Rosemount 4081FG 2-Wire In Situ O2 Analyzer (550° to 1600°C) with FOUNDATION Fieldbus Communications-Orig. Issue Manuals & Guides

Page 1
MODEL 4081FG TWO-WIRE IN SITU OXYGEN ANALYZER (550°°°° to 1600°°°°C) WITH FOUNDATION FIELDBUS COMMUNICATIONS
Two-Wire In Situ Oxygen Analyzer
Part no. Serial no. Order no.
%
29760018
Page 2
Page 3

ROSEMOUNT WARRANTY

The oxygen probe is designed for industrial applications. Treat with care to avoid physical damage. The probe contains components made from ceramic, which are susceptible to shock when mishandled. THE WARRANTY DOES NOT COVER DAMAGE FROM MISHANDLING. WARRANTY IS VOID IF OUTER PROTECTION TUBE IS BROKEN.
Rosemount warrants that the equipment manufactured and sold by it will, upon shipment, be free of defects in workmanship or material. Should any failure to conform to this warranty become apparent during a period of one year after the date of shipment, Rosemount shall, upon prompt written notice from the purchaser, correct such nonconformity by repair or replacement, F.O.B. factory of the defective part or parts. Correction in the ma nner provided above shall constitute a f ulfillment of all liabilities of Rosemount with re spect to the q uality of the equipm ent.
THE FOREGOING WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES OF QUAL ITY WHETHER WRITTEN, ORAL, OR IMPLIED (INCLUDING ANY WARRANTY OF MERCHANTABILITY OF FITNESS FOR PURPOSE).
The remedy(ies) provided above shall be purchaser's sole remedy(ies) for any failure of Rosemount to comply with the warranty provisions, whether claims by the purchaser are based in contract or in tort (including negligence).
Rosemount does not warrant equipment against normal deterioration due to environment. Factors such as corrosive gases and solid particulates can be detrimental and can create the need for repair or replacement as part o f normal wear and tear during the warranty period.
Equipment supplied by Rosemount Analytical Inc. but not manu factured by it will be subject to the same warranty as is extended to Rosemount by the original manufacturer.
At the time of installatio n it is impor tant that the req uired services are supplied to the system. This will ensure, that should there be a delay between installation and full commissioning that the sensor being supplied with ac power and reference air will not be subjected to component deterioration.
IB-106-4081
i
Page 4
PURPOSE
The purpose of this manual is to provide a comprehensive understanding of the Two-Wire In Situ
Oxygen Analyzer components, functions, installation, and maintenance.
This manual is designed to provide information about the Oxygen Analyzer. We recommend that you thoroughly familiarize yourself with the Description and Installation sections before installing your transmitter.
The description presents the basic principles of the transmitter along with its performance characteristics and components. The remaining sections contain detailed procedures and information neces sary to install and service the transmitter.
Before contacting Rosemount concerning any questions, first consult this manual. It describes most situations encountered in your equipment’s operation and details necessary action.
DEFINITIONS
The following definitions apply to WARNINGS, CAUTIONS, and NOTES found throughout this publication.
Highlights an operation or maintenance procedure, practice, condition, statement, etc. If not strictly observed, could result in injury, death, or long-term health hazards of personnel.
Highlights an essential operating procedure, condition, or statement.
: EARTH (GROUND) TERMINAL
: PROTECTIVE CONDUCTOR TERMINAL
: RISK OF ELECTRICAL SHOCK
: WARNING: REFER TO INSTRUCTION BULLETIN
NOTE TO USERS
NOTE
Highlights an operation or maintenance procedure, practice, condition, statement, etc. If not strictly observed, could result in damage to or destruction of equipment, or loss of effectiveness
.
The number in the l ow e r right corne r of each illu s t r ation in this public ation is a man u al illustratio n number. It is not a part number, and is not related to the illustration in any technical manner.
IB-106-4081
ii
Page 5
IMPORTANT
SAFETY INSTRUCTIONS FOR THE WIRING AND
INSTALLATION OF THIS APPARATUS
The following safety instructions apply specifically to all EU member states. They should be strictly adhered to in order to assure compliance with the Low Voltage Directive. Non-EU states should also comply with the following unless superseded by local or Nation al S t and a rds .
1. Adequate earth connections should be made to all earthing points, internal and external, where provided.
2. After installation or troubleshooting, all safety covers and safety grounds must be replaced. The integrity of all ear th terminals must be maintained at all times.
3. Mains suppl y cords shou l d comp ly with the requirements of IE C227 or I EC 245.
4. All wiring shall be suitable for use in an ambient temperature of greater than 75°C.
5. All cable glands used should be of such internal dimensions as to provide adequate cable anchorage.
6. To ensure safe operation of this equipment, connection to the mains supply should only be made through a circuit breaker which will disconnect all circuits carrying conductors during a fault situation. The circuit breaker may also include a mechanically operated isolating switch. If not, then another means of disconnecting the equipment from the supply must be provided and clearly marked as such. Circuit breakers or switches must comply with a recognized standard such as IEC947. All wiring must conform with any local standards .
7. Where equipment or covers are marked with the symbol to the right, hazardous voltages are likely to be present beneath. These covers should only be removed when power is removed from the equipment — and then only by trained service personnel.
8. Where equipment or covers are marked with the symbol to the right, there is a danger from hot surfaces beneath. These covers should only be removed by trained service personnel when power is removed from the equipment. Certain surfaces may remain hot to the touch.
9. Where equipment or covers are marked with the symbol to the right, refer to the Operator Manual for instructions.
10. All graphical symbols used in this product are from one or more of the following standards: EN610 10-1 , IEC417, an d ISO386 4.
IB-106-4081
iii
Page 6
BELANGRIJK
Veiligheidsvoorschriften voor de aansluiting en installatie van dit toestel.
De hierna volgende veiligheidsvoorschriften zijn vooral bedoeld voor de EU lidstaten. Hier moet aan gehouden worden om de onderworpenheid aan de Laag Spannings Richtlijn (Low Voltage Directive) te verzekeren. Niet EU staten zouden deze richtlijnen moeten volgen tenzij zij reeds achterhaald zouden zijn door plaatselijke of nationale voorschriften.
1. Degelijke aardingsaansluitingen moeten gemaakt worden naar alle voorziene aardpunten, intern en extern.
2. Na installatie of controle moeten alle veiligheidsdeksels en -aardingen terug geplaatst worden. Ten alle tijde moet de betrouwbaarheid van de aarding behouden blijven.
3. Voedingskabels moeten onderworpen zijn aan de IEC227 of de IEC245 voorschriften.
4. Alle bekabeling moet geschikt zijn voor het gebruik in omgevingstemperaturen, hoger dan 75°C.
5. Alle wartels moeten zo gedimensioneerd zijn dat een degelijke kabel bevestiging verzekerd is.
6. Om de veilige werking van dit toestel te verzekeren, moet de voeding door een stroomonderbreker gevoerd worden (min 10A) welke alle draden van de voeding moet onderbreken. De stroomonderbrek er mag een m echanisch e schak elaa r bevatten. Z oniet m oet een andere mogelijkheid bestaan om de voedingsspanning van het toestel te halen en ook duidelijk zo zijn aangegeven. Stroomonderbrekers of schakelaars moeten onderworpen zijn aan een erkende standaard zoals IEC947.
7. Waar toestellen of deksels aangegeven staan met het symbool is er meestal hoogspanning aanwezig. Deze deksels mogen enkel verwijderd worden nadat de voedingsspanning werd afgelegd en enkel door getraind onderhoudspersoneel.
8. Waar toestellen of deksels aangegeven staan met het symbool is er gevaar voor hete oppervlakken. Deze deksels mogen enkel verwijderd worden door getraind onderhoudspersoneel nadat de voeding ssp ann ing verw ijderd werd. Sommige oppper-vlakken kunnen 45 minuten later nog steeds heet aanvoelen.
9. Waar toestellen of deksels aangegeven staan met het symbool gelieve het handboek te raadplegen.
10. Alle grafische symbolen gebruikt in dit produkt, zijn afkomstig uit een of meer van devolgende standaards: EN61010-1, IEC417 en ISO3864.
IB-106-4081
iv
Page 7
VIGTIGT
Sikkerhedsinstruktion for tilslutning og installering af dette udstyr.
Følgende sikkerhedsinstruktioner gælder specifikt i alle EU-medlemslande. Instruktionerne skal nøje følges for overholdelse af Lavsspænding sdir ek tiv et og bør også følges i ikke EU­lande medmindre andet er specificeret af lokale eller nationale standarder.
1. Passende jordforbindelser skal tilsluttes alle jordklemmer, interne og eksterne, hvor disse forefindes.
2. Efter installation eller fejlfinding skal alle sikkerhedsdæksler og jordforbindelser reetableres.
3. Forsyningskabler skal opfylde krav specificeret i IEC227 eller IEC245.
4. Alle ledningstilslutninger skal være konstrueret til omgivelsestemperatur højere end 75° C.
5. Alle benyttede kabelforskruninger skal have en intern dimension, så passende kabelaflastning kan etabler es.
6. For opnåelse af sikker drift og betjening skal der skabes beskyttelse mod indirekte berøring gennem afbryder (min. 10A), som vil afbryde alle kredsløb med elektriske ledere i fejlsitua­tion. Afbryderen skal indholde en mekanisk betjent kontakt. Hvis ikke skal anden form for afbryder mellem forsyning og udsty r benyt tes og m æ rk es so m sådan. Afbrydere eller kontakter skal overholde en kendt standard som IEC947.
7. Hvor udstyr eller dæksler er mærket med dette symbol, er farlige spændinger normalt forekom-mende bagved. Disse dæksler bør kun afmonteres, når forsyningsspændingen er frakoblet - og da kun af instrueret servicepersonale.
8. Hvor udstyr eller dæksler er mærket med dette symbol, forefindes meget varme overflader bagv ed. Disse dæksle r bør kun afmonte res af ins tr uer et servicepersonale, når forsy ning sspændi ng er frakoble t. Visse ov erf lader vil stadig være for varme at berøre i op til 45 minutter efter frakobling.
9. Hvor udstyr eller dæksler er mærket med dette symbol, se da i betjeningsmanual for instruktion.
10. Alle benyttede grafiske symboler i dette udstyr findes i én eller flere af følgende standarder:­EN61010-1, IEC417 & ISO3864.
IB-106-4081
v
Page 8
BELANGRIJK
