aan het volgende te houden, tenzij de lokale wetgeving anders voorschrijft.
1. Alle voorziene interne- en externe aardaansluitingen dienen op adequate wijze aangesloten te worden.
2. Na installatie,onderhouds- of reparatie werkzaamheden dienen alle beschermdeksels /kappen en aardingen om reden van veiligheid weer aangebracht te worden.
3. Voedingskabels dienen te voldoen aan de vereisten van de normen IEC 227 of IEC 245.
4. Alle bedrading dient geschikt te zijn voor gebruik bij een omgevings temperatuur boven 75°C.
5. Alle gebruikte kabelwartels dienen dusdanige inwendige afmetingen te hebben dat een adequate verankering van de kabel wordt verkregen.
6. Om een veilige werking van de apparatuur te waarborgen dient de voeding uitsluitend plaats te vinden via een meerpolige automatische zekering (min.10A) die
alle
spanningvoerende geleiders verbreekt indien een foutconditie optreedt. Deze automatische zekering mag ook voorzien zijn van een mechanisch bediende schakelaar. Bij het ontbreken van deze voor­ziening dient een andere als zodanig duidelijk aangegeven mogelijkheid aanwezig te zijn om de spanning van de apparatuur af te schakelen. Zekeringen en schakelaars dienen te voldoen aan een erkende standaard zoals IEC 947.
7. Waar de apparatuur of de beschermdeksels/kappen gemarkeerd zijn met het volgende symbool, kunnen zich hieronder spanning voerende delen bevinden die gevaar op kunnen leveren. Deze beschermdeksels/kappen mogen uitsluitend verwijderd worden door getraind personeel als de spanning is af­geschakeld.
8. Waar de apparatuur of de beschermdeksels/kappen gemarkeerd zijn met het volgende symbool, kunnen zich hieronder hete oppervlakken of onderdelen bevinden. Bepaalde delen kunnen mogelijk na 45 min. nog te heet zijn om aan te raken.
9. Waar de apparatuur of de beschermdeksels/kappen gemarkeerd zijn met het volgende symbool, dient men de bedieningshandleiding te raadplegen.
10. Alle grafische symbolen gebruikt bij dit produkt zijn volgens een of meer van de volgende standaarden: EN 61010-1, IEC 417 & ISO 3864.
IB-106-350
vi
TÄRKEÄÄ
Turvallisuusohje, jota on noudatettava tämän laitteen asentamisessa ja kaapeloinnissa.
Seuraavat ohjeet pätevät erityisesti EU:n jäsenvaltioissa. Niitä täytyy ehdottomasti noudat­taa jotta täytettäisiin EU:n matalajännitedirektiivin (Low Voltage Directive) yhteensopi­vuus. Myös EU:hun kuulumattomien valtioiden tulee nou-dattaa tätä ohjetta, elleivät kansalliset standardit estä sitä.
1. Riittävät maadoituskytkennät on tehtävä kaikkiin maadoituspisteisiin, sisäisiin ja ulkoisiin.
2. Asennuksen ja vianetsinnän jälkeen on kaikki suojat ja suojamaat asennettava takaisin pai­koilleen. Maadoitusliittimen kunnollinen toiminta täytyy aina ylläpitää.
3. Jännitesyöttöjohtimien täytyy täyttää IEC227 ja IEC245 vaatimukset.
4. Kaikkien johdotuksien tulee toimia >75°C lämpötiloissa.
5. Kaikkien läpivientiholkkien sisähalkaisijan täytyy olla sellainen että kaapeli lukkiutuu kun­nolla kiinni.
6. Turvallisen toiminnan varmistamiseksi täytyy jännitesyöttö varustaa turvakytkimellä (min 10A), joka kytkee irti kaikki jännitesyöttöjohtimet vikatilanteessa. Suojaan täytyy myös sisältyä mekaaninen erotuskytkin. Jos ei, niin jännitesyöttö on pystyttävä katkaisemaan muilla keinoilla ja merkittävä siten että se tunnistetaan sellaiseksi. Turvakytkimien tai kat­kaisimien täytyy täyttää IEC947 standardin vaatimukset näkyvyydestä.
7. Mikäli laite tai kosketussuoja on merkitty tällä merkillä on merkinnän takana tai alla hengenvaarallisen suuruinen jännite. Suojaa ei saa poistaa jänniteen ollessa kytkettynä laitteeseen ja poistamisen saa suorittaa vain alan asian-tuntija.
8. Mikäli laite tai kosketussuoja on merkitty tällä merkillä on merkinnän takana tai alla kuuma pinta. Suojan saa poistaa vain alan asiantuntija kun jännite-syöttö on katkaistu. Tällainen pinta voi säilyä kosketuskuumana jopa 45 mi-nuuttia.
9. Mikäli laite tai kosketussuoja on merkitty tällä merkillä katso lisäohjeita käyt-töohjekirjasta
10. Kaikki tässä tuotteessa käytetyt graafiset symbolit ovat yhdestä tai useammasta seuraavis-ta standardeista: EN61010-1, IEC417 & ISO3864.
IB-106-350
vii
IMPORTANT
Consignes de sécurité concernant le raccordement et l’installation de cet appareil.
Les consignes de sécurité ci-dessous s’adressent particulièrement à tous les états membres de la communauté européenne. Elles doivent être strictement appliquées afin de satisfaire aux directives concernant la basse tension. Les états non membres de la communauté européenne doivent également appliquer ces consignes sauf si elles sont en contradiction avec les standards locaux ou nationaux.
1. Un raccordement adéquat à la terre doit être effectuée à chaque borne de mise à la terre, interne et externe.
2. Après installation ou dépannage, tous les capots de protection et toutes les prises de terre doivent être remis en place, toutes les prises de terre doivent être respectées en permanence.
3. Les câbles d’alimentation électrique doivent être conformes aux normes IEC227 ou IEC245
4. Tous les raccordements doivent pouvoir supporter une température ambiante supérieure à 75°C.
5. Tous les presse-étoupes utilisés doivent avoir un diamètre interne en rapport avec les câbles afin d’assurer un serrage correct sur ces derniers.
6. Afin de garantir la sécurité du fonctionnement de cet appareil, le raccordement à l’alimentation électrique doit être réalisé exclusivement au travers d’un disjoncteur (mini­mum 10A.) isolant tous les conducteurs en cas d’anomalie. Ce disjoncteur doit également pouvoir être actionné manuellement, de façon mécanique. Dans le cas contraire, un autre système doit être mis en place afin de pouvoir isoler l’appareil et doit être signalisé comme tel. Disjoncteurs et interrupteurs doivent être conformes à une norme reconnue telle IEC947.
7. Lorsque les équipements ou les capots affichent le symbole suivant, cela signifie que des tensions dangereuses sont présentes. Ces capots ne doivent être démontés que lorsque l’alimentation est coupée, et uniquement par un personnel compétent.
8. Lorsque les équipements ou les capots affichent le symbole suivant, cela signifie que des surfaces dangereusement chaudes sont présentes. Ces capots ne doivent être démontés que lorsque l’alimentation est coupée, et uniquement par un personnel compétent. Certaines surfaces peuvent rester chaudes jusqu’à 45 mn.
9. Lorsque les équipements ou les capots affichent le symbole suivant, se re­porter au manuel d’instructions.
10. Tous les symboles graphiques utilisés dans ce produit sont conformes à un ou plusieurs des standards suivants: EN61010-1, IEC417 & ISO3864.
IB-106-350
viii
Wichtig
Sicherheitshinweise für den Anschluß und die Installation dieser Geräte.
Die folgenden Sicherheitshinweise sind in allen Mitgliederstaaten der europäischen Gemeinschaft gültig. Sie müssen strickt eingehalten werden, um der Niederspannungsrichtlinie zu genügen. Nichtmitgliedsstaaten der europäischen Gemeinschaft sollten die national gültigen Normen und Richtlinien einhalten.
1. Alle intern und extern vorgesehenen Erdungen der Geräte müssen ausgeführt werden.
2. Nach Installation, Reparatur oder sonstigen Eingriffen in das Gerät müssen alle Sicherheit­sabdeckungen und Erdungen wieder installiert werden. Die Funktion aller Erdverbindungen darf zu keinem Zeitpunkt gestört sein.
3. Die Netzspannungsversorgung muß den Anforderungen der IEC227 oder IEC245 genügen.
4. Alle Verdrahtungen sollten mindestens bis 75 °C ihre Funktion dauerhaft erfüllen.
5. Alle Kabeldurchführungen und Kabelverschraubungen sollten in Ihrer Dimensionierung so gewählt werden, daß diese eine sichere Verkabelung des Gerätes ermöglichen.
6. Um eine sichere Funktion des Gerätes zu gewährleisten, muß die Spannungsversorgung über mindestens 10 A abgesichert sein. Im Fehlerfall muß dadurch gewährleistet sein, daß die Spannungsversorgung zum Gerät bzw. zu den Geräten unterbrochen wird. Ein mechanischer Schutzschalter kann in dieses System integriert werden. Falls eine derartige Vorrichtung nicht vorhanden ist, muß eine andere Möglichkeit zur Unterbrechung der Spannungszufuhr gewährleistet werden mit Hinweisen deutlich gekennzeichnet werden. Ein solcher Mecha­nismus zur Spannungsunterbrechung muß mit den Normen und Richtlinien für die allge­meine Installation von Elektrogeräten, wie zum Beispiel der IEC947, übereinstimmen.
7. Mit dem Symbol sind Geräte oder Abdeckungen gekennzeichnet, die eine gefährliche (Netzspannung) Spannung führen. Die Abdeckungen dürfen nur entfernt werden, wenn die Versorgungsspannung unterbrochen wurde. Nur geschultes Personal darf an diesen Geräten Arbeiten ausführen.
8. Mit dem Symbol sind Geräte oder Abdeckungen gekennzeichnet, in bzw. unter denen heiße Teile vorhanden sind. Die Abdeckungen dürfen nur entfernt werden, wenn die Versorgungsspannung unterbrochen wurde. Nur geschultes Personal darf an diesen Geräten Arbeiten ausführen. Bis 45 Minuten nach dem Unterbrechen der Netzzufuhr können derartig Teile noch über eine erhöhte Temperatur verfügen.
9. Mit dem Symbol sind Geräte oder Abdeckungen gekennzeichnet, bei denen vor dem Eingriff die entsprechenden Kapitel im Handbuch sorgfältig durchgelesen werden müssen.
10. Alle in diesem Gerät verwendeten graphischen Symbole entspringen einem oder mehreren der nachfolgend aufgeführten Standards: EN61010-1, IEC417 & ISO3864.
IB-106-350
ix
IMPORTANTE
Norme di sicurezza per il cablaggio e l’installazione dello strumento.
Le seguenti norme di sicurezza si applicano specificatamente agli stati membri dell’Unione Europea, la cui stretta osservanza è richiesta per garantire conformità alla Direttiva del Basso Voltaggio. Esse si applicano anche agli stati non appartenenti all’Unione Europea, salvo quanto disposto dalle vigenti normative locali o nazionali
1. Collegamenti di terra idonei devono essere eseguiti per tutti i punti di messa a terra interni ed esterni, dove previsti.
2. Dopo l’installazione o la localizzazione dei guasti, assicurarsi che tutti i coperchi di protezi­one siano stati collocati e le messa a terra siano collegate. L’integrità di ciscun morsetto di terra deve essere costantemente garantita.
3. I cavi di alimentazione della rete devono essere secondo disposizioni IEC227 o IEC245.
4. L’intero impianto elettrico deve essere adatto per uso in ambiente con temperature superiore a 75°C.
5. Le dimensioni di tutti i connettori dei cavi utilizzati devono essere tali da consentire un adeguato ancoraggio al cavo.
.
6. Per garantire un sicuro funzionamento dello strumento il collegamento alla rete di alimenta­zione principale dovrà essere eseguita tramite interruttore automatico (min.10A), in grado di disattivare tutti i conduttori di circuito in caso di guasto. Tale interruttore dovrà inoltre prevedere un sezionatore manuale o altro dispositivo di interruzione dell’alimentazione, chi­aramente identificabile. Gli interruttori dovranno essere conformi agli standard riconosciuti, quali IEC947.
7. Il simbolo riportato sullo strumento o sui coperchi di protezione indica prob­abile presenza di elevati voltaggi. Tali coperchi di protezione devono essere rimossi esclusivamente da personale qualificato, dopo aver tolto alimentazione allo strumento.
8. Il simbolo riportato sullo strumento o sui coperchi di protezione indica rischio di contatto con superfici ad alta temperatura. Tali coperchi di protezione de­vono essere rimossi esclusivamente da personale qualificato, dopo aver tolto alimentazione allo strumento. Alcune superfici possono mantenere tempera­ture elevate per oltre 45 minuti.
9. Se lo strumento o il coperchio di protezione riportano il simbolo, fare riferimento alle istruzioni del manuale Operatore.
10. Tutti i simboli grafici utilizzati in questo prodotto sono previsti da uno o più dei seguenti standard: EN61010-1, IEC417 e ISO3864.
IB-106-350
x
VIKTIG
Sikkerhetsinstruks for tilkobling og installasjon av dette utstyret.
Følgende sikkerhetsinstruksjoner gjelder spesifikt alle EU medlemsland og land med i EØS-avtalen. Instruksjonene skal følges nøye slik at installasjonen blir i henhold til lavspenningsdirektivet. Den bør også følges i andre land, med mindre annet er spesifisert av lokale- eller nasjonale standarder.
1. Passende jordforbindelser må tilkobles alle jordingspunkter, interne og eksterne hvor disse forefinnes.
2. Etter installasjon eller feilsøking skal alle sikkerhetsdeksler og jordforbindelser reetableres. Jordingsforbindelsene må alltid holdes i god stand.
3. Kabler fra spenningsforsyning skal oppfylle kravene spesifisert i IEC227 eller IEC245.
4. Alle ledningsforbindelser skal være konstruert for en omgivelsestemperatur høyere en 750C.
5. Alle kabelforskruvninger som benyttes skal ha en indre dimensjon slik at tilstrekkelig avlastning oppnåes.
6. For å oppnå sikker drift og betjening skal forbindelsen til spenningsforsyningen bare skje gjennom en strømbryter (minimum 10A) som vil bryte spenningsforsyningen til alle elek­triske kretser ved en feilsituasjon. Strømbryteren kan også inneholde en mekanisk operert bryter for å isolere instrumentet fra spenningsforsyningen. Dersom det ikke er en mekanisk operert bryter installert, må det være en annen måte å isolere utstyret fra spenningsforsynin­gen, og denne måten må være tydelig merket. Kretsbrytere eller kontakter skal oppfylle kravene i en annerkjent standard av typen IEC947 eller tilsvarende.
7. Der hvor utstyr eller deksler er merket med symbol for farlig spenning, er det sannsynlig at disse er tilstede bak dekslet. Disse dekslene må bare fjærnes når spenningsforsyning er frakoblet utstyret, og da bare av trenet servicepersonell.
8. Der hvor utstyr eller deksler er merket med symbol for meget varm overflate, er det sannsynlig at disse er tilstede bak dekslet. Disse dekslene må bare fjærnes når spenningsforsyning er frakoblet utstyret, og da bare av trenet servicepersonell. Noen overflater kan være for varme til å berøres i opp til 45 minutter etter spenningsforsyning frakoblet.
9. Der hvor utstyret eller deksler er merket med symbol, vennligst referer til instruksjonsmanualen for instrukser.
10. Alle grafiske symboler brukt i dette produktet er fra en eller flere av følgende standarder: EN61010-1, IEC417 & ISO3864.
IB-106-350
xi
IMPORTANTE
Instruções de segurança para ligação e instalação deste aparelho.
As seguintes instruções de segurança aplicam-se especificamente a todos os estados mem­bros da UE. Devem ser observadas rigidamente por forma a garantir o cumprimento da Directiva sobre Baixa Tensão. Relativamente aos estados que não pertençam à UE, deverão cumprir igualmente a referida directiva, exceptuando os casos em que a legislação local a tiver substituído.
1. Devem ser feitas ligações de terra apropriadas a todos os pontos de terra, internos ou externos.
2. Após a instalação ou eventual reparação, devem ser recolocadas todas as tampas de segurança e terras de protecção. Deve manter-se sempre a integridade de todos os terminais de terra.
3. Os cabos de alimentação eléctrica devem obedecer às exigências das normas IEC227 ou IEC245.
4. Os cabos e fios utilizados nas ligações eléctricas devem ser adequados para utilização a uma temperatura ambiente até 75º C.
5. As dimensões internas dos bucins dos cabos devem ser adequadas a uma boa fixação dos cabos.
6. Para assegurar um funcionamento seguro deste equipamento, a ligação ao cabo de alimenta­ção eléctrica deve ser feita através de um disjuntor (min. 10A) que desligará todos os con­dutores de circuitos durante uma avaria. O disjuntor poderá também conter um interruptor de isolamento accionado manualmente. Caso contrário, deverá ser instalado qualquer outro meio para desligar o equipamento da energia eléctrica, devendo ser assinalado convenien­temente. Os disjuntores ou interruptores devem obedecer a uma norma reconhecida, tipo IEC947.
7. Sempre que o equipamento ou as tampas contiverem o símbolo, é provável a existência de tensões perigosas. Estas tampas só devem ser retiradas quando a energia eléctrica tiver sido desligada e por Pessoal da Assistência devidamente treinado.
8. Sempre que o equipamento ou as tampas contiverem o símbolo, há perigo de existência de superfícies quentes. Estas tampas só devem ser retiradas por Pessoal da Assistência devidamente treinado e depois de a energia eléctrica ter sido desligada. Algumas superfícies permanecem quentes até 45 minutos de­pois.
9. Sempre que o equipamento ou as tampas contiverem o símbolo, o Manual de Funcionamento deve ser consultado para obtenção das necessárias instruções.
10. Todos os símbolos gráficos utilizados neste produto baseiam-se em uma ou mais das se­guintes normas: EN61010-1, IEC417 e ISO3864.
IB-106-350
xii
IMPORTANTE
Instrucciones de seguridad para el montaje y cableado de este aparato.
Las siguientes instrucciones de seguridad , son de aplicacion especifica a todos los miem­bros de la UE y se adjuntaran para cumplir la normativa europea de baja tension.
1. Se deben preveer conexiones a tierra del equipo, tanto externa como internamente, en aquellos terminales previstos al efecto.
2. Una vez finalizada las operaciones de mantenimiento del equipo, se deben volver a colocar las cubiertas de seguridad aasi como los terminales de tierra. Se debe comprobar la integri­dad de cada terminal.
3. Los cables de alimentacion electrica cumpliran con las normas IEC 227 o IEC 245.
4. Todo el cableado sera adecuado para una temperatura ambiental de 75ºC.
5. Todos los prensaestopas seran adecuados para una fijacion adecuada de los cables.
6. Para un manejo seguro del equipo, la alimentacion electrica se realizara a traves de un interruptor magnetotermico ( min 10 A ), el cual desconectara la alimentacion electrica al equipo en todas sus fases durante un fallo. Los interruptores estaran de acuerdo a la norma IEC 947 u otra de reconocido prestigio.
7. Cuando las tapas o el equipo lleve impreso el simbolo de tension electrica peligrosa, dicho alojamiento solamente se abrira una vez que se haya in­terrumpido la alimentacion electrica al equipo asimismo la intervencion sera llevada a cabo por personal entrenado para estas labores.
8. Cuando las tapas o el equipo lleve impreso el simbolo, hay superficies con alta temperatura, por tanto se abrira una vez que se haya interrumpido la alimentacion electrica al equipo por personal entrenado para estas la­bores, y al menos se esperara unos 45 minutos para enfriar las superficies calientes.
9. Cuando el equipo o la tapa lleve impreso el simbolo, se consultara el manual de instrucciones.
10. Todos los simbolos graficos usados en esta hoja, estan de acuerdo a las siguientes normas EN61010-1, IEC417 & ISO 3864.
IB-106-350
xiii
VIKTIGT
Säkerhetsföreskrifter för kablage och installation av denna apparat.
Följande säkerhetsföreskrifter är tillämpliga för samtliga EU-medlemsländer. De skall följas i varje avseende för att överensstämma med Lågspännings direktivet. Icke EU medlemsländer skall också följa nedanstående punkter, såvida de inte övergrips av lokala eller nationella föreskrifter.
1. Tillämplig jordkontakt skall utföras till alla jordade punkter, såväl internt som externt där så erfordras.
2. Efter installation eller felsökning skall samtliga säkerhetshöljen och säkerhetsjord återplac­eras. Samtliga jordterminaler måste hållas obrutna hela tiden.
3. Matningsspänningens kabel måste överensstämma med föreskrifterna i IEC227 eller IEC245.
4. Allt kablage skall vara lämpligt för användning i en omgivningstemperatur högre än 75ºC.
5. Alla kabelförskruvningar som används skall ha inre dimensioner som motsvarar adekvat kabelförankring.
6. För att säkerställa säker drift av denna utrustning skall anslutning till huvudströmmen endast göras genom en säkring (min 10A) som skall frånkoppla alla strömförande kretsar när något fel uppstår. Säkringen kan även ha en mekanisk frånskiljare. Om så inte är fallet, måste ett annat förfarande för att frånskilja utrustningen från strömförsörjning tillhandahållas och klart framgå genom markering. Säkring eller omkopplare måste överensstämma med en gällande standard såsom t ex IEC947.
7. Där utrustning eller hölje är markerad med vidstående symbol föreliggerisk för livsfarlig spänning i närheten. Dessa höljen får endast avlägsnas när strömmen ej är ansluten till utrustningen - och då endast av utbildad servicepersonal.
8. När utrustning eller hölje är markerad med vidstående symbol föreligger risk för brännskada vid kontakt med uppvärmd yta. Dessa höljen får endast av­lägsnas av utbildad servicepersonal, när strömmen kopplats från utrustningen. Vissa ytor kan vara mycket varma att vidröra även upp till 45 minuter efter av­stängning av strömmen.
9. När utrustning eller hölje markerats med vidstående symbol bör instruk­tionsmanualen studeras för information.
10.
Samtliga grafiska symboler som förekommer i denna produkt finns angivna i en eller flera av följande föreskrifter:- EN61010-1, IEC417 & ISO3864.
IB-106-350
xiv
IB-106-350
xv
CERAMIC FIBER PRODUCTS
MATERIAL SAFETY DATA SHEET
JULY 1, 1996
SECTION I. IDENTIFICATION
PRODUCT NAME
Ceramic Fiber Heaters, Molded Insulation Modules and Ceramic Fiber Radiant Heater Panels.
CHEMICAL FAMILY
Vitreous Aluminosilicate Fibers with Silicon Dioxide.
CHEMICAL NAME
N.A.
CHEMICAL FORMULA
N.A.
MANUFACTURER’S NAME AND ADDRESS
Watlow Columbia 573-474-9402 2101 Pennsylvania Drive 573-814-1300, ext. 5170 Columbia, MO 65202
HEALTH HAZARD SUMMARY
WARNING
• Possible cancer hazard based on tests with laboratory animals.
• May be irritating to skin, eyes and respiratory tract.
• May be harmful if inhaled.
• Cristobalite (crystalline silica) formed at high temperatures (above 1800ºF) can cause severe res-
piratory disease.
IB-106-350
xvi
SECTION II. PHYSICAL DATA
APPEARANCE AND ODOR
Cream to white colored fiber shapes. With or without optional white to gray granular surface coating and/or optional black surface coating.
SPECIFIC WEIGHT: 12-25 lb./cubic foot BOILING POINT: N.A.
VOLATILES (% BY WT.): N.A. WATER SOLUBILITY: N.A.
SECTION III. HAZARDOUS INGREDIENTS
MATERIAL, QUANTITY, AND THRESHOLD/EXPOSURE LIMIT VALUES
Aluminosilicate (vitreous) 99+ % 1 fiber/cc TWA CAS. No. 142844-00-06 10 fibers/cc CL Zirconium Silicate 0-10% 5 mg/cubic meter (TLV) Black Surface Coating** 0 - 1% 5 mg/cubic meter (TLV) Armorphous Silica/Silicon Dioxide 0-10% 20 mppcf (6 mg/cubic meter)
**Composition is a trade secret.
PEL (OSHA 1978) 3 gm cubic meter (Respirable dust): 10 mg/cubic meter, Intended TLV (ACGIH 1984-85)
SECTION IV. FIRE AND EXPLOSION DATA
FLASH POINT: None FLAMMABILITY LIMITS: N.A.
EXTINGUISHING MEDIA
Use extinguishing agent suitable for type of surrounding fire.
UNUSUAL FIRE AND EXPLOSION HAZARDS/SPECIAL FIRE FIGHTING PROCEDURES
N.A.
IB-106-350
xvii
SECTION V. HEALTH HAZARD DATA
THRESHOLD LIMIT VALUE
(See Section III)
EFFECTS OF OVER EXPOSURE
EYE
Avoid contact with eyes. Slightly to moderately irritating. Abrasive action may cause damage to outer surface of eye.
INHALATION
May cause respiratory tract irritation. Repeated or prolonged breathing of particles of respirable size may cause inflammation of the lung leading to chest pain, difficult breathing, coughing and possible fibrotic change in the lung (Pneumoconiosis). Pre-existing medical conditions may be aggravated by exposure: specifically, bronchial hyper-reactivity and chronic bronchial or lung disease.
INGESTION
May cause gastrointestinal disturbances. Symptoms may include irritation and nausea, vomiting and diarrhea.
SKIN
Slightly to moderate irritating. May cause irritation and inflammation due to mechanical reaction to sharp, broken ends of fibers.
EXPOSURE TO USED CERAMIC FIBER PRODUCT
Product which has been in service at elevated temperatures (greater than 1800ºF/982ºC) may undergo partial conversion to cristobalite, a form of crystalline silica which can cause severe respiratory dis­ease (Pneumoconiosis). The amount of cristobalite present will depend on the temperature and length of time in service. (See Section IX for permissible exposure levels).
SPECIAL TOXIC EFFECTS
The existing toxicology and epidemiology data bases for RCF’s are still preliminary. Information will be updated as studies are completed and reviewed. The following is a review of the results to date:
EPIDEMIOLOGY
At this time there are no known published reports demonstrating negative health outcomes of workers exposed to refractory ceramic fiber (RCF). Epidemiologic investigations of RCF production workers are ongoing.
1) There is no evidence of any fibrotic lung disease (interstitial fibrosis) whatsoever on x-ray.
2) There is no evidence of any lung disease among those employees exposed to RCF that had never
smoked.
3) A statistical “trend” was observed in the exposed population between the duration of exposure to
RCF and a decrease in some measures of pulmonary function. These observations are clinically insignificant. In other words, if these observations were made on an individual employee, the results would be interpreted as being within the normal range.
4) Pleural plaques (thickening along the chest wall) have been observed in a small number of
employees who had a long duration of employment. There are several occupational and non­occupational causes for pleural plaque. It should be noted that plaques are not “pre-cancer” nor are they associated with any measurable effect on lung function.
IB-106-350
xviii
TOXICOLOGY
A number of studies on the health effects of inhalation exposure of rats and hamsters are available. Rats were exposed to RCF in a series of life-time nose-only inhalation studies. The animals were ex­posed to 30, 16, 9, and 3 mg/m
3
, which corresponds with approximately 200, 150, 75, and 25 fi-
bers/cc. Animals exposed to 30 and 16 mg/m
broses; animals exposed to 9 mg/m
3
were observed to have developed a pleural and parenchymal fi-
3
had developed a mild parenchymal fibrosis; animals exposed to the lowest dose were found to have the response typically observed any time a material is inhaled into the deep lung. While a statistically significant increase in lung tumors was observed following expo­sure to the highest dose, there was no excess lung cancers at the other doses. Two rats exposed to 30
3
mg/m
and one rat exposed to 9 mg/m3 developed masotheliomas.
The International Agency for Research on Cancer (IARC) reviewed the carcinogenicity data on man­made vitreous fibers (including ceramic fiber, glasswool, rockwool, and slagwool) in 1987. IARC classified ceramic fiber, fibrous glasswool and mineral wool (rockwool and slagwool) as possible hu­man carcinogens (Group 2B).
EMERGENCY FIRST AID PROCEDURES
EYE CONTACT
Flush eyes immediately with large amounts of water for approximately 15 minutes. Eye lids should be held away from the eyeball to insure thorough rinsing. Do not rub eyes. Get medical attention if irri­tation persists.
INHALATION
Remove person from source of exposure and move to fresh air. Some people may be sensitive to fiber induced irritation of the respiratory tract. If symptoms such as shortness of breath, coughing, wheez­ing or chest pain develop, seek medical attention. If person experiences continued breathing difficul­ties, administer oxygen until medical assistance can be rendered.
INGESTION
Do not induce vomiting. Get medical attention if irritation persists.
SKIN CONTACT
Do not rub or scratch exposed skin. Wash area of contact thoroughly with soap and water. Using a skin cream or lotion after washing may be helpful. Get medical attention if irritation persists.
SECTION VI. REACTIVITY DATA
STABILITY/CONDITIONS TO AVOID
Stable under normal conditions of use.
HAZARDOUS POLYMERIZATION/CONDITIONS TO AVOID
N.A.
IB-106-350
xix
INCOMPATIBILITY/MATERIALS TO AVOID
Incompatible with hydrofluoric acid and concentrated alkali.
HAZARDOUS DECOMPOSITION PRODUCTS
N.A.
SECTION VII. SPILL OR LEAK PROCEDURES
STEPS TO BE TAKEN IF MATERIAL IS RELEASED OR SPILLED
Where possible, use vacuum suction with HEPA filters to clean up spilled material. Use dust suppres­sant where sweeping if necessary. Avoid clean up procedure which may result in water pollution. (Observe Special Protection Information Section VIII.)
WASTE DISPOSAL METHODS
The transportation, treatment, and disposal of this waste material must be conducted in compliance with all applicable Federal, State, and Local regulations.
SECTION VIII. SPECIAL PROTECTION INFORMATION
RESPIRATORY PROTECTION
Use NIOSH or MSHA approved equipment when airborne exposure limits may be exceeded. NIOSH/MSHA approved breathing equipment may be required for non-routine and emergency use. (See Section IX for suitable equipment).
Pending the results of long term health effects studies, engineering control of airborne fibers to the lowest levels attainable is advised.
VENTILATION
Ventilation should be used whenever possible to control or reduce airborne concentrations of fiber and dust. Carbon monoxide, carbon dioxide, oxides of nitrogen, reactive hydrocarbons and a small amount of formaldehyde may accompany binder burn-off during first heat. Use adequate ventilation or other precautions to eliminate vapors resulting from binder burn-off. Exposure to burn-off fumes may cause respiratory tract irritation, bronchial hyper-reactivity and asthmatic response.
SKIN PROTECTION
Wear gloves, hats and full body clothing to prevent skin contact. Use separate lockers for work clothes to prevent fiber transfer to street clothes. Wash work clothes separately from other clothing and rinse washing machine thoroughly after use.
EYE PROTECTION
Wear safety glasses or chemical worker’s goggles to prevent eye contact. Do not wear contact lenses when working with this substance. Have eye baths readily available where eye contact can occur.
IB-106-350
xx
SECTION IX. SPECIAL PRECAUTIONS
PRECAUTIONS TO BE TAKEN IN HANDLING AND STORING
General cleanliness should be followed. The Toxicology data indicate that ceramic fiber should be handled with caution. The handling prac-
tices described in this MSDS must be strictly followed. In particular, when handling refractory ce­ramic fiber in any application, special caution should be taken to avoid unnecessary cutting and tearing of the material to minimize generation of airborne dust.
It is recommended that full body clothing be worn to reduce the potential for skin irritation. Washable or disposable clothing may be used. Do not take unwashed work clothing home. Work clothes should be washed separately from other clothing. Rinse washing machine thoroughly after use. If clothing is to be laundered by someone else, inform launderer of proper procedure. Work clothes and street clothes should be kept separate to prevent contamination.
Product which has been in service at elevated temperatures (greater than 1800ºF/982ºC) may undergo partial conversion to cristobalite, a form of crystalline silica. This reaction occurs at the furnace lining hot face. As a consequence, this material becomes more friable; special caution must be taken to minimize generation of airborne dust. The amount of cristobalite present will depend on the tem­perature and length in service.
IARC has recently reviewed the animal, human, and other relevant experimental data on silica in order to critically evaluate and classify the cancer causing potential. Based on its review, IARC classified crystalline silica as a group 2A carcinogen (probable human carcinogen).
The OSHA permissible exposure limit (PEL for cristobalite is 0.05 mg/m GIH threshold limit value (TLV) for cristobalite is 0.05 mg/m
3
(respirable dust) (ACGIH 1991-92). Use NIOSH or MSHA approved equipment when airborne exposure limits may be exceeded. The minimum respiratory protection recommended for given airborne fiber or cristobalite concentrations are:
3
(respirable dust). The AC-
CONCENTRATION
3
0-1 fiber/cc or 0-0.05 mg/m (the OSHA PEL) 9970 or equivalent).
Up to 5 fibers/cc or up to 10 times the Half face, air-purifying respirator equipped OSHA PEL for cristobalite with high efficiency particulate air (HEPA)
Up to 25 fibers/cc or 50 times the OSHA Full face, air-purifying respirator with high PEL for cristobalite (2.5 mg/m
Greater than 25 fibers/cc or 50 times the Full face, positive pressure supplied air respira­OSHA PEL for cristobalite (2.5 mg/m
cristobalite Optional disposable dust respirator (e.g. 3M
filter cartridges (e.g. 3M 6000 series with 2040 filter or equivalent).
3
) efficiency particulate air (HEPA) filter cart-
ridges (e.g. 3M 7800S with 7255 filters or equivalent) or powered air-purifying respirator (PARR) equipped with HEPA filter cartridges (e.g. 3M W3265S with W3267 filters or equivalent).
3
) tor (e.g. 3M 7800S with W9435 hose & W3196
low pressure regulator kit connected to clean air supply or equivalent).
IB-106-350
xxi
If airborne fiber or cristobalite concentrations are not known, as minimum protection, use NIOSH/MSHA approved half face, air-purifying respirator with HEPA filter cartridges.
Insulation surface should be lightly sprayed with water before removal to suppress airborne dust. As water evaporates during removal, additional water should be sprayed on surfaces as needed. Only enough water should be sprayed to suppress dust so that water does not run onto the floor of the work area. To aid the wetting process, a surfactant can be used.
After RCF removal is completed, dust-suppressing cleaning methods, such as wet sweeping or vac­uuming, should be used to clean the work area. If dry vacuuming is used, the vacuum must be equipped with HEPA filter. Air blowing or dry sweeping should not be used. Dust-suppressing com­ponents can be used to clean up light dust.
Product packaging may contain product residue. Do not reuse except to reship or return Ceramic Fi­ber products to the factory.
IB-106-350
xxii