Veiligheidsinstructies voor de bedrading en installatie van dit apparaat.
Voor alle EU lidstaten zijn de volgende veiligheidsinstructies van toepassing. Om aan de geldende richtlijnen voor laagspanning te voldoen dient men zich hieraan strikt te houden. Ook niet EU lidstaten dienen zich aan het volgende te houden, tenzij de lokale wetgeving anders voorschrijft.
1. Alle voorziene interne- en externe aardaansluitingen dienen op adequate wijze aangesloten te worden.
2. Na installatie,onderhouds- of reparatie werkzaamheden dienen alle beschermdeksels /kappen en aardingen om reden van veiligheid weer aangebracht te worden.
3. Voedingskabels dienen te voldoen aan de vereisten van de normen IEC 227 of IEC 245.
4. Alle bedrading dient geschikt te zijn voor gebruik bij een omgevings temperatuur boven 75°C.
5. Alle gebruikte kabelwartels dienen dusdanige inwendige afmetingen te hebben dat een adequate verankering van de kabel wordt verkregen.
6. Om een veilige werking van de apparatuur te waarborgen dient de voeding uitsluitend plaats te vinden via een meerpolige automatische zekering (min.10A) die
alle
spanningvoerende geleiders verbreekt indien een foutconditie optreedt. Deze automatische zekering mag ook voorzien zijn van een mechanisch bediende schakelaar. Bij het ontbreken van deze voorziening dient een andere als zodanig duidelijk aangegeven mogelijkheid aanwezig te zijn om de spanning van de apparatuur af te schakelen. Zekeringen en schakelaars dienen te voldoen aan een erkende standaard zoals IEC 947.
7. Waar de apparatuur of de beschermdeksels/kappen gemarkeerd zijn met het volgende symbool, kunnen zich hieronder spanning voerende delen bevinden die gevaar op kunnen leveren. Deze beschermdeksels/kappen mogen uitsluitend verwijderd worden door getraind personeel als de spanning is afgeschakeld.
8. Waar de apparatuur of de beschermdeksels/kappen gemarkeerd zijn met het volgende symbool, kunnen zich hieronder hete oppervlakken of onderdelen bevinden. Bepaalde delen kunnen mogelijk na 45 min. nog te heet zijn om aan te raken.
9. Waar de apparatuur of de beschermdeksels/kappen gemarkeerd zijn met het volgende symbool, dient men de bedieningshandleiding te raadplegen.
10. Alle grafische symbolen gebruikt bij dit produkt zijn volgens een of meer van de volgende standaarden: EN 61010-1, IEC 417 & ISO 3864.
IB-106-4081
vi
Page 9
TÄRKEÄÄ
Turvallisuusohje, jota on noudatettava tämän laitteen asentamisessa ja kaapeloinnissa. Seuraavat ohjeet pätevät erityisesti EU:n jäsenvaltioissa. Niitä täytyy ehdottomasti
noudattaa jotta täytettäisiin EU:n matalajännitedirektiivin (Low Voltage Directive) yhteensopivuus. Myös EU:hun kuulumattomien valtioiden tulee nou-dattaa tätä ohjetta, elleivät kansalliset standardit estä sitä.
1. Riittävät maadoituskytkennät on tehtävä kaikkiin maadoituspisteisiin, sisäisiin ja ulkoisiin.
2. Asennuksen ja vianetsinnän jälkeen on kaikki suojat ja suojamaat asennettava takaisin pai­koilleen. Maadoitusliittimen kunnollinen toiminta täytyy aina ylläpitää.
3. Jännitesyöttöjohtimien täytyy täyttää IEC227 ja IEC245 vaatimukset.
4. Kaikkien johdotuksien tulee toimia >75°C lämpötiloissa.
5. Kaikkien läpivientiholkkien sisähalkais ijan täytyy olla sellainen että kaapeli lukkiutuu kun­nolla kiinni.
6. Turvallisen to iminnan varmistamisek si täy ty y jännitesyöttö varustaa turvak y tk im ellä (m in 10A), joka kytkee irti kaikki jännitesyöttöjohtimet vikatilanteessa. Suojaan täytyy myös sisältyä mekaaninen erotuskytkin. Jos ei, niin jännitesyöttö on pystyttävä katkaisemaan muilla keinoilla ja merkittävä siten että se tunnistetaan sellaiseksi. Turvakytkimien tai kat­kaisimien täytyy täyttää IEC947 standardin vaatimukset näkyvyydestä.
7. Mikäli laite tai kosketussuoja on merkitty tällä merkillä on merkinnän takana tai alla hengenvaarallisen suuruinen jännite. Suojaa ei saa poistaa jänniteen ollessa kytkettynä laitteeseen ja poistamisen saa suorittaa vain alan asian-tuntija.
8. Mikäli laite tai kosketussuoja on merkitty tällä merkillä on merkinnän takana tai alla kuuma pinta. Suojan saa poistaa vain alan asiantuntija kun jännite-syöttö on katkaistu. Tällainen pinta voi säilyä kosketuskuumana jopa 45 mi-nuuttia.
9. Mikäli laite tai kosketussuoja on merkitty tällä merkillä katso lisäohjeita käyt-töohjekirjasta
10. Kaikki tässä tuotteessa käytetyt graafiset symbolit ovat yhdestä tai useammasta seuraavis-ta standardeista: EN61010-1, IEC417 & ISO3864.
IB-106-4081
vii
Page 10
IMPORTANT
Consignes de sécurité concernant le raccordement et l’installation de cet appareil. Les consignes de sécurité ci-dessous s’adressent particulièrement à tous les états membres
de la communauté européenne. Elles doivent être strictement appliquées afin de satisfaire aux directives concernant la basse tension. Les états non membres de la communauté européenne doivent également appliquer ces consignes sauf si elles sont en contradiction avec les standards locaux ou nationaux.
1. Un raccordement adéquat à la terre doit être effectuée à chaque borne de mise à la terre, interne et externe.
2. Après installation ou dépannage, tous les capots de protection et toutes les prises de terre doivent être remis en place, toutes les prises de terre doivent être respectées en permanence.
3. Les câbles d’alimentation électrique doivent être conformes aux normes IEC227 ou IEC245
4. Tous les raccordements doivent pouvoir supporter une température ambiante supérieure à 75°C.
5. Tous les presse-étoupes utilisés doivent avoir un diamètre interne en rapport avec les câbles afin d’assurer un serrage correct sur ces derniers.
6. Afin de garantir la sécurité du fonctionnement de cet appareil, le raccordement à l’alimentation électrique doit être réalisé exclusivement au travers d’un disjoncteur (minimum 10A.) isolant tous les conducteurs en cas d’anomalie. Ce disjoncteur doit également pouvoir être actionné m anuell ement, de façon mécanique. Dans le cas contraire, un autre système doit être mis en place afin de pouvoir isoler l’appareil et doit être signalisé comme tel. Disjoncteurs et interrupteurs doivent être conformes à une norme reconnue telle IEC947.
7. Lorsque les équipements ou les capots affich ent le sy mbole suivant, cela signifie que des tensions dangereuses sont présentes. Ces capots ne doivent être démontés que lorsque l’alimentat ion est coupée, et uniquem ent par un personnel compétent.
8. Lorsque les équipements ou les capots affich ent le sy mbole suivant, cela signifie que des surfaces dangereusement chaudes sont présentes. Ces capots ne doivent être démontés que lorsque l’alimentation est coupée, et uniquement par un personnel compétent. Certaines surfaces peuvent rester chaudes jusqu’à 45 mn.
9. Lorsque les équipements ou les capots affichent le sy mbole suivant, se reporter au manuel d’instructions.
10. Tous les symboles graphiques utilisés dans ce produit sont conformes à un ou plusieurs des standards suivants: EN61010-1, IEC417 & ISO3864.
IB-106-4081
viii
Page 11
WICHTIG
Sicherheitshinweise für den Anschluß und die Installation dieser Geräte.
Die folgenden Sicherheitshinweise sind in allen Mitgliederstaaten der europäischen Gemeinschaft gültig. Sie müssen strickt eingehalten werden, um der Niederspannungsrichtlinie zu genügen. Nichtmitgliedsstaaten der europäischen Gemeinschaft sollten die national gültige n Normen und Richtlinien einhalten.
1. Alle intern und extern vorgesehenen Erdungen der Geräte müssen ausgeführt werden.
2. Nach Installation, Reparatur oder sonstigen Eingriffen in das Gerät müssen alle Sicherheitsabdeckungen und Erdungen wieder installiert werden. Die Funktion aller Erdverbindungen darf zu keinem Zeitpunkt gestört sein.
3. Die Netzspannungsversorgung muß den Anforderungen der IEC227 oder IEC245 genügen.
4. Alle Verdrahtungen sollten mindestens bis 75 °C ihre Funktion dauerhaft erfüllen.
5. Alle Kabeldurchführungen und Kabelverschraubungen sollten in Ihrer Dimensionierung so gewählt werden, daß diese eine sichere Verkabelung des Gerätes ermöglichen.
6. Um eine sichere Funktion des Gerätes zu gewährleisten, muß die Spannungsversorgung über mindestens 10 A abgesichert sein. Im Fehlerfall muß dadurch gewährleistet sein, daß die Spannungsversorgung zum Gerät bzw. zu den Geräten unterbrochen wird. Ein mechanischer Schutzschalter kann in dieses System integriert werden. Falls eine derartige Vorrichtung nicht vorhanden ist, muß eine andere Möglichkeit zur Unterbrechung der Spannungszufuhr gewährleistet werden mit Hinweisen deutlich gekennzeichnet werden. Ein solcher Mechanismus zur Spannungsunterbrechung muß mit den Normen und Richtlinien für die allgemeine Installation von Elektrogeräten, wie zum Beispiel der IEC947, übereinstimmen.
7. Mit dem Symbol sind Geräte oder Abdeckungen gekennzeichnet, die eine gefährliche (Netzspannung) Spannung führen. Die Abdeckungen dürfen nur entfernt werden, wenn die Versorgungsspannung unterbr ochen wurde . Nur geschultes Personal darf an diesen Geräten Arbeiten ausführen.
8. Mit dem Symbol sind Geräte oder Abdeckungen gekennzeichnet, in bzw. unter denen heiße Teile vorhanden sind. Die Abdeckungen dürfen nur entfernt werden, wenn die Versorgungsspannung unterbrochen wurde. Nur geschultes Personal darf an diesen Geräten Arbeiten ausführen. Bis 45 Minuten nach dem Unterbrechen der Netzzufuhr können derartig Teile noch über eine erhöhte Temperatur verfügen.
9. Mit dem Symbol sind Geräte oder Abdeckungen gekennzeichnet, bei denen vor dem Eingriff die entsprechenden Kapitel im Handbuch sorgfältig durchgelesen werden müssen.
10. Alle in diesem Gerät verwendeten graphischen Symbole entspringen einem oder mehreren der nachfolgend aufgeführten Standards: EN61010-1, IEC417 & ISO3864.
IB-106-4081
ix
Page 12
IMPORTANTE
Norme di sicurezza per il cablaggio e l’installazione dello strumento. Le seguenti norme di sicurezza si applicano specificatamente agli stati membri dell’Unione
Europea, la cui stretta osservanza è richiesta per garantire conformità alla Direttiva del Basso Voltaggio. Esse si applicano anche agli stati non appartenenti all’Unione Europea, salvo quanto disposto dalle vigenti normative locali o nazionali
1. Collegamenti di terra idonei devono essere eseguiti per tutti i punti di messa a terra interni ed esterni, dove previsti.
2. Dopo l’installazione o la localizzazione dei guasti, assicurarsi che tutti i coperchi di protezione siano stati collocati e le messa a terra si ano col leg ate. L ’integrità di ciscun morsetto di terra deve essere costantemente garantita.
3. I cavi di alimentazione della rete devono essere secondo disposizioni IEC227 o IEC245.
4. L’intero impianto elettrico deve essere adatto per uso in ambiente con temperature superiore a 75°C.