ESSENTIAL INSTRUCTIONS

READ THIS PAGE BEFORE PROCEEDING
!
Rosemount Analytical designs, manufactures, and tests all its products to meet many national and international standards. Because these instruments are sophisticated technical products, you must properly install, use, and maintain them to ensure they continue to operate within their normal specifications. The following instructions must be adhered to and integrated into your safety program when installing, using, and maintaining Rosemount Analytical products. Failure to follow the proper instructions may cause any one of the following situations to occur: loss of life, personal injury, property damage, damage to the instrument, and warranty invalidation.
Read all instructions prior to installing, operating, and servicing the product. If this
Instruction Bulletin is not the correct manual, telephone 1-800-654-7768 and the re­quired manual will be provided. Save this instruction manual for future reference.
If you do not understand any of the instructions, contact your Rosemount represen-
tative for clarification.
Follow all warnings, cautions, and instructions marked on and supplied with the
product.
Inform and educate your personnel in the proper installation, operation, and mainte-
nance of the product.
Install your equipment as specified in the installation instructions of the appropriate
Instruction Bulletin and per applicable local and national codes. Connect all prod­ucts to the proper electrical and pressure sources.
To ensure proper performance, use qualified personnel to install, operate, update,
program, and maintain this product.
When replacement parts are required, ensure that the qualified people use replace-
ment parts specified by Rosemount. Unauthorized parts and procedures can affect the product’s performance and place the safe operation of your process at risk. Look alike substitutions may result in fire, electrical hazards, or improper operation.
Ensure that all equipment doors are closed and protective covers are in place, except
when maintenance is being performed by qualified persons, to prevent electrical shock and personal injury.
If a Model 275 Universal HART® Communicator is used with this unit, the software within the Model 275 may require modification. If a software modification is required, please contact your local Fisher-Rosemount Service Group or National Response Center at 1-800-654-7768.
IB-106-350
xxiii