5. Le dimensioni di tutti i connettori dei cavi utilizzati devono essere tali da consentire un adeguato ancoraggio al cavo.
.
6. Per garantire un sicuro funzionamento dello strumento il collegamento alla rete di alimentazione principale dovrà essere eseguita tramite interruttore automa tico (min.10A), in grado di disattivare tutti i conduttori di circuito in caso di guasto. Tale interruttore dovrà inoltre prevedere un sezionatore manuale o altro dispositivo di interruzione dell’alimentazione, chiaramente identificabile. Gli interruttori dovranno essere conformi agli standard riconosciuti, qual i IEC947.
7. Il simbolo riportato sullo strumento o sui coperchi di protezione indica probabile presenza di elevati voltaggi. Tali coperchi di protezione devono essere rimossi esclusivamente da personale qualificato, dopo aver tolto alimentazione allo strumento.
8. Il simbolo riportato sullo strumento o sui coperchi di protezione indica rischio di contatto con superfici ad alta temperatura. Tali coperchi di protezione devono essere rimossi esclusivamente da personale qualificato, dopo aver tolto alimentazione allo st rum ento. Alcune supe rf ic i possono manten er e tem p eratu re elevate per oltre 45 minuti.
9. Se lo strumento o il coperchio di protezione riportano il simbolo, fare riferimento alle istruzioni del manuale Operatore.
10. Tutti i simboli grafici utilizzati in questo prodotto sono previsti da uno o più dei seguenti standard: EN61010-1, IEC417 e ISO3864.
IB-106-4081
x
Page 13
VIKTIG
Sikkerhetsinstruks for tilkobling og installasjon av dette utstyret.
Følgende sikkerhetsinstruksjoner gjelder spesifikt alle EU medlemsland og land med i EØS­avtalen. Instruksjonene skal følges nøye slik at installasjonen blir i henhold til lavspenningsdirektivet. Den bør også følges i andre land, med mindre annet er spesifisert av lokale- eller nasjonale standarder.
1. Passende jordforbindel ser må tilk oble s alle jord ingspunkter, interne og eksterne hvor diss e forefinnes.
2. Etter installasjon eller feilsøking skal alle sikkerhetsdeksler og jordforbindelser reetableres. Jordingsforbindelsene må alltid holdes i god stand.
3. Kabler fra spenningsforsyning skal oppfylle kravene spesifisert i IEC227 eller IEC245.
4. Alle ledningsforbindelser skal være konstruert for en omgivelsestemperatur høyere en 750C.
5. Alle kabelforskruvninger som benyttes skal ha en indre dimensjon slik at tilstrekkelig avlastning oppnåes.
6. For å oppnå sikker drift og betjening skal forbind el sen til spenning sforsyningen bare skje gjennom en strømbryter (minimum 10A) som vil bryte spenningsforsyningen til alle elektriske kretser ved en feilsituasjon. Strømbryteren kan også inneholde en mekanisk operert bryter for å isolere instrumentet fra spenningsforsyningen. Dersom det ikke er en mekanisk operert bryter installert, må det være en annen måte å isolere utstyret fra spenningsforsyningen, og denne måten må være tydelig merket. Kretsbrytere eller kontakter skal oppfylle kravene i en annerk jent sta ndard av ty pen I E C947 eller tilsv arend e.
7. Der hvor utstyr eller deksler er merket med symbol for farlig spenning, er det sannsynlig at disse er tilste de bak deksle t. Disse dekslene må bare fjærnes når spenningsforsyning er frak oble t utsty ret, og da b are av tre net se rvicepersonell.
8. Der hvor utstyr eller deksler er merket med symbol for meget varm overflate, er det sannsynlig at disse er tilstede bak dekslet. Disse dekslene må bare fjærnes når spenningsforsyning er frakoblet utstyret, og da bare av trenet servicepersonell. Noen overflater kan være for varme til å berøres i opp til 45 minutter etter spenningsforsy ning f rak oble t.
9. Der hvor utstyret eller deksler er merket med symbol, vennligst referer til instruksjonsmanualen fo r inst ruk ser.
10. Alle grafiske symboler brukt i dette produktet er fra en eller flere av følgende standarder: EN61010-1, IEC417 & ISO3864.
IB-106-4081
xi
Page 14
IMPORTANTE
Instruções de segurança para ligação e instalação deste aparelho. As seguintes instruções de segurança aplicam-se especificamente a todos os estados
membros da UE. Devem ser observadas rigidamente por forma a garantir o cumprimento da Directiva sobre Baixa Tensão. Relativamente aos estados que não pertençam à UE, deverão cumprir igualmente a referida directiva, exceptuando os casos em que a legislação local a tiver substituído.
1. Devem ser feitas ligações de terra apropriadas a todos os pontos de terra, in ternos ou externos.
2. Após a instalação ou eventual reparação, devem ser recolocadas todas as ta mpas de se gurança e terras de protecção. Deve manter- se sem pre a integridade de todos os terminais de terra.
3. Os cabos de alimentação eléctrica devem obedecer às exigências das normas IEC227 ou IEC245.
4. Os cabos e fios utilizados nas ligações eléctricas devem ser adequados para utilização a uma temperatura ambiente at é 75º C.
5. As dimensões internas dos bucins dos cabos devem ser adequadas a uma boa fixação dos cabos.
6. Para assegurar um funcionamento seguro deste equipamento, a ligação ao cabo de alimentação eléctrica deve ser feita através de um disjuntor (min. 10A) que desligará todos os condutores de circuitos durante um a avaria. O disjuntor poderá também conter um interruptor de isolamento accionado manualmente. Caso contrário, deverá ser instalado qualquer outro meio para desligar o equipamento da energia eléctrica, devendo ser assinalado convenientemente. Os disjuntores ou interruptores devem obedecer a uma norma reconhecida, tipo IEC947.
7. Sempre que o equipamento ou as tampas contiverem o símbolo, é provável a existência de tensões perigosas. Estas tampas só devem ser retiradas quando a energia eléctrica tiver sido deslig ada e por Pes soa l da Assis tên cia dev idam ente treinado.
8. Sempre que o equipamento ou as tampas contiverem o símbolo, há perigo de existência de superfícies quentes. Estas tampas só devem ser retiradas por Pessoal da Assistência devidamente treinado e depois de a energia eléctrica ter sido desligada. Algumas superfícies permanecem quentes até 45 minutos depois.
9. Sempre que o equipamento ou as tampas contiverem o símbolo, o Manual de Funcionamento deve ser consultado para obtenção das necessárias instruções.
10. Todos os símbolos gráficos utilizados neste produto baseiam-se em uma ou mais das seguintes normas: EN61010-1, IEC417 e ISO3864.
IB-106-4081
xii
Page 15
IMPORTANTE
Instrucciones de seguridad para el montaje y cableado de este aparato.
Las siguientes instrucciones de seguridad , son de aplicacion especifica a todos los miembros de la UE y se adjuntaran para cumplir la normativa europea de baja tension.
1. Se deben preveer conexiones a tierra del equipo, tanto externa como internamente, en aquellos terminales previstos al efecto.
2. Una vez finalizada las operaciones de mantenimiento del equipo, se deben volver a colocar las cubiertas de seguridad aasi como los terminal es de ti er ra. Se debe comprob ar la integridad de cada terminal.
3. Los cables de alimentacion electrica cumpliran con las normas IEC 227 o IEC 245.
4. Todo el cableado sera adecuado para una tempera tura am biental de 75ºC.
5. Todos los prensaestopas seran adecuados para una fijacion adecuada de los cables.
6. Para un manejo seguro del equipo, la alimentacion electrica se realizara a traves de un interruptor magnetotermico ( min 10 A ), el cual desconectara la alimentacion electrica al equipo en todas sus fases durante un fallo. Los interruptores estaran de acuerdo a la norma IEC 947 u otra de reconocido prestigio.
7. Cuando las tapas o el equipo lleve impreso el simbolo de tension electrica peligrosa, dicho alojamiento solamente se abrira una vez que se haya interrumpido la alimentacion electrica al equipo asimismo la intervencion sera llevada a cabo por personal entrenado para estas labores.
8. Cuando las tapas o el equipo lleve impreso el simbolo, hay superficies con alta temperatura, por tanto se abrira una vez que se haya interrumpido la alimentacion electr ica al equipo po r personal ent rena do para est as labo res, y al menos se esperara unos 45 minutos para enfriar las superficies calientes.
9. Cuando el equipo o la tapa lleve impreso el simbolo, se consultara el manual de instrucciones.
10. Todos los simbolos graficos usados en esta hoja, estan de acuerdo a las siguientes normas EN61010-1, IEC417 & ISO 3864.
IB-106-4081
xiii
Page 16
VIKTIGT
Säkerhetsföreskrifter för kablage och installation av denna apparat. Följande säkerhetsföreskrifter är tillämpliga för samtliga EU-medlemsländer. De skall
följas i varje avseende för att överensstämma med Lågsp ännings direktivet. Icke EU medlemsländer skall också följa nedanstående punkter, såvida de inte övergrips av lokala eller nationella föreskrifter.
1. Tillämplig jordkontakt skall utföras till alla jordade punkter, såväl internt som externt där så erfordras.
2. Efter installation eller felsökning skall samtliga säkerhetshöljen och säkerhetsjord återplaceras. Sam tlig a jordterminaler måste hållas obrutna hela tiden.
3. Matningsspänningens kabel måste överensstämma med föreskrifterna i IEC227 eller IEC245.
4. Allt kablage skall vara lämpligt för användning i en omgivningstemperatur högre än 75ºC.
5. Alla kabelförskruvningar som används skall ha inre dimensioner som motsvarar adekvat kabelförankring.
6. För att säkerställa säker drift av denna utru stn ing sk all ans lutn ing ti ll huvudst römmen endast göras genom en säkring (min 10A) som skall frånkoppla alla strömförande kretsar när något fel uppstår. Säkringen kan även ha en mekanisk frånskiljare. Om så inte är fallet, måste ett annat förfarande för att frånskilja utrustningen från strömförsörjning tillhandahållas och klart framgå genom markering. Säkring eller omkopplare måste överensstämma med en gällande standard såsom t ex IEC947.
7. Där utrustning eller hölje är markerad med vidstående symbol föreliggerisk för livsfarlig spänning i närheten. Dessa höl jen får endas t avlägsnas när st röm men ej är ansluten till utrustningen - och då endast av utbildad servicepersonal.
8. När utrustning eller hölje är markerad med vidstående symbol föreligger risk för brännskada vid kontakt med uppvärmd yta. Dessa höljen får endast avlägsnas av utbildad servicepersonal, när strömmen kopplats från utrustningen. Vissa ytor kan vara mycket varma att vidröra även upp till 45 minuter efter avstängning av strömmen.
9. När utrustning eller hölje markerats med vidstående symbol bör instruktionsmanualen studeras för information.
10.
Samtliga grafiska symboler som förekommer i denna produkt finns angivna i en eller flera av följande föreskrifter:- EN61010-1, IEC417 & ISO3864.
IB-106-4081
xiv
Page 17
IB-106-4081
xv/xvi
Page 18
Page 19

TABLE OF CONTENTS

Section Page
ROSEMOUNT WARRANTY......................................................................................................................i
SECTION I. INTRODUCTION............................................................................................................. 1-1
1-1. Component Checklist of Typical System (Package Contents) ..................................... 1-1
1-2. System Overview........................................................................................................... 1-2
1-3. Specifications.................................................................................................................. 1-6
SECTION II. INSTALLATION............................................................................................................. 2-1
2-1. Pre-Installation................................................................................................................ 2-1
2-2. Mechanical Installation.................................................................................................. 2-1
2-3. Electrical Installation................................................................................................... 2-10
2-4. Pneumatic Installation.................................................................................................. 2-11
SECTION III. STARTUP....................................................................................................................... 3-1
3-1. General............................................................................................................................ 3-1
3-2. Power Up....................................................................................................................... 3-1
3-3. Reestablishing Proper Calibration Check Gas Flow Rate......................................... 3-2
SECTION IV. OPERATION.................................................................................................................. 4-1
4-1. General............................................................................................................................ 4-1
4-2. Program Menu ................................................................................................................4-4
4-3. Diagnostics Menu .......................................................................................................... 4-8
4-4. Calcheck Menu ............................................................................................................ 4-10
4-5. Simulate Switch........................................................................................................... 4-12
4-6. Security Switch............................................................................................................4-12
SECTION V. TROUBLESHOOTING .................................................................................................. 5-1
5-1. General............................................................................................................................ 5-1
5-2. Probe Life ....................................................................................................................... 5-1
5-3. Fault Indications............................................................................................................. 5-2
5-4. Identifying and Correcting Fault Indications .............................................................. 5-3
SECTION VI. MAINTENANCE AND SERVICE............................................................................. 6-1
6-1. Model 4081 Elec tr onics Replacem ent............................................................................. 6-1
6-2. Oxygen Probe Replacement.......................................................................................... 6-2
SECTION VII. REPLACEMENT PARTS ..........................................................................................7-1
SECTIO N VIII. RETURNI N G EQUIPMENT TO THE FACTORY............................................ 8-1
INDEX I-1
IB-106-4081
xvii
Page 20

LIST OF ILLUSTRATIONS

Figure 1-1. Typical System Package ..........................................................................................................1-1
Figure 1-2. Two-Wire In Situ Oxygen Analyzer Fieldbus Connections.....................................................1-5
Figure 1-3. Typical System Installation......................................................................................................1-5
Figure 2-1. Probe Installation Details.........................................................................................................2-2
Figure 2-2. Optional Adapter Plate.............................................................................................................2-3
Figure 2-3. Optional Probe Mounting Flange.............................................................................................2-3
Figure 2-4. Horizontal Probe Installation ...................................................................................................2-4
Figure 2-5. Adjusting Probe Insertion Depth..............................................................................................2-5
Figure 2-6. Flat Surface Mounting Dimensional Information....................................................................2-7
Figure 2-7. Pipe Mounting Dimensional Information.................................................................................2-8
Figure 2-8. Display Positioning Assembly.................................................................................................2-9
Figure 2-9. Oxygen Probe Terminal Block...............................................................................................2-10
Figure 2-10. Model 4081 Transmitter Terminal Block.............................................................................2-11
Figure 2-11. Oxygen Probe Gas Connections...........................................................................................2-11
Figure 2-12. Air Set, Plant Air Connection ..............................................................................................2-12
Figure 3-1. Normal Operation Display.......................................................................................................3-1
Figure 3-2. Faulted Operation Display .......................................................................................................3-1
Figure 3-3. Proper Calibration Check Gas Flow Rate ................................................................................3-2
Figure 4-1. Normal Operation Display.......................................................................................................4-1
Figure 4-2. Model 4081 Transmitter Menu Tree........................................................................................4-2
Figure 4-3. Infrared Remote Control (IRC)................................................................................................4-3
Figure 4-4. CODE.......................................................................................................................................4-4
Figure 4-5. DISPLAY CODE....................................................................................................................4-4
Figure 4-6. CELL T HI.............................................................................................................................4-5
Figure 4-7. RESET MAX CELL T...........................................................................................................4-5
Figure 4-8. SET O2 FILTER TIME ........................................................................................................4-6
Figure 4-9. SET HI BOTTLE O2............................................................................................................4-6
Figure 4-10. SET LO BOTTLE O2.........................................................................................................4-7
Figure 4-11. SET CODE............................................................................................................................4-7
Figure 4-12. SHOW FAULT.....................................................................................................................4-8
Figure 4-13. T/C mV ..................................................................................................................................4-8
Figure 4-14. O2 CELL mV........................................................................................................................4-8
Figure 4-15. CELL IMPEDANCE ............................................................................................................4-9
Figure 4-16. PREVIOUS SLOPE..............................................................................................................4-9
Figure 4-17. PREVIOUS CONSTANT.....................................................................................................4-9
Figure 4-18. MAX CELL T....................................................................................................................4-10
Figure 4-19. IN MANUAL? ....................................................................................................................4-10
Figure 4-20. ACCEPT HIGH O2............................................................................................................4-11
Figure 4-21. ACCEPT LOW O2............................................................................................................4-11
Figure 4-22. PURGING............................................................................................................................4-11
Figure 4-23. SLOPE .................................................................................................................................4-11
Figure 4-24. CONSTANT ........................................................................................................................4-12
Figure 4-25. Simulate and Security Switch Positions...............................................................................4-12
IB-106-4081
xviii
Page 21
LIST OF ILLUSTRATIONS (Continued)
Figure 5-1. Slope vs. Impedance ................................................................................................................ 5-1
Figure 5-2. Speed of Response................................................................................................................... 5-2
Figure 5-3. Faulted Operation Display....................................................................................................... 5-2
Figure 5-4. Model 4081 Transmitter Terminal Block................................................................................5-3
Figure 5-5. Fault 1, Open Thermocouple................................................................................................... 5-4
Figure 5-6. Fault 2, Reversed Thermocouple............................................................................................. 5-4
Figure 5-7. Fault 3, Shorted Thermocouple................................................................................................5-5
Figure 5-8. Fault 4, High Probe Temperature.............................................................................................5-5
Figure 5-9. Fault 5, O
Cell Open............................................................................................................... 5-6
2
Figure 5-10. Fault 6, Cell Impedance Too High......................................................................................... 5-6
Figure 5-11. Fault 7, Reversed O
Cell....................................................................................................... 5-7
2
Figure 6-1. Two-Wire In Situ Oxygen Analyzer Exploded View..............................................................6-0
Figure 6-2. Oxygen Probe Terminal Block................................................................................................6-2

LIST OF TABLES

Table 1-1. Product Matrix.................................................................................................................... 1-0
Table 4-1. Model 4081 Transmitter Parameters .................................................................................. 4-7
Table 8-1. Replacement Parts List....................................................................................................... 7-1
IB-106-4081
xix
Page 22
Table 1-1. Product Matrix
4081FG High Temperature Oxygen Flue Gas Analyz er
High Temperature Analyzer - Instruction Book
Code Sensing Probe Length
1 20 in. (508 mm) probe, 1/4 in. tube fittings 2 26 in. (660 mm) probe, 1/4 in. tube fittings 3 38 in. (965 mm) probe, 1/4 in. tube fittings
Code Probe Outer Tube Mater i al - Ma ximum Operating Temperature
1
Alumina - 2912°F (1600°C) maximum - 1.25 NPT mounting
2
Inconel 600 - 1832°F (1000°C) maximum - 1.25 NPT mounti ng
Code Mounting Adapter - Stack Side
0 No adapter plate required uses 1.25 NPT
(“0” must also be chosen under “Mount i ng Adapter” below) 1 New flanged installation - Square weld plate with studs (matches “Mounting Adapter” below) 2 Model 450 mounting (“4” must also be chosen under “Mounting Adapter” below) 3 Competitor's Mount (“5” must also be chosen under “Mounting Adapter” below)
Code Mounting A dapter - Probe Side
0 No adapter plate 1 ANSI 2 in. 150 lb flange to 1.25 NPT adapter
2 DIN to 1.25 NPT adapter (184 mm flange, 145 mm BC with 4 x 18 mm dia. holes) 3 JIS to 1.25 NPT adapter (155 mm flange , 130 mm B C with 4 x 13 mm dia. holes) 4 Model 450 to 1.25 NPT adapter 5 Competitor’s mounting flange
1
(6 in. dia. Flange, 4.75 in. BC with 4 x 0.75 in. dia. holes)
Code Electronics & Housing - Intrinsically Safe, NEMA 4X, IP65
1 4081 F 2 4081 F 3 4081 F
OUNDATION OUNDATION OUNDATION
Fieldbus Electronics - CENELEC EEx ia IIC T5 (pending) Fieldbus Electronics - CSA Class I, Div. I, Groups B,C,D (pending) Fieldbus Electronics - FM Class I, Div. I, Groups B,C,D (pending)
Code Housing Mounting
0 Surface or wall mounting 1 1/2 to 2 in. pipe mounting
Code Communications
0 No remote cont rol
Infrared Remote Control (IRC)
1
(LCD display through cover window)
Code Calibration Accessories
1No hardware
Calibration and reference air flowmet ers and refer-
2
ence air pressure reg ulator
Code Armored Cable Length
00 No cable 11 20 ft (6 m) 12 40 ft (12 m) 13 60 ft (18 m) 14 80 ft (24 m) 15 100 ft (30 m) 16 150 ft (45 m) 17 200 ft (61 m) 18 300 ft (91 m) 19 400 ft (122 m) 20 500 ft (152 m)
4081FG2100111211 Example
IB-106-4081
1-0
Page 23