WHAT YOU NEED TO KNOW

BEFORE INSTALLING AND WIRING A ROSEMOUNT
OXYMITTER 5000 OXYGEN TRANSMITTER
1. What type of installation does your system require? Use the following drawing, Figure 1, to identify which type of installation is required for your Oxymitter 5000 system.
STANDARD
REFERENCE AIR CALIBRATION GAS
OXYMITTER 5000
INTEGRAL SPS 4000 OPTION
OXYMITTER 5000
(WITH INTEGRAL SPS 4000)
IMPS 4000 OPTION
LINE VOLTAGE
LOGIC I/O
FIELDBUS DIGITAL SIGNAL
LINE VOLTAGE
FIELDBUS DIGITAL SIGNAL RELAY OUTPUTS, AND REMOTE CONTACT INPUT
CALIBRATION GAS 1 CALIBRATION GAS 2 REFERENCE AIR
LINE VOLTAGE
FIELDBUS DIGITAL SIGNAL
OXYMITTER 5000
LOGIC I/0
CAL GAS
IMPS
4000
REFERENCE AIR
Figure 1. Oxymitter 5000 Installation Options
IB-106-350
xxiv
INSTR. AIR SUPPLY
CALIBRATION GAS 1
CALIBRATION GAS 2
LINE VOLTAGE
31770001
CAN YOU USE THE FOLLOWING
QUICK START GUIDE?
Use the Quick Start Guide if ....
Your system requires a STANDARD or INTEGRAL SPS 4000 OPTION installa-
1.
tion. Installation options for the Oxymitter 5000 are shown in Figure 1.
Your system does NOT require an IMPS 4000 OPTION installation.
2.
You are familiar with the installation requirements for the Oxymitter 5000 Oxygen
3.
Transmitter. You are familiar with the installation requirements for the Oxymitter 5000 Oxygen Transmitter with an integral SPS 4000.
If you cannot use the Quick Start Guide, turn to Section II, Installation, in this Instruction Bulletin.
IB-106-350
xxv
QUICK START GUIDE FOR OXYMITTER 5000
SYSTEMS
Before using the Quick Start Guide, please read “WHAT YOU NEED TO KNOW BEFORE INSTALLING AND WIRING A ROSEMOUNT OXYMITTER 5000 OXYGEN TRANSMITTER” on the preceding page.
Install the Oxymitter 5000 in an appropriate location on the stack or duct. Refer to
1.
Section II, paragraph 2-1.a for information on selecting a location for the Oxymit­ter 5000.
If using an SPS 4000, connect the calibration gasses to the appropriate fittings on
2.
the SPS 4000 manifold.
Connect reference air to the Oxymitter 5000 or SPS 4000, as applicable.
3.
If using an SPS 4000, make the following wire connections as shown in Figure 2:
4.
line voltage, cal initiate-remote contact input, relay output, and fieldbus digital sig­nal.
If NOT using an SPS 4000, make the following wire connections as shown in Fig-
5.
ure 3: line voltage, logic I/O, and fieldbus digital signal.
Verify the Oxymitter 5000 switch configuration is as desired. Refer to Section III,
6.
paragraphs 3-1.c, 3-1.d, and 3-1.e.
Apply power to the Oxymitter 5000, the cell heater will turn on. Allow approxi-
7.
mately one half hour for the cell to heat to operating temperature. Once the ramp cycle has completed and the Oxymitter 5000 is at normal operation, proceed with step 8.
If using an SPS 4000, initiate a semi-automatic calibration.
8.
If NOT using an SPS 4000, perform a manual calibration. Refer to the QUICK
9.
REFERENCE GUIDE manual calibration instructions on the following pages, or Section VI, paragraph 6-2, Calibration, in this instruction bulletin.
IB-106-350
xxvi
Figure 2. Oxymitter 5000 with SPS 4000 Wiring Diagram
AC TERMINAL
COVER
LINE VOLTAGE
(85 TO 264 VAC)
LOGIC I/O
FIELDBUS
DIGITAL
SIGNAL
LEFT SIDE OF
OXYMITTER 5000
TERMINAL
BLOCK
AC L1
AC N
+
-
+
FIELDBUS
-
AC LINE
VOLTAGE PORT
GROUND LUGS
SIGNAL
PORT
31770002
Figure 3. Oxymitter 5000 without SPS 4000 Wiring Diagram
IB-106-350
xxvii
QUICK REFERENCE GUIDE
OXYMITTER 5000 OXYGEN TRANSMITTER
Performing a Manual Calibration
Place the control loop in manual.
1.
Press the CAL key. The CAL LED will light solid.
2.
Apply the first calibration gas.
3.
Press the CAL key. When the unit has taken the readings using the first calibration
4.
gas, the CAL LED will flash continuously.
Remove the first calibration gas and apply the second calibration gas.
5.
Push the CAL key. The CAL LED will light solid. When the unit has taken the
6.
readings using the second calibration gas, the CAL LED will flash a two-pattern flash or a three-pattern flash. A two-pattern flash equals a valid calibration, three-pattern flash equals an invalid calibration.
Remove the second calibration gas and cap off the calibration gas port.
7.
Press the CAL key. The CAL LED will be lit solid as the unit purges. When the
8.
purge is complete, the CAL LED will turn off.
If the calibration was valid, the DIAGNOSTIC ALARMS LEDs indicate normal
9.
operation. If the new calibration values are not within the parameters, the DIAG­NOSTIC ALARMS LEDs will indicate an alarm.
10. Place the control loop in automatic.
IB-106-350
xxviii
HART COMMUNICATOR
FAST KEY SEQUENCES
Perform Calibration O2 Upper Range Value
2311 321
Trim Analog Output Analog Output Lower Range Value
24 322
Toggle Analog Output Tracking View O2 Value
2312 111
View Analog Output
121
Technical Support Hotline:
For assistance with technical problems, please call the Customer Support Center (CSC). The CSC is staffed 24 hours a day, 7 days a week.
Phone: 1-800-433-6076
In addition to the CSC, you may also contact Field Watch. Field Watch coordinates Rosemount’s field service throughout the U.S. and abroad.
Phone: 1-800-654-RSMT (1-800-654-7768)
Rosemount may also be reached via the Internet through e-mail and the World Wide Web:
e-mail: GAS.CSC@frco.com
World Wide Web: www.processanalytic.com
IB-106-350
xxix/xxx

TABLE OF CONTENTS

Section Page
Rosemount Warranty.....................................................................................................................................i
I. INTRODUCTION....................................................................................................................... 1-1
1-1. Component Checklist of Typical System (Package Contents) ........................................ 1-1
1-2. System Overview ............................................................................................................ 1-1
1-3. IMPS 4000 (Optional) .................................................................................................... 1-4
1-4. SPS 4000 (Optional) ....................................................................................................... 1-6
1-5. Specifications.................................................................................................................. 1-8
II. INSTALLATION ........................................................................................................................ 2-1
2-1. Mechanical Installation................................................................................................... 2-1
2-2. Electrical Installation (For Oxymitter 5000 without SPS 4000) ..................................... 2-9
2-3. Electrical Installation (For Oxymitter 5000 with SPS 4000) ........................................ 2-10
2-4. Pneumatic Installation (For Oxymitter 5000 without SPS 4000).................................. 2-12
2-5. Pneumatic Installation (For Oxymitter 5000 with SPS 4000) ....................................... 2-13
III. STARTUP .................................................................................................................................... 3-1
3-1. General............................................................................................................................ 3-1
3-2. LOGIC I/O...................................................................................................................... 3-4
3-3. Recommended Configuration ......................................................................................... 3-5
3-4. Power Up ........................................................................................................................ 3-6
3-5. Start Up Oxymitter 5000 Calibration.............................................................................. 3-7
3-6. IMPS 4000 Connections ................................................................................................. 3-7
IV. OPERATION FROM LOCAL KEYPAD ................................................................................ 4-1
4-1. General ........................................................................................................................... 4-1
V. TROUBLESHOOTING.............................................................................................................. 5-1
5-1. General............................................................................................................................ 5-1
5-2. Alarm Indications ........................................................................................................... 5-1
5-3. Alarm Contacts ............................................................................................................... 5-1
5-4. Identifying and Correcting Alarm Indications ................................................................ 5-2
5-5. SPS 4000 Troubleshooting ........................................................................................... 5-18
VI. MAINTENANCE AND SERVICE ......................................................................................... 6-1
6-1. Overview......................................................................................................................... 6-1
6-2. Calibration ...................................................................................................................... 6-1
6-3. LED Status Indicators..................................................................................................... 6-5
6-4. Oxymitter 5000 Removal/Replacement .......................................................................... 6-6
6-5. Electronics Replacement ................................................................................................ 6-8
6-6. Entire Probe Replacement (Excluding Electronics)...................................................... 6-11
6-7. Heater Strut Replacement ............................................................................................. 6-11
6-8. Cell Replacement.......................................................................................................... 6-13
6-9. Ceramic Diffusion Element Replacement ..................................................................... 6-15
6-10. SPS 4000 Maintenance and Component Replacement ................................................. 6-16
VII. REPLACEMENT PARTS ........................................................................................................ 7-1
VIII. RETURNING EQUIPMENT TO THE FACTORY ............................................................ 8-1
8-1. Equipment Return Procedure .......................................................................................... 8-1
IX. OPTIONAL ACCESSORIES ................................................................................................... 9-1
IB-106-350
xxxi
TABLE OF CONTENTS (Continued)
Section Page
APPENDIX A. FIELDBUS PARAMETER DESCRIPTION........................................................ A-1
APPENDIX B. ANALOG INPUT (AI) FUNCTION BLOCK.................................................... B-1
APPENDIX C. PID FUNCTION BLOCK ...................................................................................... C-1
INDEX I-1
IB-106-350
xxxii

LIST OF ILLUSTRATIONS

Figure Page
1-1 Typical System Package ........................................................................................................ 1-0
1-2 Oxymitter 5000 Autocalibration System Options .................................................................. 1-2
1-3 Oxymitter 5000 F
1-4 Typical System Installation .................................................................................................... 1-5
1-5 SPS 4000................................................................................................................................ 1-6
2-1 Oxymitter 5000 Installation ................................................................................................... 2-2
2-2 Oxymitter 5000 Installation (with SPS 4000) ........................................................................ 2-3
2-3 Oxymitter 5000 with Abrasive Shield .................................................................................... 2-4
2-4 Oxymitter 5000 Adaptor Plate Installation ............................................................................ 2-5
2-5 Oxymitter 5000 Mounting Flange Installation ....................................................................... 2-6
2-6 Oxymitter 5000 Bracing Installation...................................................................................... 2-7
2-7 Orienting the Optional Vee Deflector .................................................................................... 2-7
2-8 Installation with Drip Loop and Insulation Removal ............................................................. 2-8
2-9 Terminal Block ...................................................................................................................... 2-9
2-10 SPS 4000 Electrical Connections......................................................................................... 2-11
2-11 Air Set, Plant Air Connection ..............................................................................................2-12
2-12 Oxymitter 5000 Gas Connections ........................................................................................ 2-13
3-1 Integral Electronics ................................................................................................................ 3-1
3-2 Oxymitter 5000 Defaults........................................................................................................ 3-3
3-3 Startup and Normal Operation ............................................................................................... 3-6
3-4 Calibration Keys .................................................................................................................... 3-7
4-1 Normal Operation .................................................................................................................. 4-1
5-1 Fault 1, Open Thermocouple ................................................................................................. 5-3
5-2 Fault 2, Shorted Thermocouple ............................................................................................. 5-4
5-3 Fault 3, Reversed Thermocouple ........................................................................................... 5-5
5-4 Fault 4, A/D Comm Error ......................................................................................................5-6
5-5 Fault 5, Open Heater .............................................................................................................. 5-7
5-6 Fault 6, High High Heater Temp ........................................................................................... 5-8
5-7 Fault 7, High Case Temp ....................................................................................................... 5-9
5-8 Fault 8, Low Heater Temp ................................................................................................... 5-10
5-9 Fault 9, High Heater Temp .................................................................................................. 5-11
5-10 Fault 10, High Cell mV........................................................................................................ 5-12
5-11 Fault 11, Bad Cell ................................................................................................................ 5-13
5-12 Fault 12, EEPROM Corrupt ................................................................................................ 5-14
5-13 Fault 13, Invalid Slope......................................................................................................... 5-15
5-14 Fault 14, Invalid Constant.................................................................................................... 5-16
5-15 Fault 15, Last Calibration Failed ......................................................................................... 5-17
5-16 SPS 4000 Troubleshooting Flowchart ................................................................................... 5-20
6-1 Oxymitter 5000 Exploded View ............................................................................................ 6-2
6-2 Membrane Keypad ................................................................................................................ 6-3
6-3 Inside Right Cover ................................................................................................................. 6-4
6-4 Terminal Block ...................................................................................................................... 6-7
6-5 Electronic Assembly .............................................................................................................. 6-8
6-6 J8 Connector .......................................................................................................................... 6-9
6-7 Fuse Location ...................................................................................................................... 6-10
6-8 Heater Strut Assembly ......................................................................................................... 6-12
6-9 Cell Replacement Kit ........................................................................................................... 6-13
6-10 Ceramic Diffusion Element Replacement ............................................................................ 6-14
6-11 SPS 4000 Manifold Assembly ............................................................................................. 6-17
6-12 Power Supply Board and Interface Board Connections ....................................................... 6-18
6-13 Calibration Gas and Reference Air Components ................................................................. 6-21
7-1 Cell Replacement ................................................................................................................... 7-3
7-2 Probe Disassembly Kit .......................................................................................................... 7-4
OUNDATION
Fieldbus Connections............................................................. 1-4
IB-106-350
xxxiii/xxxiv
LIST OF TABLES
Table Page
1-1 Specifications......................................................................................................................... 1-8
1-2 Product Matrix ..................................................................................................................... 1-10
1-3 Calibration Gas Bottles ........................................................................................................ 1-11
1-4 Intelligent Multiprobe Test Gas Sequencer Versions........................................................... 1-12
1-5 Single Probe Autocalibration Sequencer Coding ................................................................. 1-12
3-1 Logic I/O Configuration ........................................................................................................ 3-4
3-2 Logic I/O Parameters ............................................................................................................. 3-5
5-1 Diagnostic/Unit Alarm Fault Definitions ............................................................................... 5-2
5-2 SPS 4000 Fault Finding .......................................................................................................5-19
6-1 Diagnostic/Unit Alarms ......................................................................................................... 6-6
7-1 Replacement Parts for Probe .................................................................................................7-1
7-2 Replacement Parts for Electronics ......................................................................................... 7-5
7-3 Replacement Parts for SPS 4000 ........................................................................................... 7-7
7-4 Replacement Parts for Calibration Gas Bottles...................................................................... 7-7
IB-106-350
xxxv
1 1
1
6
2
3
5
4
1. Instruction Bulletin
2. IMPS 4000 Intelligent Multiprobe Test Gas Sequencer (Optional)
3. Oxymitter 5000 with Integral Electronics
4. SPS 4000 Single Probe Autocalibration Sequencer (Optional) - (Shown with reference air option)
5. Adaptor Plate with Mounting Hardware and Gasket
6. Reference Air Set (used if SPS 4000 without reference air option or IMPS 4000 not supplied)
Figure 1-1. Typical System Package
IB-106-350
1-0
28550004

SECTION I. INTRODUCTION

1-1. COMPONENT CHECKLIST OF TYPICAL
SYSTEM (PACKAGE CONTENTS) . A typical
Rosemount Oxymitter 5000 Oxygen Transmitter should contain the items shown in Figure 1-1. Record the part number, serial number, and order number for each component of your system in the table located on the first page of this manual.
Use the product matrix in Table 1-1 at the end of this section to compare your order number against your unit. The first part of the matrix defines the model. The last part defines the various options and features of the Oxymitter 5000. Ensure the features and op­tions specified by your order number are on or in­cluded with the unit.
1-2. SYSTEM OVERVIEW.
a. Scope. This Instruction Bulletin is designed to
supply details needed to install, start up, operate, and maintain the Oxymitter 5000. Integral signal conditioning electronics outputs a digital
OUNDATION
F
fieldbus signal representing an O value and provides a membrane keypad for setup, calibration, and diagnostics. This same informa­tion, plus additional details, can be accessed via fieldbus digital communications.
OUNDATION
b. F
OUNDATION
F
fieldbus Technology.
fieldbus is an all digital, serial, two-way communication system that intercon­nects field equipment such as sensors, actuators, and controllers. Fieldbus is a Local Area Net­work (LAN) for instruments used in both process and manufacturing automation with built-in ca­pacity to distribute the control application across the network. The fieldbus environment is the base level group of digital networks in the hierar­chy of planet networks.
The fieldbus retains the desirable features of the 4-20 mA analog system, including a standardized physical interface to the wire, bus powered de­vices on a single wire, and intrinsic safety op­tions, and enables additional capabilities, such as:
• Increased capabilities due to full digital com-
munications
• Reduced wiring and wire terminations due to
multiple devices on one set of wires
• Increased selection of suppliers due to
interoperability
• Reduced loading on control room equipment
with the distribution of some control and input/ output functions to field devices
• Speed options for process control and manu-
facturing applications
c. System Description. The Oxymitter 5000 is de-
signed to measure the net concentration of oxy­gen in an industrial process; i.e., the oxygen remaining after all fuels have been oxidized. The probe is permanently positioned within an ex­haust duct or stack and performs its task without the use of a sampling system.
The equipment measures oxygen percentage by reading the voltage developed across a heated electrochemical cell, which consists of a small yttria-stabilized, zirconia disc. Both sides of the disc are coated with porous metal electrodes. When operated at the proper temperature, the millivolt output voltage of the cell is given by the following Nernst equation:
2
EMF = KT log
10(P1/P2
) + C
Where:
1. P
is the partial pressure of the oxygen in the
2
measured gas on one side of the cell.
2. P
is the partial pressure of the oxygen in the
1
reference air on the opposite side of the cell.
3. T is the absolute temperature.
4. C is the cell constant.
5. K is an arithmetic constant.
NOTE
For best results, use clean, dry, instrument air (20.95% oxygen) as the reference air.
When the cell is at operating temperature and there are unequal oxygen concentrations across the cell, oxygen ions will travel from the high oxygen partial pressure side to the low oxygen partial pressure side of the cell. The resulting logarithmic output voltage is approximately 50 mV per decade. The output is proportional to the inverse logarithm of the oxygen concentra­tion. Therefore, the output signal increases as the oxygen concentration of the sample gas de­creases. This characteristic enables the Oxymitter 5000 to provide exceptional sensitivity at low oxygen concentrations.
IB-106-350
1-1
The Oxymitter 5000 measures net oxygen con­centration in the presence of all the products of combustion, including water vapor. Therefore, it may be considered an analysis on a “wet” basis. In comparison with older methods, such as the portable apparatus, which provides an analysis on a “dry” gas basis, the “wet” analysis will, in gen­eral, indicate a lower percentage of oxygen. The difference will be proportional to the water con­tent of the sampled gas stream.
d. System Configuration. Oxymitter 5000 units are
available in five length options, giving the user the flexibility to use an in situ penetration appropriate to the size of the stack or duct. The options on length are 18 in. (457 mm), 3 ft (0.91 m), 6 ft (1.83 m), 9 ft (2.7 m), or 12 ft (3.66 m).
e. System Features.
The CALIBRATION RECOMMENDED
1.
feature detects when the sensing cell is likely out of limits. This may eliminate the need to calibrate on a “time since last cal” basis.
The cell output voltage and sensitivity
2.
increase as the oxygen concentration decreases.
Membrane keypad and F
3.
bus communication are standard.
Field replaceable cell, heater, thermocou-
4.
ple, and diffusion element.
OUNDATION
field-
The integral electronics control probe tempera­ture and provide an output that represents the measured oxygen concentration. The power sup­ply can accept voltages of 90-250 VAC and 50/60 Hz; therefore, no setup procedures are re­quired. The oxygen sensing cell is maintained at a constant temperature by modulating the duty cycle of the probe heater portion of the integral electronics. The integral electronics accepts mil­livolt signals generated by the sensing cell and produces the outputs to be used by remotely con­nected devices. The output is a F
OUNDATION
fieldbus digital communication signal.
Two calibration gas sequencers are available to the Oxymitter 5000: the IMPS 4000 and the SPS 4000 (Figure 1-2).
Systems with multiprobe applications may employ an optional IMPS 4000 Intelligent Multiprobe Test Gas Sequencer. The IMPS 4000 provides auto­matic calibration gas sequencing for up to four Oxymitter 5000 units and accommodates autocali­brations based on the CALIBRATION RECOM­MENDED signal from the Oxymitter 5000, a timed interval set up via fieldbus or the IMPS 4000, or when a calibration request is initiated.
The Oxymitter 5000 is constructed of rug-
5.
ged 316 L stainless steel for all wetted parts.
For systems with one or two Oxymitter 5000 units per combustion process, an optional SPS 4000 Single Probe Autocalibration Sequencer can be used with each Oxymitter 5000 to provide automatic calibration gas sequencing. The SPS 4000 can be mounted directly to the Oxymitter 5000 or in a remote location if space is limited. The sequencer performs autocalibrations based on the CALIBRATION RECOMMENDED signal from the Oxymitter 5000, a timed interval set up in fieldbus, or whenever a calibration request is initiated.
IB-106-350
Figure 1-2. Oxymitter 5000 Autocalibration
System Options
1-2
Integral electronics eliminates traditional
6.
wiring between probe and electronics.
The integral electronics are adaptable for
7.
line voltages from 90-250 VAC; therefore, no configuration is necessary.
The Oxymitter 5000 membrane keypad is
8.
available in five languages:
English French German Italian Spanish
An operator can calibrate and diagnostically
9.
troubleshoot the Oxymitter 5000 in one of three ways:
(c) Optional IMPS 4000. The Program-
mable Logic Controller (PLC) in the IMPS 4000 provides fault indications using flashing LEDs and LCD display messages. Refer to the IMPS 4000 Intelligent Multiprobe Test Gas Sequencer Instruction Bulletin for more information.
f. Handling the Oxymitter 5000.
It is important that printed circuit boards and integrated circuits are handled only when adequate antistatic precautions have been taken to prevent possible equipment damage.
(a) Membrane Keypad. The membrane
keypad, housed within the right side of the electronics housing, provides fault indication by way of flashing LEDs. Calibration can be performed from the membrane keypad.
OUNDATION
(b) F
fieldbus Interface. The Oxymitter 5000’s output carries a sig­nal containing the oxygen level en­coded in digital format. This digital output can also be used to communi­cate with the Oxymitter and access all of the Oxymitter’s status information.
The Oxymitter 5000 is designed for industrial applications. Treat each component of the system with care to avoid physical damage. Some probe components are made from ceramics, which are susceptible to shock when mishandled.
g. System Considerations. Prior to installing your
Oxymitter 5000, make sure you have all the components necessary to make the system in­stallation. Ensure all the components are properly integrated to make the system functional.
IB-106-350
1-3
After verifying that you have all the components, select mounting locations and determine how each component will be placed in terms of avail­able line voltage, ambient temperatures, envi­ronmental considerations, convenience, and serviceability. Figure 1-3 shows a typical system wiring. A typical system installation is illustrated in Figure 1-4.
A source of instrument air is optional at the Oxymitter 5000 for reference air use. Since the unit is equipped with an in-place calibration fea­ture, provisions can be made to permanently connect calibration gas tanks to the Oxymitter
5000.
If the calibration gas bottles will be permanently connected, a check valve is required next to the calibration fittings on the integral electronics. This check valve is to prevent breathing of the
calibration gas line and subsequent flue gas con­densation and corrosion. The check valve is in addition to the stop valve in the calibration gas kit or the solenoid valves in the IMPS 4000 or SPS 4000.
NOTE
The integral electronics is rated NEMA 4X (IP66) and is capable of operation at tem­peratures up to 149°F (65°C).
Retain the packaging in which the Oxymitter 5000 arrived from the factory in case any components are to be shipped to another site. This packaging has been designed to protect the product.
1-3. IMPS 4000 (OPTIONAL). Information on the
IMPS 4000 is available in the IMPS 4000 Intelligent Multiprobe Test Gas Sequencer Instruction Bulletin.
OXYMITTER 5000
WITH INTEGRAL ELECTRONICS
2 CALIBRATION GAS LINES
BY CUSTOMER
[300 FT (90 M) MAX]
Figure 1-3. Oxymitter 5000 F
LINE VOLTAGE
OUNDATION
FIELDBUS DIGITAL
SIGNAL
Fieldbus Connections
FIELDBUS COMPUTER
TERMINAL
28550005
IB-106-350
1-4
GASES
STACK
STANDARD
DUCT
OXYMITTER
5000
LINE
VOLTAGE
LOGIC I/O
FIELDBUS
DIGITAL
SIGNAL
FLOWMETER
CALIBRATION GAS
ADAPTOR PLATE
PRESSURE
REGULATOR
VOLTAGE
INSTRUMENT
AIR SUPPLY
(REFERENCE AIR)
STACK
ADAPTOR
PLATE
OXYMITTER
5000
LINE
GASES
IMPS 4000 OPTION
DUCT
CALIBRATION GAS
CALIBRATION GAS 2
CALIBRATION GAS 1
INST. AIR
SUPPLY
(WITH REFERENCE AIR OPTION)
SPS 4000 OPTION
GASES
DUCT
STACK
OXYMITTER
5000
INSTRUMENT
AIR SUPPLY
CALIBRATION
CALIBRATION
(LOW GAS)
LINE
VOLTAGE
FIELDBUS DIGITAL SIGNAL, RELAY OUTPUTS, AND REMOTE CONTACT INPUT
Figure 1-4. Typical System Installation
FIELDBUS
DIGITAL
SIGNAL
ADAPTOR PLATE
CALIBRATION GAS 1 (HIGH GAS)CALIBRATION
GAS 2
LOGIC I/O
REFERENCE
AIR
IMPS 4000
28550006
IB-106-350
1-5
CALIBRATION GAS
FLOWMETER
FRONT VIEW
REFERENCE GAS
FLOWMETER
REAR VIEW (OF MANIFOLD ONLY)
CALIBRATION GAS 1
INTERFACE
BOARD
(HIGH CALIBRATION GAS)
SOLENOID
REFERENCE AIR PRESSURE REGULATOR (OPTIONAL)
NOTE:
MANIFOLD COVER IS REMOVED TO SHOW INTERNAL COMPONENTS.
ALSO, BOARD COMPONENTS ARE NOT SHOWN FOR CLARITY.
TERMINAL
COVER
POWER
SUPPLY BOARD
CALIBRATION GAS 2
(LOW CALIBRATION GAS)
Figure 1-5. SPS 4000
1-4. SPS 4000 (OPTIONAL). The SPS 4000 Single
Probe Autocalibration Sequencer provides the capa­bility of performing automatic, timed or on demand, calibrations of a single Oxymitter 5000 without sending a technician to the installation site.
a. Mounting. The SPS 4000 can be mounted ei-
ther directly to an Oxymitter 5000 or at a remote location if space is limited. In addition, the inte­grally mounted SPS 4000 can be configured for a horizontally or vertically mounted Oxymitter 5000 (Figure 2-2). The information in this in­struction bulletin will cover the integrally mounted units only. For information on remote mounted units, refer to the SPS 4000 Single
SOLENOID
PRESSURE SWITCH
MANIFOLD
26170001
Probe Autocalibration Sequencer Instruction Bulletin.
b. Components (Figure 1-5). The SPS 4000
consists of a manifold and a calibration gas flowmeter. The manifold provides electrical feedthroughs and calibration gas ports to route power and signal connections and calibration gases to and from the sequencer. In addition, the manifold houses two calibration gas solenoids that sequence the gases to the Oxymitter 5000, a pressure switch that detects low calibration gas pressure, and two PC boards. A terminal strip housed within the terminal cover provides convenient access for all user connections.
IB-106-350
1-6
Components optional to the SPS 4000 include a reference air flowmeter and pressure regulator. The reference air flowmeter indicates the flow rate of reference air continuously flowing to the Oxymitter 5000. The reference air pressure regulator ensures the instrument air (reference air) flowing to the Oxymitter 5000 is at a con­stant pressure [20 psi (138 kPa)]. The regulator also has a filter to remove particulates in the ref­erence air and a drain valve to bleed the moisture that collects in the filter bowl.
Brass fittings and Teflon tubing are standard. Stainless steel fittings and tubing are optional. Also, disposable calibration gas bottles are avail-
able as an option or can be purchased through a local supplier.
c. Operation. The SPS 4000 works in conjunction
with the Oxymitter 5000’s CALIBRATION RECOMMENDED feature to perform an auto­calibration. This feature automatically performs a gasless calibration check every hour on the Oxy­mitter 5000. If a calibration is recommended and its contact output signal is set for “handshaking” with the sequencer, the Oxymitter 5000 sends a signal to the sequencer. The sequencer automati­cally performs a calibration upon receiving the signal. Thus, no human interface is required for the automatic calibration to take place.
IB-106-350
1-7
1-5. SPECIFICATIONS.
Table 1-1. Specifications
Oxymitter 5000 O2 Range:
Standard .................................................................... 0 to 10% O
0 to 25% O 0 to 40% O2 (via F
Accuracy ........................................................................... ±0.75% of reading or 0.05% O
2
2
OUNDATION
fieldbus)
, whichever is greater
2
System Response to Calibration Gas .............................. Initial response in less than 3 seconds T90 in less than
8 seconds
Temperature Limits:
Process ....................................................................... 32° to 1300°F (0° to 704°C) up to 2400°F (1300°C) with
optional accessories
Electronics ................................................................. -40° to 185°F (-40° to 85°C)
Operating temperature of electronics inside of instrument housing, as measured by a HART communicator or Rosemount Asset Management Solutions software.
Probe Lengths ................................................................... 18 in. (457 mm)
3 ft (0.91 m) 6 ft (1.83 m) 9 ft (2.74 m) 12 ft (3.66 m)
Mounting and Mounting Position ................................... Vertical or horizontal
Spool pieces are available, P/N 3D39761G02, to offset transmitter housing from hot ductwork.
Materials:
Probe .......................................................................... Wetted or welded parts - 316L stainless steel
Non-wetted parts - 304 stainless steel, low-copper aluminum
Electronics Enclosure ............................................... Low-copper aluminum
Calibration ........................................................................ Manual, semi-automatic, or automatic
Calibration Gas Mixtures Recommended ...................... 0.4% O
8% O2, Balance N
, Balance N
2
2
2
Calibration Gas Flow ....................................................... 5 scfh (2.5 l/m)
Reference Air .................................................................... 2 scfh (1 l/m), clean, dry, instrument-quality air
(20.95% O
), regulated to 5 psi (34 kPa)
2
Electronics ........................................................................ NEMA 4X, IP66 with fitting and pipe on reference exhaust
port to clear dry atmosphere
Electronic Noise ................................................................ Meets EN 50082-2 Generic Immunity Std. Part II.
Includes EN 61000-4-2 for Electrostatic Discharge 4 KV contact, 8 KV in air Includes IEC 801-4 for fast transients; 2 KV on power supply and control lines
Line Voltage ...................................................................... 90-250 VAC, 50/60 Hz. No configuration necessary
3/4 in. - 14 NPT conduit port
IB-106-350
1-8
Table 1-1. Specifications (Continued)
Signals:
Digital Output ........................................................... F
OUNDATION
fieldbus compatible
Logic I/O .................................................................... Two-terminal logic contact configurable as either an alarm
output or as a bi-directional calibration handshake signal to IMPS 4000 or SPS 4000 Self-powered (+5 V), in series with 340 ohms Conduit ports — 3/4 in.-14 NPT (one threaded hole for both analog output and logic I/O)
Power Requirements:
Probe Heater ............................................................. 175 W nominal
Electronics ................................................................. 10 W nominal
Maximum ................................................................... 500 W
SPS 4000
Mounting .......................................................................... Integral to Oxymitter 5000
Remote from Oxymitter 5000
Materials of Construction:
Manifold/Electronics Enclosure .............................. Aluminum
Mounting Brackets ................................................... 316 stainless steel (SS)
Pneumatic Fittings .................................................... 1/8 in. brass NPT (SS optional)
Pneumatic Tubing ..................................................... 1/4 in. Teflon (SS optional)
Assembly Hardware ................................................. Galvanized and stainless steel
Humidity Range ............................................................... 100% relative humidity
Ambient Temperature Range ......................................... -40° to 149°F (-40° to 65°C)
Electrical Classification ................................................... NEMA 4X (IP56)
Explosion-Proof Option (both pending) ......................... CENELEC EExd IIB + H2
(Class 1, Div. 1, Group B,C,D)
Electrical Feedthroughs .................................................. 1/2 in. NPT
Input Power ...................................................................... 90 to 250 VAC, 50/60 Hz
Power Consumption ........................................................ 5 VA maximum
External Electrical Noise ................................................. EN 50 082-2, includes 4 KV electrostatic discharge
Handshake Signal
to/from Oxymitter 5000 (self-powered) .................. 5 V (5 mA maximum)
Cal Initiate Contact Input from Control Room ............ 5 VDC (self-powered)
Relay Outputs to Control Room ..................................... 5 to 30 VDC, Form A (SPST)
(one “In-Cal”, one “Cal Failed”)
Cabling Distance between
SPS 4000 and Oxymitter 5000 ................................. Maximum 1000 ft (303 m)
Piping Distance between SPS 4000
and Oxymitter 5000 .................................................. Maximum 300 ft (91 m)
Approximate Shipping Weight ....................................... 10 lbs (4.5 kg)
Fisher-Rosemount has satisfied all obligations coming from the European legislation to harmonize the product requirements in Europe.
IB-106-350
1-9
OXT5A Oxymitter 5000 In Situ Oxygen Transmitter
Oxygen Transmitter - Instruction Book
Code Sensing Probe Type
1 ANSI (N. American Std.) Probe with Ceramic Diffuser
2 ANSI Probe with Flame Arrestor and Ceramic Diffuser
3 ANSI Probe with Snubber Diffuser
4 DIN (European Std.) Probe with Ceramic Diffuser
5 DIN Probe with Flame Arrestor and Snubber Diffuser
6 DIN Probe with Snubber Diffuser
7 JIS (Japanese Std.) Probe with Ceramic Diffuser
8 JIS Probe with Flame Arrestor and Ceramic Diffuser
9 JIS Probe with Snubber Diffuser
Code Probe Assembly
0 18 in. (457 mm) Probe
1 18 in. (457 mm) Probe with Abrasive Shield
2 3 ft (0.91 m) Probe
3 3 ft (0.91 m) Probe with Abrasive Shield
4 6 ft (1.83 m) Probe
5 6 ft (1.83 m) Probe with Abrasive Shield
6 9 ft (2.74 m) Probe
7 9 ft (2.74 m) Probe with Abrasive Shield
8 12 ft (3.66 m) Probe
(1)
9 12 ft (3.66 m) Probe with Abrasive Shield
Table 1-2. Product Matrix
(1)
(1)
(1)
(1)
(1)
Code Mounting Hardware - Stack Side
0 No Mounting Hardware (“0” must be chosen under “Mounting Hardware - Probe Side” below)
1 New Installation - Square weld plate with studs
2 Mounting to Model 218 Mounting Plate (with Model 218 Shield Removed)
3 Mounting to Existing Model 218 Support Shield
4 Mounting to Other Mounting
(2)
5 Mounting to Model 132 Adaptor Plate
Code Mounting Hardware - Probe Side
0 No Mounting Hardware
1 Probe Only (ANSI) (N. American Std.)
2 New Bypass or Abrasive Shield (ANSI)
4 Probe Only (DIN) (European Std.)
5 New Bypass or Abrasive Shield (DIN)
7 Probe Only (JIS) (Japanese Std.)
8 New Bypass or Abrasive Shield (JIS)
Code Electronics Housing & Filtered Customer Termination - NEMA 4X, IP66
11 Standard Filtered Termination
12 Transient Protected Filtered Termination
Code Communications
FOUNDATION
1
fieldbus with Membrane Keypad
OXT5A3211111 (Contd) Example
IB-106-350
1-10
Table 1-2. Product Matrix (Continued)
Cont'd Code Language
1 English
2German
3 French
4 Spanish
5 Italian
Code Filtered Customer Termination
00 Specified as Part of Electronics Housing
Code Calibration Accessories
00 No Hardware
01 Calibration Gas Flowmeter and Reference Air Set
02 Intelligent Multiprobe Sequencer (Refer to Table 1-4)
XX Single Probe Sequencer – mounted to Oxymitter 5000 (Refer to Table 1-5)
Cont’d 1 00 XX Example
NOTES:
(1)
Recommended usages: High velocity particulates in flue stream, installation within 11.5 ft (3.5 m) of soot blowers or heavy salt cake buildup. Applications: Pulverized coal, recovery boilers, lime kiln. Regardless of application, abrasive shields with support brackets are recommended for 9 ft (2.74 m) and 12 ft (3.66 m) probe installations, particularly horizontal installations.
(2)
Where possible, specify SPS number; otherwise, provide details of the existing mounting plate as follows:
Plate with studs Bolt circle diameter, number, and arrangement of studs, stud thread, stud height above mounting plate.
Plate without studs Bolt circle diameter, number, and arrangement of holes, thread, depth of stud mounting plate with accessories.
Table 1-3. Calibration Gas Bottles
PART
NUMBER DESCRIPTION
1A99119G01 Two disposable calibration gas bottles — 0.4% and 8% O2,
balance nitrogen — 550 liters each, includes bottle rack*
1A99119G02 Two flow regulators for calibration gas bottles
*Calibration gas bottles cannot be shipped via airfreight.
When the bottles are used with “CALIBRATION RECOMMENDED” features, the bottles should provide 2 to 3 years of calibrations in normal service.
IB-106-350
1-11
Table 1-4. Intelligent Multiprobe Test Gas Sequencer Versions
NUMBER
PART
NUMBER DESCRIPTION
OF OXYMITTER
5000 UNITS
3D39695G01 IMPS 1
3D39695G02 IMPS 2
3D39695G03 IMPS 3
3D39695G04 IMPS 4
3D39695G05 IMPS w/115 V Heater 1
3D39695G06 IMPS w/115 V Heater 2
3D39695G07 IMPS w/115 V Heater 3
3D39695G08 IMPS w/115 V Heater 4
3D39695G09 IMPS w/220 V Heater 1
3D39695G10 IMPS w/220 V Heater 2
3D39695G11 IMPS w/220 V Heater 3
3D39695G12 IMPS w/220 V Heater 4
Table 1-5. Single Probe Autocalibration Sequencer Coding
OXYMITTER
REF AIR
SET
FITTINGS/
TUBING
5000
MOUNTING
BRASS/
CODE NO YES
TEFLONSTSTEEL HOR VERT
03 X X X
04 X X X
05 X X X
06 X X X
07 X X X
08 X X X
09 X X X
10 X X X
IB-106-350
1-12