SECTION I. INTRODUCTION

1-1. COMPONENT CHECKLIST OF TYPICAL
SYSTEM (PACKAGE CONTENTS)
A typical Rosemount Two-Wire In Situ Oxygen Analyzer should contain the items shown in Figure 1-1. Record the part number, serial number, and or­der number for each component of your system
7
in the table located on the first page of this manual. Also, use the product matrix in Table 1-1 to compare your order number against your unit. The first part of the matrix defines the model. The last part defines the various options and features of the analyzer. Ensure the features and options specified by your order number are on or included with the unit.
1
2
3
6
5
4
1. Instruction Bulletin 5. Infrared Remote Control (IRC) (Optional)
2. Model 4081 Transmitter 6. Reference Air Set (Optional)
3. Oxygen Probe 7. Pipe Mounting Kit (Optional)
4. Adapter Plate with mo unting hardware and gasket (Optional)
Figure 1-1. Typical System Package
29760001
IB-106-4081
1-1
Page 24
1-2. SYSTEM OVERVIEW
a. Scope.
This Instruction Bulletin is designed to supply details needed to install, start up, opera te, and maintain the Rosemount Two-Wire In Situ Oxygen Analyzer. The analyzer consists of an oxygen probe and Model 4081 Transmitter. Inte­gral signal conditioning electronics outputs a digital F an O
OUNDATION
value. An infrared remote control (IRC)
2
allows access to setup, calibration, and diagnos­tics. This same information, plus additional de­tails, can be accessed via fieldbus digital communications.
OUNDATION
b. F
fieldbus Technology.
fieldbus is an all digital, serial, two-way communi­cation system that inter-connects field equipment such as sensors, actuators, and controllers. Fieldbus is a Loc al Area Network (LA N) for instruments used in both process and manufacturing automation with built-in c apacity to d istribut e the contro l applic ation across the network. The fie ldbus environment is the base level group of digital networks in the hierarchy of planet networks.
The fieldbus retains the desirable features of the 4-20 mA analog system, including a standardized physical interface to the wire, bus powered de­vices on a single wire, and intrinsic safety op­tions, and enables additional capabilities, such as:
Increased capabilities due to full digital com-
munications Reduced wiring and wire terminations due to
multiple devices on one set of wires Increased selection of suppliers due to inter-
operability Reduced loading on control room equipment
with the distribution of some control and in­put/ output functions to field devices Speed options for process control and manu-
facturing applications
fieldbus signal representing
OUNDATION
F
The equipment measures oxygen percentage by reading the voltage developed across an electro­chemical cell, which consists of a small yttria­stabilized, zirconia disc. Both sides of the disc are coated with porous metal electrodes. The millivolt output voltage of the cell is given by the following Nernst equation:
EMF = KT log
10(P1/P2
) + C
Where:
1. P
is the partial pressure of the oxygen in the
2
measured gas on one side o f the cell.
2. P
is the partial pressure of the oxygen in the
1
reference air on the opposite side of the cell.
3. T is the absolute temperature.
4. C is the cell constant.
5. K is an arithmetic constant.
NOTE
For best results, use clean, dry, instrument air (20.95% oxygen) as the reference air.
NOTE
The probe uses a Type B thermocouple to measure the cell temperature.
When the cell is at 550°C to 1600°C (1022°F to 2912°F) and there are unequal oxygen concen­trations across the cell, oxygen ions will travel from the high oxygen partial pressure side to the low oxygen partial pressure side of the cell. The resulting logarithmic output voltage is approxi­mately 50 mV per decade.
The output is proportional to the inverse loga­rithm of the oxygen concentration. Therefore, the output signal increases as the oxygen concentra­tion of the sample gas decreases. This character­istic enables the Rosemount Two-Wire In Situ Oxygen Analyzer to provide exceptional sensi­tivity and accuracy at low oxygen concentra­tions.
c. System Description.
The Rosemount Two­Wire In Situ Oxygen Analyzer is designed to measure the net concentration of oxygen in an industrial process; i.e., the oxygen remaining af­ter all fuels have been oxidized. The oxygen probe is permanently positioned within an ex­haust duct or stack and performs its task without the use of a sampling system. The Model 4081 Transmitter is mounted remotely and conditions the oxygen probe outputs.
Oxygen analyzer equipment measures net oxy­gen concentration in the presence of all the prod­ucts of combustion, including water vapor. Therefore, it may be considered an analysis on a “wet” basis. In comparison with older methods, such as the portable apparatus, which provides an analysis on a “dry” gas basis, the “wet” analysis will, in general, indicate a lower percentage of oxygen. The difference will be proportional to the water content of the sampled gas stream.
IB-106-4081
1-2
Page 25
d. System Configuration.
The equipment discus­sed in this manual consists of two major compo­nents: the oxygen probe and the Model 4081 Transmitter.
Oxygen probes are available in three length op­tions, providing in situ penetration appropriate to the size of the stack or duct. The options on length are 20 in. (508 mm), 26 in. (660 mm), or 38 in. (965 mm).
Power is supplied to the electronics through
6.
OUNDATION
the F
fieldbus digital signal line
for intrins i c safety (IS) pu rp oses .
Infrared remote control (IRC) allows inter-
7.
facing without exposing the electronics.
An operator can operate and diagnostically
8.
troubleshoot the Two-Wire In Situ Oxygen Analyzer in one of two ways:
The Model 4081 Transmitter is a two-wire trans­mitter providing an output proportional to the measured oxygen concentration. A customer­supplied 24 VDC power source is required to pro­vide power to the electronics. The transmitter ac­cepts millivolt signals generated by the probe and produces the outputs to be used by other remotely connected devices. The output is a F
OUNDATION
fieldbus digital communication signal.
e. System Features.
The cell output voltage and sensitivity in-
1.
crease as the oxygen concentration de­creases.
High process temperatures eliminate the
2.
need for external cell heating and increase cell accuracy.
OUNDATION
F
3.
Easy probe replacement due to the light-
4.
fieldbus is standard.
weight, compact probe design.
Remote location of the Model 4081 Trans-
5.
mitter removes the electronics from high temperature or corrosive environments.
(a) Infrared Remote Control. The IRC
allows access to fault indication menus on the Model 4081 Transmitter LCD display. Calibration can be per­formed from the IRC keypad.
OUNDATION
(b) F
Fieldbus Interface. The transmitter’s output carries a signal containing the oxygen level encoded in digital format. This digital output can also be used to communicate with the oxygen analyzer and access all of the oxygen an aly z er st atu s in f orm at ion .
Selected Distributed Control Systems - The
9.
use of distributed control systems requires input/output (I/O) hardware and AMS Security codes are provided (by infrared remote control) to prevent unintended changes to analyzers adjacent to the one being accessed.
10. A calibration check procedure is provided to determine if the Rosemount Two-Wire In Situ Oxygen Analyzer is correctly measur­ing the net oxygen c oncentration in t he in­dustrial process.
IB-106-4081
1-3
Page 26
f. Handling the Analyzer.
The probe was spe­cially packaged to prevent breakage due to han­dling. Do not remove the padding material fro m the probe until immediately before installation.
It is important that printed circuit boards and integrated circuits are han­dled only when adequate antistatic pre­cautions have been taken to prevent possible equipment damage.
The oxygen probe is designed for indus­trial applications. Treat with care to avoid physical damage. The probe con­tains components made from ceramic, whic h are su sce ptib le to s hock w he n mis­handled. THE WARRANTY DOES NOT COVER DAMAGE FROM MISHANDLING.
able line voltage, ambient temperatures, envi­ronmental considerations, convenience, and serviceability. Figure 1-2 shows a typical system wiring. A typical system installation is illustrated in Figure 1-3.
A source of instrument air is required at the oxy­gen probe for reference air use. Since the Two­Wire In Situ Oxygen Analyzer is equipped with an in-place calibration feature, provisions should be made for connecting calibration check gas tanks to the oxygen probe during calibration.
If the calibration check gas bottles are to be per­manently connected, a check valve is required next to the calibration fittings on the integral electronics.
This check valve is to prevent breathing of cali­bration check gas line and subsequent flue gas condensation and corrosion. The check valve is in addition to the stop valve in the calibration check gas kit.
NOTE
g. System Considerations.
Prior to installing your Rosemount T wo-Wire In Situ Oxyge n Analyzer, make sure you have all the components neces­sary to make the system installation. Ensure all the components are properly integrated to make the system functional.
After verifyin g that yo u have all t he c ompo ne nts, select mounting locations and determine how each component will be placed in terms of avail-
The electronics of the Model 4081 Trans­mitter is rated NEMA 4X (IP65) and is capable of operating at temperatures up to 65°C (149°F).
Retain the packaging in which the Rose­mount Two-Wire In Situ Oxygen Analyzer arrived from the factory in case any com­ponents are to be shipped to another site. This packaging has been designed to pro­tect the product.
IB-106-4081
1-4
Page 27
TWO-WIRE IN SITU
OXYGEN ANALYZER
OmV
2
SIGNAL
MODEL 4081
TRANSMITTER
FIELDBUS
DIGITAL OUTPUT
(TWISTED PAIR)
CALIBRATION CHECK
GAS LINE
Figure 1-2. Two-Wire In Situ Oxygen Analyzer Fieldbus Connections
GASES
STACK
OXYGEN
PROBE
REFERENCE
AIR LINE
TEMPERATURE
mV SIGNAL
DUCT
OPTIONAL ADAPTER PLATE
INTRINSIC
SAFETY
BARRIER
(OPTIONAL)
FIELDBUS
COMPUTER TERMINAL
29760002
MODEL 4081
TRANSMITTER
FLOWMETER
PRESSURE
REGULATOR
FIELDBUS
DIGITAL SIGNAL
Figure 1-3. Typical System Installation
INSTRUMENT AIR SUPPLY (REFERENCE AIR)
29760003
IB-106-4081
1-5
Page 28
1-3. SPECIFICATIONS
Net O2 Range ......................................................................... 0 to 25% O
Fully Field Selectable via the F
OUNDATION
Fieldbus Interface
Lowest Limit................................................................... 0.05% O
Highest Limit.................................................................. 25.00% O
2
2
2
Accuracy................................................................................ ±1.5% of reading or 0.05% O2, whichever is gre ater
System Response to Calibration Check Gas .......................... Initial response in less than 3 seconds
T90 in less than 10 seconds
PROBE
Lengths ................................................................................. 20 in. (508 mm)
26 in. (660 mm) 38 in. (965 mm)
Temperature Limits
Process............................................................................ 550° to 1600°C (1022° to 2912°F)
Ambient .......................................................................... -40° to 149°C (-40° to 300°F) Ambient
Mounting and Mounting Position .......................................... Vertical or Horizontal
Materials of Construction
Process Wetted Parts
Inner Probe .............................................................. Zirconia
Outer Protection Tube.............................................. Alumina [1600°C (2912°F) limit]
Inconel 600 [1000°C (1832°F) limit]
Probe Junction Box.................................................. Cast aluminum
Speed of Installation/Withdrawal........................................... 1 in. (25.4 mm) per minute
Hazardous Area Certification................................................. Intrinsically safe per EN50 014 (1977), clause 1.3
(1)
pending
Reference Air Requirement.................................................... 100 ml per minute (0.2 scfh) of clean, dry instrument air;
1/4 in. tube fittings
Calibration Check Gas Fittings.............................................. 1/4 in. tube fittings
Cabling ................................................................................. Two twisted pairs, shielded
ELECTRONICS
Enclosure.................................................................................. IP65 (NEMA 4X), weatherproof, and corrosion-resistant
Materials of Construction......................................................... Low copper aluminum
Ambient Temperature Limits................................................... -20° to 65°C (-4° to 149°F)
Relative Humidity.................................................................... 95% with covers sealed
Inputs (from O
Probe)............................................................. Two wires - O2 signal
2
Two wires - type B thermocouple
Output ................................................................................... F
OUNDATION
fieldbus digital signal
Fieldbus Logic Function Blocks
Two AI Blocks: Execution Rate ...................................... 75mS
PID Block: Execution Rate .............................................. 150mS
Fieldbus Segment Power Consumption .................................. 30mA max, 30VDC max
Hazardous Area Certification................................................... Cenelec EEx ia IIC T4 or T5
(2)
(pending)
NEC Class I Div. I Group B,C,D (pending)
Fisher-Rosemount has satisfied all obligations coming from the European legislation to harmo­nize the product requirements in Europe.
Power Transient Protection...................................................... IEC 801-4
Shipping Weight ...................................................................... 10 lbs (4.5 kg)
INFRARED REMOTE CONTROL
Power Requirements................................................................ Three AAA batteries
Hazardous Area Certification................................................... Cenelec EEx ia IIC Class I, Div. I, Group A, B, C, D
(1)
Thermocouple and O2 probe cell are both unpowered, developing a millivolt emf, and are considered a “simple apparatus” by certifying agencies.
(2)
Dependent on ambient temperature limits.
IB-106-4081
1-6
Page 29
2