SECTION II. INSTALLATION

Before installing this equipment, read the “Safety instructions for the wiring and installation of this apparatus” at the front of this Instruction Bulletin. Failure to follow the safety instructions could result in serious injury or death.
2-1. MECHANICAL INSTALLATION.
a. Selecting Location.
The location of the Oxymitter 5000 in the
1.
stack or flue is most important for maxi­mum accuracy in the oxygen analyzing pro­cess. The Oxymitter 5000 must be positioned so the gas it measures is repre­sentative of the process. Best results are normally obtained if the Oxymitter 5000 is positioned near the center of the duct (40 to 60% insertion). Longer ducts may require several Oxymitter 5000 units since the O can vary due to stratification. A point too near the wall of the duct, or the inside ra­dius of a bend, may not provide a repre­sentative sample because of the very low flow conditions. The sensing point should be selected so the process gas temperature falls within a range of 32° to 1300°F (0° to 704°C). Figure 2-1 through Figure 2-6 pro­vide mechanical installation references. The ambient temperature of the integral elec­tronics housing must not exceed 149°F (65°C).
Check the flue or stack for holes and air
2.
leakage. The presence of this condition will substantially affect the accuracy of the oxy­gen reading. Therefore, either make the necessary repairs or install the Oxymitter 5000 upstream of any leakage.
2 2
2
Ensure the area is clear of internal and ex-
3.
ternal obstructions that will interfere with installation and maintenance access to the membrane keypad. Allow adequate clear­ance for removal of the Oxymitter 5000 (Figure 2-1 or Figure 2-2).
Do not allow the temperature of the Oxymitter 5000 integral electronics to exceed 149°F (65°C) or damage to the unit may result.
b. Installation.
Ensure all components are available to in-
1.
stall the Oxymitter 5000. If equipped with the optional ceramic diffusor element, en­sure it is not damaged.
The Oxymitter 5000 may be installed intact
2.
as it is received.
NOTE
An abrasive shield is recommended for high velocity particulates in the flue stream (such as those in coal-fired boilers, kilns, and re­covery boilers). Vertical and horizontal brace clamps are provided for 9 ft and 12 ft (2.75 m and 3.66 m) probes to provide me­chanical support for the Oxymitter 5000. Refer to Figure 2-6.
Weld or bolt adaptor plate (Figure 2-5) onto
3.
the duct.
IB-106-350
2-1
E
R
E
H
P
S
O
-
M
T
G
A
N
I
N
E
R
V
A
I
W
S
O
-
L
P
X
E
N
R
SMART FAMILY
Rosemount Analytical Inc.
R
E
R
E
H
P
S
O
M
-
T
G
A
N
I
N
E
R
V
A
I
W
S
O
-
ALL DIMENSIONS ARE IN
INCHES WITH MILLIMETERS
IN PARENTHESES.
AMBIENT WEATHER CONDITIONS
NOTE:
INSULATE IF EXPOSED TO
L
P
X
E
N
-
I
TM
HART
800-433-6076
Orrville,OH 44667-0901
TM
OXYMITTER 4000
-
I
85.8
49.8
31.8
(808)
16
(406)
18 IN.
34
3 FT
(1265)
70
(864)
6 FT
DIM "B"
REF.
GAS
DIM "A"
E
V
I
L
A
T
I
U
C
R
I
C
N
E
H
W
T
H
G
I
T
P
-
E
E
K
500VA
5 Amps
3/4 NPT
ELEC CONN
REF AIR
PROBE
TABLE 2 INSTALLATION/REMOVA L
121.8
(2179)
106
(1778)
(3094)
(2692)
9 FT
157.8
(4008)
142
(3607)
12 FT
6 mm TUBEJIS
4-20 mA
85-264VAC 48-62 Hz
SERIAL NO.
VOLTS: WATTS:
TAG NO.
OUTPUT: LINE FUSE:
E
V
I
L
A
T
I
U
C
R
I
C
N
E
H
W
T
H
G
I
T
P
-
E
E
K
CAL GAS
ANSI 1/4 (6.35) TUBE
DIN 6 mm TUBE
12
(305)
6.52
(39)
1.55
(166)
2.89
(73)
COVER REMOVAL & ACCESS
12
(305)
.062 THK GASKET
PROCESS FLOW MUST BE IN
THIS DIRECTION WITH RESPECT
TO DEFLECTOR 3534B48G01
3535B18H02
3535B46H01
3535B45H01
ANSI
JIS
DIN
2.27 (58)
DIA MAX
CAL.
GAS
3.80(96)
ADD TO DIM “A”
FOR PROBE
DIM "B"
12.50 (318)
6.02 (153)
4.77 (121)
WITH
DIM "A"
STANDARD
DIFFUSER
5.14(131)
WITH CERAMIC
ADD TO DIM “A”
FOR PROBE WITH
REMOVAL ENVELOPE
JIS
SNUBBER
DIFFUSER
4512C18H01
DIN
4512C19H01
ARRESTOR
AND FLAME
CERAMIC DIFFUSER
ANSI
TABLE 1 MOUNTING FLANGE
4512C17H01
0.59
6.10
(155)
0.71
7.28
(185)
0.75
6.00
(153)
DIA
FLANGE
HOLE
(15)
5.12
(18)
5.71
(20)
4.75
(4) HOLES
DIA
(130)
(145)
(121)
EQ SP
ON BC
BOTTOM VIEW
26170013
Figure 2-1. Oxymitter 5000 Installation
IB-106-350
2-2
Figure 2-2. Oxymitter 5000 Installation (with SPS 4000)
IB-106-350
2-3
ALL DIMENSIONS ARE IN
INCHES WITH MILLIMETERS
IN PARENTHESES.
NOTE:
12.50
"B"
VAL ENVELOPE
DIM
O
REM
(318)
E
V
I
-
L
E
R
E
H
P
S
O
M
-
T
G
A
N
I
N
E
R
V
A
I
W
S
O
-
L
P
X
E
A
T
I
U
C
R
I
C
N
E
H
W
T
H
G
I
N
T
I
P
-
E
E
K
3/4 NPT ELECTRICAL CONNECTION
TUBE
TUBE
m
m
1/4 IN. TUBE
6 m
6 m
CAL.
GAS
4.77
6.02
(121)
CAL GAS*
(153)
ANSI
ANSI
REF AIR
DIN
9.25
ANSI
(235)
*ADD CHECK VALVE IN CAL GAS LINE
(24)
0.94
7.48
(190)
-3D39003
JIS
(19)
0.75
(235)
7.48
(190)
9.25
ACTURED TO ANSI, DIN, & JIS BOLT PATTERNS;
ANUF
NOTES:
1. THESE FLAT FACED FLANGES ARE M
"A"
DIM
AND ARE NOT PRESSURE RATED.
7.00
(178)
Y
(99)
BL
3.9
ASSEM
SNUBBER/DUST SEAL
0.2
(5)
INAL
3.6 (91) DIA NOM
ANSI
TABLE 4 ABRASIVE SHIELD
FLANGE
DIFFUSER/DUST SEAL ASSY
"B"
50.5
DIM
VALTABLE O
"A"
31
DIM
PROBE
INSTALLATION/REM
DEFLECTOR ASSY
9.00
(229)
FLANGE
DIA
86.5
(1283)
67
(787)
3 FT
0.75
HOLE
(2197)
(1702)
6 FT
(19)
7.50
DIA
(8) HOLES
158.5
122.5
(3112)
139
103
(2616)
9 FT
26170014
(190)
EQ SP
(4026)
(3531)
12 FT
ON BC
Figure 2-3. Oxymitter 5000 with Abrasive Shield
IB-106-350
2-4
Figure 2-4. Oxymitter 5000 Adaptor Plate Installation
IB-106-350
2-5
INSTALLATION FOR METAL
WALL STACK OR DUCT
CONSTRUCTION
INSTALLATION FOR MASONRY
WALL STACK CONSTRUCTION
MTG HOLES SHOWN ROTATED
o
45 OUT OF TRUE POSITION
WELD OR BOLT ADAPTOR PLATE TO METAL WALL OF STACK OR DUCT. JOINT MUST BE AIRTIGHT.
0.50 [13]
3.75 [95]
MIN DIA HOLE IN WALL
STACK OR DUCT METAL WALL
0.50 [13]
BOLT ADAPTOR
PLATE TO OUTSIDE
WALL SURFACE
FIELD WELD
PIPE TO
ADAPTOR PLATE
MTG HOLES
SHOWN ROTATED
o
45 OUT OF
TRUE POSITION
JOINT MUST
BE AIRTIGHT
OUTSIDE WALL
SURFACE
NOTE: ALL MASONRY STACK WORK AND JOINTS EXCEPT
ADAPTOR PLATE NOT FURNISHED BY ROSEMOUNT.
4.50 [114] O.D. REF
PIPE 4.00 SCHED 40 PIPE SLEEVE (NOT BY ROSEMOUNT) LENGTH BY CUSTOMER
MASONRY STACK WALL
2.50 [63.5]
WELD OR BOLT ADAPTOR PLATE TO METAL WALL OF STACK OR DUCT. JOINT MUST BE AIRTIGHT.
BOLT ADAPTOR
PLATE TO OUTSIDE
WALL SURFACE
MIN DIA HOLE IN WALL
STACK OR DUCT METAL WALL
NOTE: DIMENSIONS IN INCHES WITH
MILLIMETERS IN PARENTHESES.
JOINT MUST
BE AIRTIGHT
OUTSIDE WALL
SURFACE
Figure 2-5. Oxymitter 5000 Mounting Flange Installation
IB-106-350
2-6
FIELD WELD PIPE TO ADAPTOR PLATE
3.50 [89] O.D. REF
PIPE 3.00 SCHED 40 PIPE SLEEVE (NOT BY ROSEMOUNT) LENGTH BY CUSTOMER
MASONRY STACK WALL
o
60 MAX
o
30 MIN
4.12
(105)
BRACE BARS (NOT BY ROSEMOUNT)
2.00 (51)
1.00 (25)
2 HOLES - 0.625 (16) DIA FOR
0.50 (12) DIA BOLT
NOTE: DIMENSIONS IN INCHES WITH
MILLIMETERS IN PARETHESES.
VERTICAL BRACE CLAMP ASSY. HORIZONTAL BRACE CLAMP ASSY.
(BOTH BRACE CLAMP ASSEMBLIES ARE THE SAME. INSTALLATION AND LOCATION OF CLAMP ASSEMBLIES AND BRACE BARS TO BE DONE IN FIELD.)
5.62
(143)
ABRASIVE SHIELD
BY ROSEMOUNT
}
4.12
(105)
NOTE: BRACING IS FOR VERTICAL AND HORIZONTAL OXYMITTER 4000
INSTALLATION. EXTERNAL BRACING REQUIRED FOR 9 FT AND 12 FT (2.75 M AND 3.66 M) PROBES AS SHOWN ABOVE.
0.375
1.00 (25) MAX
Figure 2-6. Oxymitter 5000 Bracing Installation
If using the optional ceramic diffusor ele-
4.
ment, the vee deflector must be correctly oriented. Before inserting the Oxymitter 5000, check the direction of flow of the gas in the duct. Orient the vee deflector so the apex points upstream toward the flow (Figure 2-7). This may be done by loosen­ing the setscrews and rotating the vee de­flector to the desired position. Retighten the setscrews.
In vertical installations, ensure the system
5.
cable drops vertically from the Oxymitter 5000 and the conduit is routed below the level of the electronics housing. This drip loop minimizes the possibility that moisture will damage the electronics (Figure 2-8).
(10)
36.00 (914)
5.62
(143)
26170034
GAS FLOW DIRECTION
VEE
DEFLECTOR
APEX
DIFFUSION
FILTER
ELEMENT
SETSCREW
DEFLECTOR
VEE
22220020
Figure 2-7. Orienting the Optional Vee Deflector
IB-106-350
2-7
REPLACE INSULATION
AFTER INSTALLING
OXYMITTER 5000
INSULATION
LINE
VOLTAG E
FIELDBUS DIGITAL SIGNAL
E
V
I
-
L
A
E
R
T
E
I
H
P
S
O
M
T
A
N
I
N
E
R
V
I
S
O
L
U
C
-
G
A
W
P
X
R
I
C
N
E
H
W
-
T
H
E
G
I
T
N
I
P
-
E
E
K
DRIP LOOP
CAL.
GAS
ADAPTOR
PLATE
Figure 2-8. Installation with Drip Loop and Insulation Removal
If the system has an abrasive shield, check
6.
the dust seal gaskets. The joints in the two gaskets must be staggered 180°. Also, make sure the gaskets are in the hub grooves as the Oxymitter 5000 slides into the 15° forcing cone in the abrasive shield.
NOTE
If process temperatures will exceed 392°F (200°C), use anti-seize compound on stud threads to ease future removal of Oxymitter
5000.
Insert probe through the opening in the
7.
mounting flange and bolt the unit to the flange. When probe lengths selected are 9
STACK OR DUCT METAL WALL
28550007
or 12 ft (2.74 or 3.66 m), special brackets are supplied to provide additional support for the probe inside the flue or stack (Figure 2-6).
Uninsulated stacks or ducts may cause ambient temperatures around the elec­tronics to exceed 149°F (65°C), which may cause overheating damage to the electronics.
If insulation is being removed to access the
8.
duct work for Oxymitter 5000 mounting, make sure the insulation is replaced after­ward (Figure 2-8).
IB-106-350
2-8
2-2. ELECTRICAL INSTALLATION (FOR OXY-
MITTER 5000 WITHOUT SPS 4000). All wir-
ing must conform to local and national codes.
NOTE
To maintain CE compliance, ensure a good connection exists between the mounting flange bolts and earth.
Disconnect and lock out power before connecting the unit to the power supply.
Install all protective equipment covers and safety ground leads after installa­tion. Failure to install covers and ground leads could result in serious in­jury or death.
To meet the Safety Requirements of IEC 1010 (EC requirement), and ensure safe operation of this equipment, connection to the main electrical power supply must be made through a circuit breaker (min 10 A) which will disconnect all current­carrying conductors during a fault situation. This circuit breaker should also include a mechanically operated isolating switch. If not, then another ex­ternal means of disconnecting the supply from the equipment should be located close by. Circuit breakers or switches must comply with a recognized standard such as IEC 947.
a. Remove screw (36, Figure 6-1), gasket (37), and
cover lock (38). Remove terminal block cover (31).
b. Connect Line Voltage. Connect the line, or L1,
wire to the L1 terminal and the neutral, or L2 wire, to the N terminal (Figure 2-9). The Oxy­mitter 5000 automatically will configure itself for 90-250 VAC line voltage and 50/60 Hz. The power supply requires no setup.
c. Connect fieldbus Digital Signal and Logic I/O/
Calibration Handshake Leads (Figure 2-9).
Fieldbus Digital Signal. The fieldbus digital
1.
signal carries the O
value. This digital sig-
2
nal can also be used to communicate with the Oxymitter.
Logic I/O/Calibration Handshake. The out-
2.
put can either be an alarm or provide the handshaking to interface with an IMPS
4000. For more information, refer to para­graph 5-3 and the IMPS 4000 Intelligent Multiprobe Test Gas Sequencer Instruction Bulletin.
If autocalibration is not utilized, a common
3.
bi-directional logic contact is provided for any of the diagnostic alarms listed in Table 5-1. The assignment of alarms which
Figure 2-9. Terminal Block
IB-106-350
2-9
can actuate this contact can be modified to one of seven additional groupings listed in Table 3-1.
The logic contact is self-powered, +5 VDC, 340 ohm series resistance. An interposing relay will be required if this contact is to be utilized to annunciate a higher voltage de­vice, such as a light or horn, and may also be required for certain DCS input cards. A Potter & Brumfield R10S-E1Y1-J1.0K 3.2 MA DC or an equal interposing relay will be mounted where the contact wires termi­nate in the control/relay room.
Install all protective equipment covers and safety ground leads after installa­tion. Failure to install covers and ground leads could result in serious in­jury or death.
Disconnect and lock out power before connecting the unit to the power supply.
d.
Install terminal block cover (31, Figure 6-1) and secure with cover lock (38), gasket (37), and screw (36).
2-3. ELECTRICAL INSTALLATION (FOR OXY-
MITTER 5000 WITH SPS 4000). All wiring
must conform to local and national codes.
To meet the Safety Requirements of IEC 1010 (EC requirement), and ensure safe operation of this equipment, connection to the main electrical power supply must be made through a circuit breaker (min 10 A) which will disconnect all current­carrying conductors during a fault situation. This circuit breaker should also include a mechanically operated isolating switch. If not, then another ex­ternal means of disconnecting the supply from the equipment should be located close by. Circuit breakers or switches must comply with a recognized standard such as IEC 947.
a. Autocalibration Connections.
Autocalibration systems will inject gases into the probe and make electronic adjustments with no operator attention required. The SPS 4000 pro­vides solenoid valves and circuitry for calibrating a single Oxymitter 5000 unit.
The SPS 4000 autocalibration system utilizes the Oxymitter 5000’s bidirectional logic contact as a “handshake” signal; therefore, this signal is not available for alarming purposes.
The following contacts are provided through the autocalibration system:
One contact closure per probe from the
1.
control room to the SPS 4000 for “calibra­tion initiate”.
One contact output per probe from SPS
2.
4000 to the control room for “in calibra­tion” notification.
One contact per probe from SPS 4000 to
3.
the control room for “calibration failed” notification, which includes output from pressure switch indicating “cal gas bottles empty”.
IB-106-350
2-10
NOTE
The fieldbus digital signal can be configured to respond normally during any calibration, or can be configured to hold the last O
value upon the intitiation of
2
calibration. Factory default is for the fieldbus signal to operate normally throughout calibration. Holding the last O value may be useful if several probes are being averaged for the purpose of automatic control. Unless several probes are being averaged, always place any control loops using the O
signal into
2
manual prior to calibrating.
b. Other Electrical Connections.
Remove screws (26, Figure 6-11) securing
1.
terminal cover (27). Remove the cover to expose terminal strip (25).
Connect Line Voltage. Route the line volt-
2.
age leads into the manifold through the 1/2 in. line voltage conduit fitting (Figure 2-2) and out through the bottom of the manifold. Connect the LINE IN and NEU­TRAL leads to terminals L and N, respec­tively, as shown in Figure 2-10. Also, be
2
sure to connect the ground wire to the ground lug. The unit automatically will con­figure itself for 90 to 250 VAC line voltage and 50/60 Hz. The power supply requires no setup.
Connect Remote Contact Input Wiring. To
3.
set up the SPS 4000 to initiate a calibration from a remote location, route the 5 VDC calibration initiate contact input leads through the 1/2 in. NPT signal conduit port (Figure 2-2) and out through the bottom of the manifold. Connect the (+) and (-) CAL INITIATE leads to terminals 1 and 2, re­spectively, as shown in Figure 2-10.
Figure 2-10. SPS 4000 Electrical Connections
IB-106-350
2-11
Figure 2-11. Air Set, Plant Air Connection
Connect Relay Output Wiring. Relay con-
4.
nections are available to signal when the Oxymitter 5000 is in calibration or when calibration failed. Relay outputs can be connected to either indicator lights or a computer interface. The relay contacts are capable of handling a 5 to 30 VDC maxi­mum power source. The cabling require­ment is 1000 ft (303 m) maximum. Route the relay output leads through the 1/2 in. NPT signal conduit port (Figure 2-2) and out through the bottom of the manifold. Connect the (+) and (-) CAL FAIL leads and the (+) and (-) IN CAL leads to termi­nals 7, 8, 9, and 10, respectively, as shown in Figure 2-10.
Connect fieldbus Digital Signal Wiring.
5.
Route the signal wiring into the manifold through the 1/2 in. NPT signal conduit port (Figure 2-2) and out through the bottom of the manifold. Connect the (+) and (-) signal leads to terminals 3 and 4, respectively, as shown in Figure 2-10.
Once all connections are made, install ter-
6.
minal cover (27, Figure 6-11) and secure with screws (26).
2-4. PNEUMATIC INSTALLATION (FOR OXY-
MITTER 5000 WITHOUT SPS 4000).
a. Reference Air Package. After the Oxymitter
5000 is installed, connect the reference air set to the Oxymitter 5000. The reference air set should be installed in accordance with Figure 2-11.
Instrument Air (Reference Air): 10 psig (68.95 kPag) minimum, 225 psig (1551.38 kPag) maximum at 2 scfh (56.6 L/hr) maximum; less than 40 parts-per-million total hydrocarbons. Regulator outlet pressure should be set at 5 psi (35 kPa). Reference air can be supplied by the reference air set of the IMPS 4000.
If using an IMPS 4000, refer to the IMPS 4000 Intelligent Multiprobe Test Gas Sequencer In­struction Bulletin for the proper reference air connections.
IB-106-350
2-12
Do not use 100% nitrogen as a low gas (zero gas). It is suggested that gas for the low (zero) be between 0.4% and 2.0% O2. Do not use gases with hydrocarbon concentrations of more than 40 parts per million. Failure to use proper gases will result in erroneous readings.
b. Calibration Gas. Two calibration gas concen-
trations are used with the Oxymitter 5000, Low Gas - 0.4% O 2-12 for the Oxymitter 5000 connections.
2-5. PNEUMATIC INSTALLATION (FOR OXY-
MITTER 5000 WITH SPS 4000).
Do not use 100% nitrogen as a low gas (zero gas). It is suggested that gas for the low (zero) be between 0.4% and 2.0% O2. Do not use gases with hydrocarbon concentrations of more than 40 parts per million. Failure to use proper gases will result in erroneous readings.
and High Gas - 8% O2. See Figure
2
manifold (Figure 2-2). Connect O gas 1 (high calibration gas) to the HIGH CAL­GAS IN fitting and O calibration gas) to the LOW CAL GAS IN fit­ting. Ensure the calibration gas pressure is set at 20 psi (138 kPa).
b. Reference Air Connection (Optional). If the
reference air option (which includes the reference air flowmeter, pressure regulator, and necessary tubing and fittings) is used, connect the instru­ment air to the 1/4 in. fitting on the reference air pressure regulator (Figure 2-2). The pressure regulator is factory set at 20 psi (138 kPa). Re­adjust by turning the knob on the top of the regulator to obtain the desired pressure.
If the SPS 4000 does not have the reference air option, connect the reference air to the Oxymitter 5000 as instructed in paragraph 2-4.
calibration gas 2 (low
2
calibration
2
a. Calibration Gas Connections. Locate the
1/4 in. calibration gas fittings on the SPS 4000
Figure 2-12. Oxymitter 5000 Gas Connections
NOTE
Upon completing installation, make sure that the Oxymitter 5000 is turned on and operating prior to firing up the combustion process. Damage can result from having a cold Oxymitter 5000 exposed to the process gases.
During outages, and if possible, leave all Oxymitter 5000 units running to prevent condensation and premature aging from thermal cycling.
If the ducts will be washed down during outage, MAKE SURE to power down the Oxymitter 5000 units and remove them from the wash area.
IB-106-350
2-13/2-14
Install all protective equipment covers and safety ground leads before equip­ment startup. Failure to install covers and ground leads could result in serious injury or death.
NOTE
Refer to Appendices A, B, and C for field­bus information concerning the Oxymitter
5000.
3-1. GENERAL.
a. Verify Mechanical Installation.
Oxymitter 5000 is installed correctly (Section II, INSTALLATION).
b. Verify Terminal Block Wiring.
1.
Remove screw (36, Figure 6-1), gasket (37), and cover lock (38) that secure the
3 3