SECTION II. INSTALLATION

2-1. PRE-INSTALLATION
a. Inspect.
for any evidence of damage. If the container is damage d, n oti fy th e car ri er i m me diately .
b. Packing List.
the packing list are present. Notify Rosemount Analytical immediately if items are missing.
Before installing this equipment, read the “Safety instructions for the wiring and installation of this apparatus” at the front of this Instruction Bulletin. Fail­ure to follow the safety instructions could result in serious injury or death.
2-2. MECHANICAL INSTALLATION
Avoid installation locations near steam soot blowers.
Carefully inspect the shipping container
Confirm that all items shown on
selected so the process ga s temperature falls within a range of 550° to 1600°C (1022° to 2912°F). Figur e 2-1 provides mechanical in­stallation references.
Check the flue or stack for holes and air
2.
leakage. The presence of this condition will substantially affect the accuracy of the oxy­gen reading. Therefore, either make the necessary repairs or install the probe up­stream of any leakage.
Ensure the area is clear of internal and exter-
3.
nal obstructions that will interfere with in­stallation and maintenance access to the probe. Allow adequate clearance for probe rem o val (Figure 2-1).
b. Installing Oxygen Probe.
The probe was specially packaged to prevent breakage due to handling. Do not remove the padding material from the probe until immediately before in­stallation.
a. Locating Oxygen Probe.
The location of the o xygen probe i n the stack
1.
or flue is important for maximum accuracy in the oxygen analyzing process. The probe must be positioned so the gas it measures is representative of the process. Best results are normally obtained if the probe is positioned near the center of the duct (40-60% insertion). Longer ducts may require several analyzers since the O2 can vary due to stratification. A point too near the wall of the duct, or the in­side radius of a bend, may not provide a rep­resentative sample because of the very low flow conditions. The sensing point should be
Ensure all components are available to in-
1.
stall the probe.
NOTE
Leave the probe inner protective cover in place until installation. This is required to protect the ceramic cell during movement.
If using an optional adapter plate (Figure
2.
2-2) or an op tio nal moun ting fla n ge ( Fi gur e 2-3), weld or bolt the component onto the duct. The through hole in the stack or duct wall and refractory material must be 2 in. (50.8 mm) diameter, minimum.
IB-106-4081
2-1
Page 30
1/4 TUBE FITTING (REFERENCE AIR PORT)
1/4 TUBE FITTING
(CALIBRATION
CHECK GAS PORT)
REFERENCE AIR VENT
FRONT VIEW
(REMOVAL ENVELOPE)
1.1
O
(29)
DIM “A”
1.25 NPT PROCESS CONNECTION
7.1 (180)
DIM “B”
O
4.1
(109)
SIDE VIEW
1.8
(49)
TABLE 1. INSTALLATION (REMOVAL)
PROBE
20 IN.
26 IN.
38 IN.
DIM “A”
20 (508)
26 (660)
38 (965)
DIM “B”
31 (787)
37 (940)
49 (1245)
Figure 2-1. Probe Installation Details
BOTTOM VIEW
INSTALL WITH PORT AT
THE BOTTOM
3.0
(77)
NOTE: DIMENSIONS ARE IN INCHES WITH
MILLIMETERS IN PARENTHESES.
3/4 NPT
CONDUIT
PORT
29750001
IB-106-4081
2-2
Page 31
MET AL WALL
STACK OR DUCT
MASONRY WALL
ST ACK
A
B
C
NOTE: DIMENSIONS ARE
IN INCHES WITH MILLIMETERS IN PARENTHESES.
DIMENSION
BTHREAD 0.625-11 M-16x2 M-12x1.75
CDIA. 4.75 (121) 5.71 (145) 5.12 (130)
A
WELD OR BOLT ADAPTER PLATE TO STACK OR DUCT. JOINT MUS T BE AIR TIGHT.
PLA TE DIMENSIONS
ANSI
4512C34G01
A 6.00 (153) 7.5 (191) 6.50 (165)
2.50 (63.5) MIN. DIA.
4512C36G01
JOINT MUS T
BE AIR TIGHT
DIN
3.00 SCHEDULE 40 PIPE SLEEVE
SUPPLIED BY CUSTOMER
JIS
4512C35G01
Figure 2-2. Optional Adapter Plate
WELD PIPE TO
ADAPTER PLATE
3.50 (89)
O.D. REF
29750002
GASES
STACK
OXYGEN
PROBE
MODEL 4081
TRANSMITTER
DUCT
OPTIONAL ADAPTER PLATE
FLOWMETER
FIELDBUS
DIGITAL SIGNAL
PRESSURE
REGULATOR
Figure 2-3. Optional Probe Mounting Flange
INSTRUMENT AIR SUPPLY (REFERENCE AIR)
29760003
IB-106-4081
2-3
Page 32
STACK OR DUCT
METAL WALL
WELD PIPE TO
METAL WALL
2.0 IN. (51 mm) MIN. DIA.
REFRACTORY
SCHEDULE 40
STACK OR DUCT METAL W ALL
ADAPTER
2 IN. NPT
PIPE
1.25 NPT
CUSTOMER
SUPPLIED ADAPTER
INSULATE IF EXPOSED
TO AMBIENTWEATHER
CONDITIONS
2 IN. NPT
SCHEDULE 40
PIPE
CALIBRA TION
GAS LINE
Figure 2-4. Horizontal Probe Installation
If the optional adapter plates are not used, a
3.
2 in. NPT, schedule 40, pipe nipple (Figure 2-4) should be welded to the stack or duct wall.
When a 2 in. NPT to 1.25 NPT adapter is threaded to the welded pipe nipple, the adapter provides the pipe threads needed for the probe’s process fit ting .
CHECK
REFERENCE
AIR LINE
SYSTEM
CABLE
29750004
Where high particulate or slag is in the flue
4.
gas stream, it may be desirable to inset the probe in the refractory as shown in Figure 2-5. Use pipe couplings and nipples to ad­just the probe insertion dept h.
Use rags or other material to seal around
5.
the probe during insertion. This prevents hot gases from escaping or cold air from entering the stack or duct.
IB-106-4081
2-4
Page 33
REFRACTORY
STACK OR
DUCT METAL
PROBE LENGTH
A
WALL
1.5 + A
DIMENSION A -- 1-5/8, 2-1/2, 3, OR 4 IN. 1.25 NPT SCHEDULE 40 PIPE NIPPLE
2 IN., 1.25 NPT PIPE COUPLING
Figure 2-5. Adjusting Probe Insertion Depth
29750005
IB-106-4081
2-5
Page 34
Initially insert the probe to a depth of 3 in.
6.
(76.2 mm) or 1/2 the depth of the stack or duct refractory, whichever is greater.
After initial insertion, do not insert the probe at a rate exceeding 1 in. per min­ute (25.4 mm per minute) or damage to the probe may result due to thermal shock.
After initial insertion, insert the probe at a
7.
rate of 1 in. (25.4 mm) per minute until the probe is fully inserted.
Install anti-seize compound on the pipe
8.
threads and screw the probe into the proc­ess flange or adapter.
the insulation is replaced afterward. See Figure 2-4.
If the ducts will be washed dow n during outage, MAKE SURE to power down the probes and remove them from the wash area.
c. Locating Model 4081 Transmitter.
Ensure the Model 4081 Transmitter is eas-
1.
ily accessible for maintenance and service and for using the infrared remote control (if applicable).
NOTE
Use anti-seize compound on threads to ease future removal of probe.
The electrical conduit port should be facing down for a horizontal probe installation. See Figure 2-4. In vertical probe installations, orient the probe so the system cable drops vertically from the probe. Ensure the elec­trical conduit is routed below the level of the terminal block housing. This drip lo op minimizes the possibility that moi sture will accumulate in the housing.
If insulation was removed to access the
9.
duct work for probe mounting, make sure
Do not allow the temperature of the Model 4081 Transmitter to exceed 65°C (149°F) or damage to the unit may result.
The ambient temperature of the transmitter
2.
housing must not exceed 65°C (149°F). Lo­cate the electronics in an area where tem­perature extremes, vibration, and electro­magnetic and radio frequency interference are minimal.
Locate the Model 4081 Transmitter within
3.
150 ft (45.7 m) of the oxygen probe due to wiring and signal considerations.
IB-106-4081
2-6
Page 35
d. Installing Model 4081 Tra nsmitter.
Ensure all components are available to in-
1.
stall the Model 4081 Transmitter.
Choose a method or location to mount the
2.
transmitter.
(a) Flat Surface Mounting. The trans-
mitter may be mounted on a flat
surface using the threaded mounting holes located on the bottom of the transmitter housing. Refer to Figure 2-6 for installation references.
(b) Pipe Mounting. An optional pipe
mounting bracket is available for this type of installation. Refer to Figure 2-7 for installation references.
COVER
LOCK
CIRCUIT
END
6.32
(160.5)
1.32
(33.5)
O-RING
(2 PLACES)
NOTE: DIMENSIONS ARE IN INCHES
WITH MILLIMETERS IN PARENTHESES.
3.68
(93.5)
6.35
(161.3)
TERMINAL END
3/4-14 NPT (2 PLACES)
THREADED CAP (2 PLACES)
0.839
(21.31)
SURFACE
BY OTHERS
TERMINAL BLOCK (TB)
TERMINAL END
CAP OMITTED
FOR CLARITY
(THIS VIEW)
1/4-20 THREADS (4 PLACES)
0.839 (21.31)
FLAT SURFACE MOUNTING
PAD HOLE PATTERN
Figure 2-6. Flat Surface Mounting Dimensional Information
IB-106-4081
2-7
26020003
Page 36
6.35
(161.3)
COVER LOCK
6.9
(175.3)
TERMINAL BLOCK (TB)
CIRCUIT
6.32
(160.5)
1.00
(25.4)
0.375 (9.525) DIA. (4 MOUNTING
HOLES)
1.405
(35.687)
2.81
(71.374)
END
1.32 (33.5)
C
TERMINAL END
3/4 -14 NPT 2 PLACES
3.87
(98.3)
7.5
(190.5)
6.5
(165.1)
3.25
(82.55)
L
C
L
3/4-14 FNPT
(2 PLACES)
5/16-18 NUT
4.00
(101.6)
TERMINAL END CAP OMITTED FOR CLARITY IN THIS VIEW.
2 IN. PIPE/WALL MOUNTING BRACKET (OPTION)
U-BOLT (2 PLACES)
%
1/4-20 THREADS
BRACKET HOLE PATTERN
FOR WALL MOUNTING
NOTE:
DIMENSIONS ARE IN INCHES WITH MILLIMETERS IN PARENTHESES.
*SCREWS FURNISHED WITH
Figure 2-7. Pipe Mounting Dimensional Information
5/16 WASHER
U-BOLT
MOUNTING KIT ONLY. NOT FURNISHED WITH ANALYZER/TRANSMITTER.
BOTTOM VIEW
1/4-20 SCREW*
29760016
IB-106-4081
2-8
Page 37
For correc t viewing orienta tion, the disp lay
3.
may be changed 90 degrees, using the fol­lowing procedure:
(d) Lift and rotate the display board 90
degrees either way.
(a) Refer to Figure 2-8. Loosen the cover
lock screw until the cover lock is dis­engaged from the knurled surface on
the threaded circuit end cap. (b) Remove the circuit end cap. (c) Remove the three screws retaining the
display board in place.
(e) Reposition the display board on the
standoffs. Install and tighten all three screws.
(f) Install the circuit end cap and tighten
the cover lock screw to secure the cover lock in place.
CIRCUIT
END CAP
SCREW
COVER LOCK
SCREW
DISPLAY
BOARD
O
90
Figure 2-8. Display Positioning Assembly
90
O
HOUSING
29760004
IB-106-4081
2-9
Page 38
2-3. ELECTRICAL INSTALLATION
All wiring must conform to local and national codes.
Disconnect and lock out power before connecting the unit to the power supply.
Install all protective equipment covers an d safety ground leads after installation. Failure to install covers and ground leads could result in serious injury or death.
It is necessary to prevent moisture from entering the Model 4081 Transmitter housing. The use of weather-tight cable glands is required. If conduit is used, plug and seal connections on the trans­mitter housing to prevent moisture accumulation in the terminal side of the housing.
Moisture accumulation in the transmit­ter housing can affect its performance and may void its warranty.
b. Oxygen Probe Signal Connections.
To meet the Safety Requirements of IEC 1010 (EC requirement), and ensure safe operation of this equipment, connection to the main electrical power supply must be made through a circuit breaker (min 10 A) which will disconnect all current­carrying conductors during a fault situation. This circuit breaker should also include a mechanically operated isolating switch. If not, then another ex­ternal means of disconnecting the supply from the equipment should be located close by. Circuit breakers or switches must comply with a recognized standard such as IEC 947.
a. General.
The power supply and signal wiring should be shielded. Also, make sure the signal wiring is grounded at the Model 4081 Transmitter end only. Do not ground the signal loop at more than one point. Twisted pairs are recommended. Ground t he trans mitter ho using to an earth ground to prevent unwanted electromagnetic interference (EMI) or rad io fr equ en cy in t erf er en ce (R FI ).
Two signals represent the O
1.
value and the
2
cell temperature. The probe provides these values to the Model 4081 Transmitter for processing and signal conditioning.
Wiring connections for the probe are shown
2.
in Figure 2-9.
TERMINAL BLOCK
CONDUIT
NOTE
For optimum EMI/RFI immunity, shield the
OUNDATION
F
fieldbus signal cable and enclose
in an earth grounded metal conduit . Never run signal or sensor wiring in the same
conduit, or open tray, with power cables. Keep signal or sensor wiring at least 12 in. (0.3 m) away from other electrical equipment and 6.5 ft (2 m) from heavy electrical equip­ment.
IB-106-4081
2-10
THERMOCOUPLE + (GY)
THERMOCOUPLE - (RD)
CELL - (WH)
CELL + (BK)
Figure 2-9. Oxygen Probe Terminal Block
26020004
Page 39
c. Model 4081 Transmitter and F
Fie l d b u s S ignal Connections.
Two signals representing the O
1.
the cell temperature are supplied to the Model 4081 Transmitter from the oxygen probe.
OUNDATION
value and
2
2-4. PNEUMATIC INSTALLATION
a. General.
Reference air is required for O lation, and calibration check gas is required dur­ing a calibration check. Refer to Figure 2-11 for the gas connections on th e oxygen probe.
calcu-
2
Wiring connections for the Model 4081
2.
Transmitter are shown in Figure 2-10.
NOTE
The ground arrangement shown in Figure 2-10 limits the amount of noise introduced into the electronics.
Connect wire shields to terminal 1. Connect
3.
earth ground as shown.
CELL - (WH)
THERMOCOUPLE - (RD)
FACTORY-INSTALLED
JUMPER
TERMINAL
BLOCK (TB1)
PROBE
CABLE
SHIELD
GROUND
4
3
12
CELL + (BK)
7
6
5
THERMOCOUPLE + (GY)
EARTH
GROUND
11
12
13
14
TERMINALS
FIELDBUS DIGITAL (-)
15
FIELDBUS
16
DIGITAL (+)
8
9
10
b. Reference Air Package.
After the oxygen probe is installed, connect the reference air set. Install the reference air set according to Figure 2-12.
c. Instrument Air (Reference Air).
Instrument air is required for reference. Use 10 psig (68.95 kPa gage) minimum, 225 psig (1551.38 kPa gage) at
0.2 scfh (100 ml/min.); less than 40 parts-per-million total hydrocarbons. Regulator outlet pressure should be set at 5 psi (35 kPa).
d. Calibration Check Gas.
Two calibration check gas concentrations are used with the Two-Wire In Situ Oxygen Analyzer: Low Gas - 0.4% O and High Gas - 8% O2, each with the balance in nitrogen. Do not use 100% nitrogen. See Figure 2-11 for the probe connections. Set both calibra­tion check gases at the same flow rate: 5 scfh (2.5 L/min).
1/4 TUBE FITTING
(REFERENCE AIR PORT)
2
CELL AND THERMOCOUPLE
CONDUITS
NOTE:
RUN CELL AND THERMOCOUPLE SIGNALS IN SEPARATE CONDUIT FROM .FIELDBUS
FIELDBUS DIGITAL
29760005
Figure 2-10. Model 4081 Transmitter Terminal Block
IB-106-4081
2-11
1/4 TUBE FITTING
(CALIBRATION CHECK
GAS PORT)
REFERENCE
AIR VENT
Figure 2-11. Oxygen Probe Gas Connections
26020006
Page 40
0.125-27 NPT FEMALE
OUTLET CONNECTION
1
2
OUTLET
3.12 (79.25) MAX
3
2.250 (57.15)
NOTE: DIMENSIONS ARE IN INCHES WITH
MILLIMETERS IN PARENTHESES.
4.81 (122.17)
FLOW SET
POINT KNOB
0.25-18 NPT FEMALE INLET CONNECTION
1.19 (30.22)
DRAIN VALVE
10.0
(254)
REF
(SUPPLIED BY CUSTOMER)
SCHEMATIC HOOKUP FOR REFERENCE AIR SUPPLY ON OXYGEN PROBE.
1/4TUBE
(38.10)
2.0
(50.80)
1.50
1 FLOWMETER 0.2-2.0 SCFH 771B635H08
2 2" PRESSURE GAGE 0-15 PSIG 275431-006
3 COMBINATION FILTER-REG. 0-30 PSIG 4505C21G01
TO PROBE
2 MOUNTING HOLES
3.19 (81.03) LG
THROUGH BODY FOR
0.312 (7.92) DIA BOLTS
REF AIR SET
263C152G05
8.50
(215.90)
MAX
INSTRUMENT AIR SUPPLY 10-225 PSIG MAX PRESSURE
26020034
Figure 2-12. Air Set, Plant Air Connection
IB-106-4081
2-12
Page 41
3