SECTION III. STARTUP

2.
3.
4.
Ensure the
5.
terminal block cover. Remove the cover to expose the terminal block (Figure 3-1).
Check the terminal block wiring. Be sure the power, fieldbus signal, and logic outputs are properly connected and secure.
Install the housing cover on the terminal block and secure with cover lock (38, Figure 6-1), gasket (37), and screw (36).
For an Oxymitter 5000 with an integrally mounted SPS 4000, remove screws (26, Figure 6-11) and terminal cover (27). Check that the power and signal termina­tions are properly connected to terminal strip (25) and secure according to instruc­tions in Section II, INSTALLATION.
Install terminal cover (27) and secure with screws (26).
Figure 3-1. Integral Electronics
IB-106-350
3-1
c. Verify Oxymitter 5000 Configuration (Figure
3-2). Located on the microprocessor board, the
top board, is a switch that controls the simulate enable status of the Oxymitter 5000. To allow the Oxymitter to be placed in simulation mode, place position two of SW2 in the ON position. Once the Oxymitter has been set to the simulate mode, switch position two of SW2 to the OFF position to remove the Oxymitter from simulate mode. Note that SW2 does not actually place the Oxy­mitter in simulate mode, it only allows the Oxy­mitter to be placed into simulate mode through the fieldbus interface.
Positions 1, 3, and 4 of SW 2 are not used, and should remain in the OFF position.
Refer to Appendix A for more information on using the AI block.
e.

Once the cell is up to operating temperature, the O2 percentage can be read:

Access TP5 and TP6 next to the membrane
1.
keypad. Attach a multimeter across TP5 and TP6. The calibration and process gases can now be monitored. Pressing the INC or DEC once will cause the output to switch from the process gas to the calibration gas. Pressing INC or DEC a second time will in­crease or decrease the calibration gas pa­rameter. If the keys have been inactive for one minute, the output reverts to the process gas. When a calibration has been initiated, the value at TP5 and TP6 is the % O by the cell. Oxygen levels, as seen on the multimeter, are:
seen
2
Typically, the probes sensing cell, which is in direct contact with the proc­ess gases, is heated to approximately 1357°F (736°C), and the external tem­perature of the probe body may exceed 842°F (450°C). If operating conditions also contain high oxygen levels and combustible gases, the Oxymitter 5000 may self-ignite.
d. O2 Range. The O
range of the Oxymitter is set
2
through the fieldbus interface using the AI block.
8.0% O2 = 8.0 VDC
0.4% O2 = 0.4 VDC
NOTE
The maximum reading available at TP5 and TP6 is 30 VDC. While the Oxymitter will measure oxygen concentrations up to 40%, the test point output will reach a maximum of 30 VDC at a 30% oxygen concentration.
OUNDATION
F
2.
fieldbus.
IB-106-350
3-2
SIMULATE
ENABLE
HEATER T/C
DIAGNOSTIC
ALARMS
HEATER
O2 CELL
CALIBRATION
CALIBRATION RECOMMENDED
O2 CELL mV +
TEST
POINTS
O2 CELL mV -
HEATER T/C +
HEATER T/C -
INC INC
HIGH
GAS
LOW GAS
DEC DEC
CAL
TEST GAS +
PROCESS -
% O2
TP1
TP2
TP3
TP4
TP5
TP6
1 2 3 4
NOT USED
OFF
NOT USED
NOT USED
SW2
ON
RED
DEFAULT
POSITION
(EX-FACTORY)
J1
YEL
GRN
ORG
NOT USED
ON
NOT USED
NOT USED
Figure 3-2. Oxymitter 5000 Defaults
IB-106-350
3-3
28550011
3-2. LOGIC I/O. This two-terminal logic contact can
be configured either as a solid-state relay-activated alarm or as a bi-directional calibration handshake signal to an IMPS 4000 or SPS 4000. The configura­tion of this signal depends on the setting of the IO_PIN_MODE parameter via fieldbus. The different modes available are described in Table 3-1. The IO_PIN_MODE and IO_PIN_STATE parameters are described in Table 3-2.
a. Alarm. When configured as an alarm, this signal
alerts you to an out-of-spec condition. The output is 5 V in series with a 340 ohm resistor. For op­timum performance, Rosemount recommends connecting the output to a Potter & Bromfield
3.2 mA DC relay (P/N R10S-E1Y1-J1.0K).
Of the ten modes in Table 3-1, modes 0 through 7 are the alarm modes. The factory default is
Table 3-1. Logic I/O Configuration
Mode Configuration
mode 5 for Oxymitter 5000 units without an IMPS 4000 or SPS 4000. In this mode, the out­put will signal when a unit alarm or a CALIBRATION RECOMMENDED indication occurs.
b. Calibration Handshake Signal. If using an op-
tional IMPS 4000 or SPS 4000, the logic I/O must be configured for calibration handshaking. Of the ten modes in Table 3-1, only modes 8 and 9 are configured for calibration handshaking. For an Oxymitter 5000 with an IMPS 4000 or an SPS 4000, the factory sets the default to mode 8. In this mode, the logic I/O will be used to commu­nicate between the Oxymitter 5000 and se­quencer and to signal the sequencer when a CALIBRATION RECOMMENDATION indica­tion occurs.
0 The unit is not configured for any alarm condition.
1 The unit is configured for a Unit Alarm.
2 The unit is configured for Low O2.
3 The unit is configured for both a Unit Alarm and Low O2.
4 The unit is configured for a High AC Impedance/CALIBRATION RECOMMENDED.
5* The unit is configured for both a Unit Alarm and a High AC Impedance/CALIBRATION
RECOMMENDED.
6 The unit is configured for both a Low O2 and High AC Impedance/CALIBRATION RECOMMENDED.
7 The unit is configured for a Unit Alarm, a Low O2, and a High AC Impedance/CALIBRATION
RECOMMENDED.
8** The unit is configured for a calibration handshake with IMPS 4000 or SPS 4000. CALIBRATION
RECOMMENDED will initiate the calibration cycle.
9 The unit is configured for a calibration handshake. CALIBRATION RECOMMENDED will not initiate the
calibration cycle with the IMPS 4000 or SPS 4000.
* The default condition for an Oxymitter 5000 without an IMPS 4000 or SPS 4000.
** The default condition for an Oxymitter 5000 with an IMPS 4000 or SPS 4000.
IB-106-350
3-4
Table 3-2. Logic I/O Parameters
Parameter Definition Range
Parameter
Number
IO_PIN_MODE This parameter represents the operating mode of the
discrete IO pin of the transmitter.
IO_PIN_STATE This parameter represents the current state of the
transmitter’s discrete IO pin. 0=FALSE, 1=TRUE.
3-3. RECOMMENDED CONFIGURATION.
a. Fieldbus Signal Upon Critical Alarm. When a
critical alarm occurs which causes the O2 reading to become unstable or unreliable, the Oxymitter will flag the O
reading. All further O2 readings
2
will be flagged as Out Of Service until the prob­lem has been corrected.
If the O
measurement is being utilized as part of
2
an automatic control loop, the loop should be placed in manual upon this failure event, or other appropriate action should be taken.
b. Calibration. Rosemount recommends utilizing
an autocalibration system, actuated by the “cali­bration recommended” diagnostic. New O may operate for more than a year, but older cells may require recalibration every few weeks as they near the end of their life. This strategy en­sures that the O
reading is always accurate, and
2
eliminates many unnecessary calibrations based on calendar days or weeks since previous cali­bration. When utilizing the SPS 4000 or the IMPS 4000, consider wiring some or all associ­ated alarm contacts.
cells
2
1-10 40
0-1 41
CALIBRATION INITIATE. Contact from
1.
the control room to an SPS 4000 or IMPS 4000 (one per probe) provides the ability to manually initiate a calibration at any time from the control room. Note that calibra­tions can also be initiated via fieldbus or from the keypad on the Oxymitter 5000.
IN CALIBRATION. One contact per
2.
probe provides notification to the control room that the “calibration recommended” diagnostic has initiated an automatic cali­bration through the SPS 4000 or IMPS
4000. If the O
signal is being utilized in an
2
automatic control loop, this contact should be utilized to place the control loop into manual during calibration.
CALIBRATION FAILED. One contact
3.
per probe from and SPS 4000 or IMPS 4000 to the control room for notification that the calibration procedure failed. Grouped with this alarm is an output from a pressure switch that indicates when the calibration gas bottles are empty.
IB-106-350
3-5
3-4. POWER UP.
a. Startup Display. When power is applied to the
probe, the cell heater turns on. It takes approxi­mately one half hour for the cell to heat to oper­ating temperature. This condition is indicated by the top four LEDs (DIAGNOSTIC ALARMS) on the membrane keypad (Figure 3-3). Starting
with the CALIBRATION LED, the LEDs light in ascending order until all four LEDs are on. At this point, all four turn off and the cycle starts again. This ramp cycle continues until the cell is up to operating temperature.
b. Operating Display. The ramp cycle turns into a
cycle where the diagnostic LEDs light in se­quence from the top to the bottom, one at a time.
HEATER T/C
DIAGNOSTIC
ALARMS
CALIBRATION RECOMMENDED
TEST
POINTS
INC INC
HIGH
LOW
GAS
GAS
DEC DEC
HEATER
O2 CELL
CALIBRATION
O2 CELL mV +
O2 CELL mv ­HEATER T/C + HEATER T/C -
CAL
TEST GAS +
PROCESS -
% O2
TP1
TP2
TP3
TP4
TP5
TP6
SW2
After the bottom LED turns on, the sequence starts again at the top with the HEATER T/C LED (Figure 3-3).
Error. If there is an error condition at
1.
startup, one of the diagnostics LEDs will be blinking. Refer to Section V, TROUBLE­SHOOTING, to determine the cause of the error. Clear the error, cycle power, and the operating display should return.
Keypad. The five membrane keys on the
2.
membrane keypad are only used during calibration to adjust the high and low gas and to initiate the calibration sequence (Figure 3-4).
HEATER T/C
HEATER
O CELL
2
ON
J1
YEL
RED
GRN
ORG
CALIBRATION
HEATER T/C
HEATER
O CELL
2
CALIBRATION
1
2 3 4 1 2 3 4
LIGHTING SEQUENCE DURING NORMAL OPERATION
1
2 3 4 1 2 3 4
LIGHTING SEQUENCE DURING WARM-UP
Figure 3-3. Startup and Normal Operation
IB-106-350
3-6
28550012
HEATER T/C
DIAGNOSTIC
ALARMS
CALIBRATION
CALIBRATION REQUIRED
02 CELL mV +
TEST
POINTS
02 CELL mv ­HEATER T/C + HEATER T/C -
HEATER
02 CELL
3-5. START UP OXYMITTER 5000 CALIBRA-
TION. Refer to Section VI, MAINTENANCE AND
SERVICE, for calibration instructions.
3-6. IMPS 4000 CONNECTIONS. See the IMPS 4000
Intelligent Multiprobe Test Gas Sequencer Instruc­tion Bulletin for wiring and pneumatic connections.
INC INC
HIGH
DEC DEC
GAS
LOW GAS
TEST GAS +
PROCESS -
Figure 3-4. Calibration Keys
CAL
%02
IB-106-350
3-7/3-8
4 4

SECTION IV. OPERATION FROM LOCAL KEYPAD

4-1. GENERAL.
a. Overview. Ensure the Oxymitter 5000 is at
normal operation. The diagnostic LEDs will dis­play the operating cycle. All other LEDs should be off (Figure 4-1).
DIAGNOSTIC ALARM LEDS. If there
1.
is an error in the system, one of these LEDs will flash various blink codes (Section V, TROUBLESHOOTING). In the case of multiple errors, only one will be displayed based on a priority system. Correct the problem and cycle power. The operating display will return or the next error will be displayed. The alarms are:
HEATER T/C HEATER O2 CELL CALIBRATION
CALIBRATION
2.
RECOMMENDED LED. Turns on when the system determines a calibration is recommended.
TEST POINTS. Test points 1 through 6
3.
will allow you to monitor with a multimeter: the heater thermocouple, O and the process O
.
2
2
cell millivolt,
(a) TP1 and TP2 monitor the oxygen cell
millivolt output which equates to the percentage of oxygen present.
(b) TP3 and TP4 monitor the heater
thermocouple.
(c) TP5 and TP6 monitor the process gas
or the calibration gas parameter. The maximum reading available from these test points is 30 VDC. This corresponds to 30% oxygen concentrations.
CAL LED. The CAL LED is on steady or
4.
flashing during calibration. Further infor­mation is available in Section VI, MAIN­TENANCE AND SERVICE.
Keys.
5.
(a) INC and DEC. The INC and DEC
keys are used to set the values of the calibration gases. Attach a multimeter across TP5 and TP6. The calibration and process gases can now be moni­tored. Pressing the INC or DEC once will cause the output to switch from the process gas to the calibration gas.
HEATER T/C
DIAGNOSTIC
ALARMS
CALIBRATION RECOMMENDED
TEST
POINTS
INC INC
HIGH
LOW
GAS
GAS
DEC DEC
HEATER
O2 CELL
CALIBRATION
O2 CELL mV +
O2 CELL mv -
HEATER T/C +
HEATER T/C -
CAL
TEST GAS +
PROCESS -
% O2
HEATER T/C
HEATER
O CELL
2
CALIBRATION
TP1
TP2
TP3
TP4
TP5
TP6
SW2
ON
J1
YEL
RED
GRN
ORG
CAL LED
Figure 4-1. Normal Operation
IB-106-350
4-1
2 3 4 1 2 3 4
1
LIGHTING SEQUENCE DURING NORMAL OPERATION
28550013
Pressing INC or DEC a second time will increase or decrease the calibra­tion gas parameter. If the keys have been inactive for one minute, the out­put reverts to the process gas. When a calibration has been initiated, the value at TP5 and TP6 is the % O seen by the cell. Oxygen levels, as seen on the multimeter, are:
8.0% O
0.4% O
= 8.0 volts DC
2
= 0.4 volts DC
2
(b) CAL. The CAL key can:
1 Initiate a calibration.
2 Sequence through calibration.
2
3 Abort the calibration.
b. Model 751 Remote Powered Loop LCD Dis-
play (Optional). Refer to Remote Powered
Loop LCD manual for calibration and operation.
IB-106-350
4-2