SECTION III. STARTUP

Install all protective equipment covers and safety ground leads before equip­ment startup. Failure to install covers and ground leads could result in serious injury or death.
3-1. GENERAL
a. Verify Mechanical Installation.
Two-Wire In Situ Oxygen Analyzer is installed correctly. See paragraph 2-2 for mechanical in­stallation information.
b. Verify Terminal Block Wiring.
wiring of both the oxygen probe terminal block and Model 4081 Transmitter terminal block is correct. Refer to paragraph 2-3 for electrical in­stallation and wiring information.
3-2. POWER UP
a. General.
The Two-Wire In Situ Oxygen Ana­lyzer displays the current oxygen reading on the LCD face of the Model 4081 Transmitter. The O
concentration and cell temperature are dis-
2
played as shown in Figure 3-1. T his and other in­formation may also be accessed using the
OUNDATION
F
fieldbus.
Ensure the
Ensure the
Figure 3-1. The display will now track the O concentration and cell temperature.
CELL
TEMPERATURE
Figure 3-1. Normal Operation Display
O CONCENTRATION
2
%
29760006
2
b. Startup Display.
When the probe is first in­serted into the stack, some time is required until minimum operating temperatures [550°C (1022°F)] are reached. Some time is also re­quired for the electronics to reach an operating state. Therefore, when the unit is first powered up, a faulted operation display as shown in Figure 3-2 may be displayed by the transmitter until the probe operating temperatures are reached and the electronics are working properly (approximately 5 minut es ).
c. Operating Display.
After the probe has reached operating temperatures, the Model 4081 Transmitter display should look similar to
%
29760007
Figure 3-2. Faulted Operation Display
IB-106-4081
3-1
Page 42
3-3. REESTABLISHIN G PROPER CALIB RATION
CHECK GAS FLOW RATE
The calibration check gas flow must be enough to en­sure no comb ustion flue gases mix with the cali bra­tion check gases and only clean, good calibration check gas surrounds the cell without expending ex­cess gas (Figure 3-3). Monitor the O using an IRC or F
OUNDATION
fieldbus. Set the cali-
concentration
2
bration check gas flow rate as follows:
NOTE
Only set the calibration check gas flow rate at startup. It is not necessary to perform this procedure for each calibration check.
Adjust the calibration check gas flow to 5 scfh
a.
(2.5 L/min) to ensure the cell is surrounded by calibration check gas. Due to the cooling effect of the gas, the cell temperature will decrease slightly, causing the O
concentration to drop.
2
Once the electronics compensates for this effect, the O
concentration will stabilize.
2
Next, slowly reduce the calibration check gas
b.
flow until the O
concentration changes, which
2
indicates that the calibration check and flue gases are mixing. Increase the flow rate until this effect is eliminated.
FLUE GAS
CALIBRATION
GAS
STACK OR DUCT METAL WALL
PROTECTIVE
TUBE
CELL
REFRACTORY
CALIBRATION
CHECK GAS LINE
REFERENCE
Figure 3-3. Proper Calibration Check Gas Flow Rate
AIR LINE
26020062
IB-106-4081
3-2
Page 43
4