SECTION V. TROUBLESHOOTING

Install all protective equipment covers and safety ground leads after trouble­shooting. Failure to install covers and ground leads could result in serious in­jury or death.
5 5
will flash a code that will correspond to an error message. Only one LED will blink at a time. An alarm code guide is provided inside the screw cover for the electronics. All alarm indications will be available via fieldbus. When the error is corrected and/or power is cycled, the diagnostic alarms will clear or the next error on the priority list will appear.
5-1. GENERAL. The troubleshooting section describes
how to identify and isolate faults that may develop in the Oxymitter 5000. Also, additional troubleshooting information is provided in paragraph 5-5 for those units with the optional SPS 4000. When trouble­shooting the Oxymitter 5000, reference the following information.
a. Grounding. It is essential that adequate
grounding precautions are taken when installing the system. Thoroughly check both the probe and electronics to ensure the grounding quality has not degraded during fault finding. The system provides facilities for 100% effective grounding and the total elimination of ground loops.
b. Electrical Noise. The Oxymitter 5000 has been
designed to operate in the type of environment normally found in a boiler room or control room. Noise suppression circuits are employed on all field terminations and main inputs. When fault finding, evaluate the electrical noise being gener­ated in the immediate circuitry of a faulty system. Also, ensure all cable shields are connected to earth.
c. Loose Integrated Circuits. The Oxymitter
5000 uses a microprocessor and supporting inte­grated circuits (IC). If the electronics are handled roughly during installation or located where subjected to severe vibration, the ICs could work loose. Before troubleshooting the system, ensure all ICs are fully seated.
d. Electrostatic Discharge. Electrostatic discharge
can damage the ICs used in the electronics. Be­fore removing or handling the processor board or the ICs, ensure you are at ground potential.
5-2. ALARM INDICATIONS. The majority of the
fault conditions for the Oxymitter 5000 will be indi­cated by one of the four LEDs referred to as diagnos­tic, or unit, alarms on the operator’s keypad. An LED
5-3. ALARM CONTACTS.
a. If autocalibration is not utilized, a common bi-
directional logic contact is provided for any of the diagnostic alarms listed in Table 5-1. The as­signment of alarms which can actuate this contact can be modified to one of seven additional groupings listed in Table 7-1.
The logic contact is self-powered, +5 VDC, 340 ohm series resistance. An interposing relay will be required if this contact is to be utilized to annunciate a higher voltage device, such as a light or horn, and may also be required for cer­tain DCS input cards. A Potter & Brumfield R10S-E1Y1-J1.0K 3.2 MA DC or an equal in­terposing relay will be mounted where the con­tact wires terminate in the control/relay room.
b. If autocalibration systems are utilized, the bidi-
rectional logic contact is utilized as a “hand­shake” signal between the autocalibration system (SPS 4000 or IMPS 4000) and is unavailable for alarming purposes. The following additional contacts are provided through the autocalibration systems:
SPS 4000 and IMPS 4000, 1-4 probes.
1.
(a) One contact closure per probe from
the control room to the SPS 4000 or IMPS 4000 for “calibration initiate”.
(b) One contact output per probe from
SPS 4000 or IMPS 4000 to the con­trol room for “in calibration” notifica­tion.
(c) Once contact output per probe from
the SPS 4000 or IMPS 4000 to the control room for “calibration failed” notification. (Includes output from pressure switch indicating “cal gas bottles empty”.)
IB-106-350
5-1
Additional IMPS Alarm Contacts.
2.
indicated using the four diagnostic, or unit, alarms. The pattern of repeating blinks will define the prob-
(a) One contact per IMPS 4000 for “low
calibration gas flowing”.
(b) One contact per IMPS 4000 for “high
calibration gas flowing”.
5-4. IDENTIFYING AND CORRECTING ALARM
INDICATIONS. Faults in the Oxymitter 5000 are
lem. A condensed table of the errors and the corre­sponding blink codes can be found on the inside right cover of the electronics housing. Table 5-1 also iden­tifies the blink code and fault status of each LED as well as the output of the fieldbus digital signal line and a fault number that corresponds to the trouble­shooting instructions provided in this section.
Table 5-1. Diagnostic/Unit Alarm Fault Definitions
LED FLASHES STATUS PV STATUS FAULT SELF-CLEARING
HEATER T/C 1 OPEN BAD 1 NO
2 SHORTED BAD 2 NO
3 REVERSED BAD 3 NO
4 A/D COMM ERROR BAD 4 NO
HEATER 1 OPEN BAD 5 NO
2 HIGH HIGH TEMP BAD 6 YES
3 HIGH CASE TEMP BAD 7 YES
4 LOW TEMP BAD 8 NO
5 HIGH TEMP BAD 9 YES
O2 CELL 1 HIGH mV BAD 10 YES
3 BAD UNCERTAIN 11 YES
4 EEPROM CORRUPT BAD 12 NO
CALIBRATION 1 INVALID SLOPE UNCERTAIN 13 YES
2 INVALID CONSTANT UNCERTAIN 14 YES
3 LAST CALIBRATION
UNCERTAIN 15 YES
FAILED
** CALIBRATION RECOM-
GOOD YES
MENDED
* Critical alarm conditions will render the O2 measurement as unusable, and any of these events will cause the PV values to
be tagged Out of Service. Alarms which are not “self-clearing” will require recycling of power to the electronics.
** The CALIBRATION RECOMMENDED alarm flashes the Calibration Recommended alarm LED on the operator’s
keypad.
IB-106-350
5-2
a. Fault 1, Open Thermocouple. The HEATER
T/C LED flashes once, pauses for three seconds, and repeats (Figure 5-1).
HEATER T/C
DIAGNOSTIC
ALARMS
CALIBRATION RECOMMENDED
TEST
POINTS
INC INC
HIGH
LOW
GAS
GAS
DEC DEC
HEATER
O2 CELL
CALIBRATION
O2 CELL mV +
O2 CELL mv -
HEATER T/C +
HEATER T/C -
CAL
TEST GAS +
PROCESS -
% O2
SW2
TP1
TP2
TP3
TP4
TP5
TP6
Figure 5-1. Fault 1, Open Thermocouple
ON
J1
YEL
RED
28550014
GRN
ORG
Check connector J1. Ensure the connector
1.
is properly seated.
Using a multimeter, measure TP3+ to TP4-.
2.
If the reading is 1.2 VDC ±0.1 VDC, the thermocouple is open.
Remove power. Disconnect J1. Measure
3.
continuity across the red and yellow ther­mocouple leads.
The measurement should read approxi-
4.
mately 1 ohm.
If the thermocouple is open, see para-
5.
graph 6-7, Heater Strut Replacement.
IB-106-350
5-3
b. Fault 2, Shorted Thermocouple. The HEATER
T/C LED flashes twice, pauses for three seconds, and repeats (Figure 5-2).
HEATER T/C
DIAGNOSTIC
ALARMS
CALIBRATION RECOMMENDED
TEST
POINTS
INC INC
HIGH
LOW
GAS
GAS
DEC DEC
HEATER
O2 CELL
CALIBRATION
O2 CELL mV +
O2 CELL mv -
HEATER T/C +
HEATER T/C -
CAL
TEST GAS +
PROCESS -
% O2
SW2
TP1
TP2
TP3
TP4
TP5
TP6
Figure 5-2. Fault 2, Shorted Thermocouple
ON
J1
YEL
RED
GRN
28550015
ORG
Using a multimeter, measure across TP3+
1.
and TP4-.
If the reading is 0 ±0.5 mV, then a shorted
2.
thermocouple is likely.
Remove power and disconnect J1.
3.
Measure from TP3+ to TP4-. The reading
4.
should be approximately 20 Kohms.
If so, the short is not on the PC board. See
5.
paragraph 6-7, Heater Strut Replacement.
IB-106-350
5-4
c. Fault 3, Reversed Thermocouple. The
HEATER T/C LED flashes three times, pauses for three seconds, and repeats (Figure 5-3).
HEATER T/C
DIAGNOSTIC
ALARMS
CALIBRATION RECOMMENDED
TEST
POINTS
INC INC
HIGH
LOW
GAS
GAS
DEC DEC
HEATER
O2 CELL
CALIBRATION
O2 CELL mV +
O2 CELL mv ­HEATER T/C + HEATER T/C -
CAL
TEST GAS +
PROCESS -
% O2
TP1
TP2
TP3
TP4
TP5
TP6
SW2
ON
Figure 5-3. Fault 3, Reversed Thermocouple
J1
YEL
RED
GRN
28550016
ORG
Using a multimeter, measure TP3+ to TP4-.
1.
If the reading is negative, the thermocouple
2.
wiring is reversed.
Check red and yellow wires in the J1 con-
3.
nector for the proper placement.
If the wiring is correct, the fault is in the PC
4.
board. See paragraph 6-5b, Electronic As­sembly Replacement.
IB-106-350
5-5
d. Fault 4, A/D Comm Error. The HEATER T/C
LED flashes four times, pauses for three seconds, and repeats (Figure 5-4).
DIAGNOSTIC
ALARMS
HEATER T/C
HEATER
O2 CELL
CALIBRATION
SW2
CALIBRATION RECOMMENDED
TEST
POINTS
INC INC
HIGH
LOW
GAS
GAS
DEC DEC
O2 CELL mV +
O2 CELL m ­HEATER T/C + HEATER T/C -
CAL
TEST GAS +
PROCESS -
TP1
V
TP2
TP3
TP4
TP5
TP6
% O2
Figure 5-4. Fault 4, A/D Comm Error
ON
RED
29770006
J1
YEL
GRN
ORG
Call the factory for assistance.
1.
IB-106-350
5-6
HEATER T/C
DIAGNOSTIC
ALARMS
CALIBRATION RECOMMENDED
TEST
POINTS
INC INC
HIGH
LOW
GAS
GAS
DEC DEC
HEATER
O2 CELL
CALIBRATION
O2 CELL mV +
O2 CELL mv -
HEATER T/C +
HEATER T/C -
CAL
TEST GAS +
PROCESS -
% O2
TP1
TP2
TP3
TP4
TP5
TP6
SW2
e. Fault 5, Open Heater. The HEATER LED
flashes once, pauses for three seconds, and re­peats (Figure 5-5).
Remove power. Remove the electronic as-
1.
ON
J1
YEL
RED
GRN
ORG
sembly per paragraph 6-5b, Electronic As­sembly Replacement.
Using a multimeter, measure across the
2.
heater connector J8.
The measurement should be approximately
3.
72 ohms. If the heater is open, see para­graph 6-7, Heater Strut Replacement.
.
28550017
Figure 5-5. Fault 5, Open Heater
IB-106-350
5-7
f. Fault 6, High High Heater Temp. The
HEATER LED flashes twice, pauses for three seconds, and repeats (Figure 5-6).
HEATER T/C
DIAGNOSTIC
ALARMS
CALIBRATION RECOMMENDED
TEST
POINTS
INC INC
HIGH
LOW
GAS
GAS
DEC DEC
HEATER
O2 CELL
CALIBRATION
O2 CELL mV +
O2 CELL mv -
HEATER T/C +
HEATER T/C -
CAL
TEST GAS +
PROCESS -
% O2
TP1
TP2
TP3
TP4
TP5
TP6
SW2
ON
Figure 5-6. Fault 6, High High Heater Temp
J1
YEL
RED
GRN
28550018
ORG
The high high heater temp alarm will acti-
1.
vate when the thermocouple produces a voltage of 37.1 mV (1652°F/900°C).
The triac and the temperature control may
2.
be at fault.
Remove power. Allow Oxymitter 5000 to
3.
cool for five minutes. Restore power.
If the condition repeats, replace the
4.
electronic assembly per paragraph 6-5b, Electronic Assembly Replacement.
IB-106-350
5-8
g. Fault 7, High Case Temp. The HEATER LED
flashes three times, pauses for three seconds, and repeats (Figure 5-7).
HEATER T/C
DIAGNOSTIC
ALARMS
CALIBRATION RECOMMENDED
TEST
POINTS
INC INC
HIGH
LOW
GAS
GAS
DEC DEC
HEATER
O2 CELL
CALIBRATION
O2 CELL mV +
O2 CELL mv ­HEATER T/C + HEATER T/C -
CAL
TEST GAS +
PROCESS -
% O2
TP1
TP2
TP3
TP4
TP5
TP6
Figure 5-7. Fault 7, High Case Temp
SW2
ON
RED
28550019
J1
YEL
GRN
ORG
If the case temperature exceeds 185°F
1.
(85°C), the temperature control will shut off and a fieldbus alarm will be sent.
This signifies that the environment where
2.
the Oxymitter 5000 is installed exceeds the ambient temperature requirements or that heat due to convection is causing case tem­perature to rise above the limit.
Placing a spool piece between the stack
3.
flange and the Oxymitter 5000 flange may eliminate this problem.
If a spool piece does not solve the problem,
4.
relocation is the only solution.
IB-106-350
5-9
h. Fault 8, Low Heater Temp. The HEATER
LED flashes four times, pauses for three seconds, and repeats (Figure 5-8).
HEATER T/C
DIAGNOSTIC
ALARMS
CALIBRATION RECOMMENDED
TEST
POINTS
INC INC
HIGH
LOW
GAS
GAS
DEC DEC
HEATER
O2 CELL
CALIBRATION
O2 CELL mV +
O2 CELL mv -
HEATER T/C +
HEATER T/C -
CAL
TEST GAS +
PROCESS -
% O2
SW2
TP1
TP2
TP3
TP4
TP5
TP6
Figure 5-8. Fault 8, Low Heater Temp
ON
RED
28550020
The low heater temperature alarm is active
1.
when the thermocouple reading has dropped below 28.6 mV.
J1
If the thermocouple reading continues to
2.
ramp downward for one minute and does not return to the temperature set point of
YEL
GRN
ORG
approximately 29.3 mV, then an Open Heater fault will be displayed.
Power down the electronics. Remove the
3.
electronic assembly per paragraph 6-5b, Electronic Assembly Replacement. Using a multimeter, measure across the heater con­nector, J8.
If the heater is good, the reading will be
4.
aproximately 70 ohms. If the heater is open, see paragraph 6-7, Heater Strut Replacement.
IB-106-350
5-10
i. Fault 9, High Heater Temp. The HEATER
LED flashes five times, pauses for three seconds, and repeats (Figure 5-9).
HEATER T/C
DIAGNOSTIC
ALARMS
CALIBRATION RECOMMENDED
TEST
POINTS
INC INC
HIGH
LOW
GAS
GAS
DEC DEC
HEATER
O2 CELL
CALIBRATION
O2 CELL mV +
O2 CELL mv ­HEATER T/C +
HEATER T/C -
CAL
TEST GAS +
PROCESS -
% O2
SW2
TP1
TP2
TP3
TP4
TP5
TP6
Figure 5-9. Fault 9, High Heater Temp
ON
RED
J1
YEL
GRN
28550021
ORG
If the thermocouple produces a voltage in
1.
excess of approximately 30.7 mV, the high heater temp alarm activates.
An alarm is sent via fieldbus.
2.
This alarm is self-clearing. When tempera-
3.
ture control is restored and the thermocou­ple voltage returns to the normal range, the alarm clears.
If the temperature continues to rise, the next
4.
alarm will be the high high heater temp alarm.
IB-106-350
5-11
j. Fault 10, High Cell mV. The O2 CELL flashes
once, pauses for three seconds, and repeats (Figure 5-10).
HEATER T/C
DIAGNOSTIC
ALARMS
CALIBRATION RECOMMENDED
TEST
POINTS
INC INC
HIGH
LOW
GAS
GAS
DEC DEC
HEATER
O2 CELL
CALIBRATION
O2 CELL mV +
O2 CELL mv -
HEATER T/C +
HEATER T/C -
CAL
TEST GAS +
PROCESS -
% O2
TP1
TP2
TP3
TP4
TP5
TP6
Figure 5-10. Fault 10, High Cell mV
SW2
ON
RED
J1
YEL
GRN
28550022
ORG
Using a multimeter, measure across TP1+
1.
to TP2-.
If you measure 1.2 VDC, the cell wires, ei-
2.
ther orange or green, have become detached from the input.
One possible cause is connector J1. The or-
3.
ange or green wire has come loose from the crimped connection.
The platinum pad could also be at fault. The
4.
pad could have broken free from the back of the cell.
Replace heater strut per paragraph 6-7,
5.
Heater Strut Replacement. If necessary, re­place the cell flange assembly per para­graph 6-8, Cell Replacement.
IB-106-350
5-12
k. Fault 11, Bad Cell. The O2 CELL flashes three
times, pauses for three seconds, and repeats (Figure 5-11).
HEATER T/C
DIAGNOSTIC
ALARMS
CALIBRATION RECOMMENDED
TEST
POINTS
INC INC
HIGH
LOW
GAS
GAS
DEC DEC
HEATER
O2 CELL
CALIBRATION
O2 CELL mV +
O2 CELL mv ­HEATER T/C +
HEATER T/C -
CAL
TEST GAS +
PROCESS -
% O2
Figure 5-11. Fault 11, Bad Cell
TP1
TP2
TP3
TP4
TP5
TP6
SW2
ON
RED
28550023
J1
YEL
GRN
ORG
The bad cell alarm activates when the cell
1.
exceeds the maximum resistance value.
The cell should be replaced. See paragraph
2.
6-8, Cell Replacement, for cell replacement instructions.
IB-106-350
5-13
l. Fault 12, EEPROM Corrupt. The O2 CELL
LED flashes four times, pauses for three seconds, and repeats (Figure 5-12).
HEATER T/C
DIAGNOSTIC
ALARMS
CALIBRATION RECOMMENDED
TEST
POINTS
INC INC
HIGH
LOW
GAS
GAS
DEC DEC
HEATER
O2 CELL
CALIBRATION
O2 CELL mV +
O2 CELL mv -
HEATER T/C +
HEATER T/C -
CAL
TEST GAS +
PROCESS -
% O2
SW2
TP1
TP2
TP3
TP4
TP5
TP6
Figure 5-12. Fault 12, EEPROM Corrupt
ON
RED
J1
YEL
GRN
28550024
ORG
This alarm can occur if the EEPROM is
1.
changed for a later version. At power up, the EEPROM is not updated.
To correct this problem, power down and
2.
then restore power. The alarm should clear.
If the alarm occurs while the unit is running,
3.
there is a hardware problem on the micro­processor board.
If cycling the power does not clear the
4.
alarm, see paragraph 6-5b, Electronic Assembly Replacement.
IB-106-350
5-14
m. Fault 13, Invalid Slope. The CALIBRATION
LED flashes once, pauses for three seconds, and repeats (Figure 5-13).
HEATER T/C
DIAGNOSTIC
ALARMS
CALIBRATION RECOMMENDED
TEST
POINTS
INC INC
HIGH
LOW
GAS
GAS
DEC DEC
HEATER
O2 CELL
CALIBRATION
O2 CELL mV +
O2 CELL mv -
HEATER T/C +
HEATER T/C -
CAL
TEST GAS +
PROCESS -
% O2
TP1
TP2
TP3
TP4
TP5
TP6
Figure 5-13. Fault 13, Invalid Slope
SW2
ON
RED
28550025
J1
YEL
GRN
ORG
During a calibration, the electronics calcu-
1.
lates a slope value. If the value of the slope is less than 35 mV/deg or more than 52 mV/deg, the slope alarm will be active until the end of the purge cycle.
See paragraph 6-2, Calibration. Verify the
2.
calibration by carefully repeating it. Ensure the calibration gases match the calibration gas parameters. If you attach a multimeter to TP1+ and TP2-, sample gas measure­ments are:
8% O
23 mV
2
0.4% O
Power down the Oxymitter 5000 and re-
3.
85 mV
2
move it from the stack.
Replace the cell per paragraph 6-8, Cell
4.
Replacement.
IB-106-350
5-15
n. Fault 14, Invalid Constant. The CALIBRA-
TION LED flashes twice, pauses for three sec­onds, and repeats (Figure 5-14).
HEATER T/C
DIAGNOSTIC
ALARMS
CALIBRATION RECOMMENDED
TEST
POINTS
INC INC
HIGH
LOW
GAS
GAS
DEC DEC
HEATER
O2 CELL
CALIBRATION
O2 CELL mV +
O2 CELL mv ­HEATER T/C + HEATER T/C -
CAL
TEST GAS +
PROCESS -
% O2
SW2
TP1
TP2
TP3
TP4
TP5
TP6
Figure 5-14. Fault 14, Invalid Constant
ON
RED
J1
YEL
GRN
28550026
ORG
After a calibration has been performed, the
1.
electronics calculates a cell constant value.
If the cell constant value is outside of the
2.
range, -4 mV to 10 mV, the alarm will acti­vate. See paragraph 6-2, Calibration, and verify the last calibration was performed correctly.
Power down the Oxymitter 5000 and re-
3.
move it from the stack.
Replace the cell per paragraph 6-8, Cell
4.
Replacement.
IB-106-350
5-16
o. Fault 15, Last Calibration Failed. The CALI-
BRATION LED flashes three times, pauses for three seconds, and repeats (Figure 5-15).
HEATER T/C
DIAGNOSTIC
ALARMS
CALIBRATION RECOMMENDED
TEST
POINTS
INC INC
HIGH
LOW
GAS
GAS
DEC DEC
HEATER
O2 CELL
CALIBRATION
O2 CELL mV +
O2 CELL mv -
HEATER T/C +
HEATER T/C -
CAL
TEST GAS +
PROCESS -
% O2
TP1
TP2
TP3
TP4
TP5
TP6
SW2
ON
RED
28550027
Figure 5-15. Fault 15, Last Calibration Failed
J1
YEL
GRN
ORG
The last calibration failed alarm activates
1.
when the slope and constant values calcu­lated are out of range and the unit reverts to using the previous calibration values.
The cell should be replaced. See paragraph
2.
6-8, Cell Replacement, for cell replacement instructions.
IB-106-350
5-17
Install all protective equipment covers and safety ground leads after trouble­shooting. Failure to replace covers and ground leads could result in serious injury or death.
5-5. SPS 4000 TROUBLESHOOTING. Use the CAL
FAIL and IN CAL relay outputs to identify possible SPS 4000 faults.
a. If a calibration was not successfully completed,
the SPS 4000 sends a CAL FAIL contact indica­tion to the control room. To determine if the SPS 4000 caused the failed calibration, go to the Oxymitter 5000 site to view the keypad. Or, ac­cess the Oxymitter via fieldbus.
If no alarms are indicated on the keypad or
1.
via fieldbus, the calibration did not fail because of an Oxymitter 5000 fault. Therefore, a calibration gas flow problem occurred. Refer to Table 5-2 or Figure 5-16 to troubleshoot the SPS 4000.
TENANCE AND SERVICE, Also, verify your calibration gas setup.
(b) Perform another calibration and
monitor the process. If the calibration fails before both calibration gases finish sequencing, a gas flow problem exists. Refer to Table 5-2 or Figure 5-16 to troubleshoot the SPS 4000.
If the calibration setup is correct and the Oxymitter 5000 indicates an invalid slope fault (fault 12) before the gases are purged and a last calibration failed fault (fault 14) after the gases are purged, replace the Oxymitter 5000 cell per paragraph 6-8 in Section VI, MAINTENANCE AND SERVICE.
b. If a semi-automatic or manual calibration is be-
ing performed but no 5-30 VDC relay output contact (IN CAL or CAL FAIL) is being re­ceived by the control room, the interface board relays are malfunctioning. Replace the interface board per paragraph 6-10b.
If the LAST CAL FAILED alarm is indi-
2.
cated on the keypad or via fieldbus, the failure is due to either a bad Oxymitter 5000 cell or a calibration gas flow problem.
(a) Verify your calibration setup per
paragraph 6-2 in Section VI, MAIN-
NOTE
If the unit is performing frequent autocalibrations, investigate at the Oxymitter 5000 site or via fieldbus. This condition may indicate an aging cell in the Oxymitter 5000.
IB-106-350
5-18
Table 5-2. SPS 4000 Fault Finding
SYMPTOM CHECK FAULT REMEDY
No calibra­tion gas flow
Wiring Improper wire connections,
loose connections, or dam­aged wiring
Logic I/O Oxymitter 5000 logic I/O
not set for calibration hand-
Properly connect wiring or secure loose wiring connections; replace damaged wiring if necessary.
Set logic I/O to mode 8 via fieldbus using the IO_PIN_MODE parameter.
shaking with SPS 4000
Calibration gas lines be-
Clogged calibration gas line Replace clogged calibration gas line. tween cylinders and mani­fold
Calibration gas flowmeter knob
Calibration gas line between
Flowmeter knob not turned
counterclockwise to allow
flow
Turn calibration gas flowmeter knob counterclockwise to allow calibration gas to flow.
Clogged calibration gas line Replace clogged calibration gas line. manifold and calibration gas flowmeter
Fuse on power supply board Blown fuse Replace fuse per paragraph 6-10a.
Interface board operation Interface board not sending
signals
Replace interface board per paragraph 6-10b.
Check valve Clogged check valve Replace check valve per paragraph
6-10e.
Calibration gas line between
Clogged calibration gas line Replace calibration gas line. calibration gas flowmeter and check valve
Calibration gas flowmeter Clogged flowmeter Replace flowmeter per paragraph
6-10h.
Power supply output Power supply failure Replace power supply board per para-
graph 6-10b.
Solenoid Solenoid failure Replace solenoid per paragraph 6-10c.
Pressure switch Pressure switch failure Replace pressure switch per paragraph
6-10d.
IB-106-350
5-19
Figure 5-16. SPS 4000 Troubleshooting Flowchart (Sheet 1 of 2)
IB-106-350
5-20
SYMPTOM — NO TEST GAS FLOW (CONTINUED)
CONTINUED
FROM SHEET
1OF2
PLACE JUMPER BETWEEN CAL RET TERMINAL AND EITHER HI GAS OR LO GAS TERMINAL OF J3. SEE NOTE 1.
IS THERE
FLOW?
NO
USE METER (SEE NOTE 2) TO CHECK FOR SHORT BETWEEN CAL RET AND NO GAS TERMINALS OF J3.
IS THERE A SHORT?
YES
YES
INTERFACE BOARD IS NOT SENDING SIGNAL. REPLACE INTERFACE BOARD PER PARAGRAPH 6-10b.
DISCONNECT CAL GAS LINE AT CHECK VALVE.
NOTE 1:
NOTE 2:
NOTE 3:
NOTE 4:
SECURELY TIGHTEN ALL J3 SCREW TERMINALS ON POWER SUPPLY BOARD TO MAKE CONNECTIONS.
USE A SIMPSON MODEL 260 OR EQUIVALENT MULTIMETER.
IF REPLACING THE CHECK VALVE DOES NOT CORRECT THE PROBLEM, A CLOG COULD EXIST IN THE RED SILICON GAS TUBE WITHIN THE PROBE.
IF CHECKING CAL GAS 1 SOLENOID CONNECTOR J5, ENSURE CAL RET TERMINAL IS JUMPERED TO HI GAS TERMINAL OF J3. IF CHECKING CAL GAS 2 SOLENOID CONNECTOR J4, ENSURE CAL RET TERMINAL IS JUMPERED TO LO GAS TERMINAL OF J3.
IS THERE
FLOW?
YES
REPLACE CHECK VALVE PER PARAGRAPH 6-10e. SEE NOTE 3.
NO
DISCONNECT SOLENOID FROM POWER SUPPLY BOARD AND USE METER TO MEASURE ACROSS TWO OUTER PINS OF BOARD CONNECTOR. SEE NOTE 4. CHECK BOTH SOLENOIDS.
IS THERE +30VDC?
YES
DISCONNECT CAL GAS LINE AT MANIFOLD OUTPUT PORT.
IS THERE
FLOW?
YES
REPLACE PRESSURE SWITCH PER PARAGRAPH 6-10d.
NO
NO
REPLACE POWER SUPPLY BOARD PER PARAGRAPH 6-10b.
REPLACE SOLENOID PER PARAGRAPH 6-10c.
NO
DISCONNECT CAL GAS LINE AT TOP FITTING OF CAL GAS FLOWMETER.
IS THERE
FLOW?
NO
REPLACE FAULTY CAL GAS FLOWMETER PER PARAGRAPH 6-10h.
YES
REPLACE CLOGGED CAL GAS LINE BETWEEN CAL GAS FLOWMETER AND CHECK VALVE.
Figure 5-16. SPS 4000 Troubleshooting Flowchart (Sheet 2 of 2)
IB-106-350
5-21/5-22
27610002
Loading...