SECTION IV. OPERATION

4-1. GENERAL
a. Overview.
controls and displays of the Two-Wire In Situ Oxygen Analyzer. The use of the Infrared Re­mote Control (IRC) and the Model 4081 Trans­mitter Liquid Crystal Display (LCD) are described in detail.
This section explains the operator
CIRCUIT
END
b. Display.
The Model 4081 Transmitter LCD dis­plays the O2 concentration and cell temp-erature during normal operation (see Figure 4-1). The LCD will also display fault conditions when the y occur. To interact with the transmitter, use the IRC and navigate through a series of menus dis­played on the LCD.
TERMINAL
END
MODEL 4081 TRANSMITTER
ELECTRONICS HOUSING
%
Figure 4-1. Normal Operation Display
29760008
IB-106-4081
4-1
Page 44
ON STARTUP
RESET
OR ON
FROM ANY
SCREEN
PROCESS DISPLAY
NORMAL
OPERATION
EXIT
ON FROM
ANY SCREEN
EXIT
WITHOUT
EXPLICITY
STATED
1 - USER ENTERS DISPLAY
ANALYZER CODE
2 - USER ENTERS ANALYZER
ACCESS CODE
CAL
NEXT
PROG
2
CODE
1
DISPLAY
CODE
CELL T HI
RESET MAX
CELL T
SET O2 FILTER
TIME
SET HI BOTTLE
O2
SET LO BOTTLE
O2
555 ENTER
NEXT
NEXT
NEXT
NEXT
NEXT
PROCESS DISPLAY
FAULTED
OPERATION
EXIT
PROGRAM
MENU
DIAG
SHOW FAULT IN MANUAL?
T/C mV ACCEPT HIGH O2
O2 CELL mV ACCEPT LOW O2
CELL
IMPEDANCE
PREVIOUS
SLOPE
PREVIOUS
CONSTANT
MAX CELL T
ENTER
NEXT ENTER
NEXT NEXT
NEXT NEXT
NEXT
NEXT
EXIT
EXIT
DIAGNOSTICS
NEXT
NEXT
FAULT
(IF PRESENT)
FAULT
(IF PRESENT)
MENU
PURGING
NEXT
SLOPE
NEXT
CONSTANT
RESET OR EXIT
CALCHECK
MENU
SET CODE
SW VER
NEXT
UNIT SER #
NEXT
SW BUILD
NUMBER
NEXT
NEXT
SW BUILD DATE
Figure 4-2. Model 4081 Transmitter Menu Tree
29760009
IB-106-4081
4-2
Page 45
c. Menu Tree.
The screens that can be displayed are shown in the menu tree of Figure 4-2. These screens are displayed on the LCD and are ac­cessed using the IRC keypad.
d. Navigation.
The IRC in Figure 4-3 is used to interact with the Model 4081 Transmitter and navigate thr ough the screens on the LCD.
Hold the IRC within 6 ft (1.8 m) of the
1.
Model 4081 Transmitter and within 15 de­grees from the centerline of the transmitter LCD. The amount of ambient light may also affect IRC performance.
NOTE
The LCD may react slowly to IRC com­mands. Allow sufficient time between key presses to avoid undesired or repeated commands from accumulating in the com­mand queue.
Use the keys on the IRC to navigate
2.
through the menu screens. Refer to Figure 4-3. General usage is as follows:
(h) ENTER. Initiates the editing process
and causes the most significant digit of the edited item to start flashing. Also processes the e ntry so the pre vi­ous value updates to the new value entered usin g the arrow keys. Fail ure to press ENTER before exiting a screen will cancel the input value and revert to the previous value.
(i) NEXT. Accesses the next user screen
as shown in the menu tree. Any non­entered number in the exited state will be ignored, and the previous data will be used.
(j) EXIT. Exits from sub-branches of the
menu tree where an exit option is ex­plicitly shown. Otherwise, returns to the PROCESS DISPLAY screen at the top of the menu tree. Any non­entered number in the exited state will be ignored, and the previous data will be used.
(a) RESET. Returns to the PROCESS
DISPLAY screen at the top of the menu tree. Any non-entered number in the exited state will be ignored, and the previous data will be used.
(b) HOLD. Not used.
(c) Left/Right Arrow. Moves left and
right among editable digits on the dis­play.
(d) Up/Down Arrow. Increases or de-
creases the value of the currently se­lected digit on the display.
(e) CAL. Accesses the CALCHECK
MENU branch of the menu tree. Only works from the PROCESS DISPLAY screen.
(f) PROG. Accesses the PROGRAM
MENU branch of the menu tree. Only works from the PROCESS DISP LAY screen.
RESET HOLD
ENTERCAL
PROG
DIAG EXIT
REMOTE CONTROL
ROSEMOUNT
NEXT
MODEL 3081
FISHER-ROSEMOUNT
(g) DIAG. Accesses the DIAGNOSTICS
MENU branch of the menu tree. Only works from the PROCESS DISPLAY screen.
IB-106-4081
29760010
Figure 4-3. Infrared Remote Control (IRC)
4-3
Page 46
4-2. PROGRAM MENU
The PROGRAM MENU branch of the menu tree allows you to program and edit some process pa­rameters, faults, outputs, and security codes. To ac­cess this branch of the menu tree, press the PROG key on the IRC when in the PROCESS DISPLAY screen (Normal or Faulted). You must enter the ana­lyzer code to gain further access to the screens in this branch. Each screen in this branch is accessed se­quentially usi ng the NEXT key. Re fer to Figure 4-2 during the following menu and screen descriptions.
NOTE
O CONCENTRATION
2
%
To edit a screen value, press ENTER to ac­cess the data field. Use the left and right ar­row keys to move among the digits in the data field. Note that the editable position will be flashing. To change the value of a digit, use the up and down arrow keys to increase or decrease the value. When fin­ished editing, press ENTER to accept the value. To go to the next screen in the menu, press NEXT.
a. CODE.
Refer to Figure 4-4. After pressing the PROG key, this screen will display. Use this screen to identify a specific analyzer in a process to prevent accessing an adjacent analyzer when using the IRC.
Press ENTER to begin edit ing. At this point , you can either specify the analyzer by its access code or view its code if it is unknown.
1.
To gain further access to the screens in the PROGRAM MENU branch, enter the cor­rect three-digit analyzer access code using the arrow keys and press ENTER. If secu­rity is disabled, this screen does not appear and the system displays the FAULT VAL screen.
ANALYZER
ACCESS CODE
OR SECURITY
ACCESS CODE
Figure 4-4. CODE
b. DISPLAY CODE.
Refer to Figure 4-5. This screen is accessible from the CODE screen by entering 555 and pressing ENTER. The DIS­PLAY CODE screen identifies the analyzer ac­cess code so you can return to the CODE screen and enter the code as described in paragraph 4-2.a. To return to the Process Display screen, press EXIT.
O CONCENTRATION
2
%
26020009
2.
If the analyzer access code is unknown, enter 555 and press ENTER to access the DISPLAY CODE screen. In that screen, you will be able to view the analyzer access code.
ANALYZER
ACCESS CODE
26020047
Figure 4-5. DISPLAY CODE
IB-106-4081
4-4
Page 47
c. CELL T HI.
Refer to Figure 4-6. Use this screen to set the value of the upper cell tem­perature fault condition. This value i s the maxi­mum allowed cell temperature before a fault condition is indicated. Press ENTER to begin editing. Use the arrow keys to select and change the value. The value must be between 550° and 1600°C. Press ENTER to accept the value. Pressing NEXT displays the RESET MAX CELL T screen.
O CONCENTRATION
2
d. RESET MAX CELL T.
Refer to Figure 4-7. The transmitter tracks the maximum cell tem­perature obtained. Use this screen to reset the maximum cell temperature attained value to the current cell temperature. Press ENTER to begin editing. Use the arrow keys to select and change the value (Y/N). Then, press ENTER to accept the value. Pressing NEXT displays the SET O2 FILTER TIME screen.
O CONCENTRATION
2
Figure 4-6. CELL T HI
%
UPPER CELL
TEMPERATURE
FAULT VALUE
26020012
%
Y/N (TO RESET MAXIMUM CELL TEMPERATURE)
26020013
Figure 4-7. R ESET MAX CELL T
IB-106-4081
4-5
Page 48
e. SET O2 FILTER TIME.
Refer to Figure 4-8. In some applications, it is beneficial to dampen the raw O
signal coming from the cell. Use this
2
screen to enter the amount of time it will take the O
to reach 90% of the new reading. Press EN-
2
TER to begin e diting. Use the ar row keys to se­lect and change the screen value to the O value (in seconds). Enter a value between 0 and 300 seconds and press ENTER to accept the value. Press NEXT to access the SET HI BOT­TLE O2 screen.
O CONCENTRATION
2
filter
2
f. SET HI BOTTLE O 2.
Refer to Figure 4-9. Use this screen to identify, within the electronics, the percentage of O
used as the high calibration
2
check gas. Press ENTER to begin editing. Use the arrow keys to select and change the screen value to the O
percentage of the high calibration
2
check gas. Press ENTER to accept the value. Press NEXT to display the SET LO BOTTLE O2 screen.
O CONCENTRATION
2
%
O FILTER
2
VALUE (IN SECONDS)
Figure 4-8. SET O2 FILTER TIME
26020048
%
HIGH CALIBRATION
CHECK GAS O
PERCENTAGE
Figure 4-9. SET HI BOTTLE O2
2
26020049
IB-106-4081
4-6
Page 49
g. SET LO BOTTLE O2 .
Refer to Figure 4-10. Use this screen to identify, within the electronics, the percentage of O
used as the low calibration
2
check gas. Press ENTER to begin editing. Use the arrow keys to select and change the screen value to the O
percentage of the low calibration
2
check gas. Press ENTER to accept the value. Press NEXT to display the SET CODE screen.
O CONCENTRATION
2
%
O CONCENTRATION
Figure 4-11. SET CODE
2
%
26020016
LOW CALIBRATION
CHECK GAS O
PERCENTAGE
Figure 4-10. SET LO BOTTLE O2
h. SET CODE.
Refer to Figure 4-11. Use this screen to set the security code for the Model 4 081 Transmitter. Press ENTER to begin editing. Use the arrow keys to select and change the value. Select any value between 000 and 999, excluding 000 and 555. Code 000 indicates that no code is set. Code 555 accesses the DISPLAY CODE screen. Press ENTER to accept the value. Pressing NEXT re turns to the CEL L T HI scree n at the beginning of the PROGRAM MENU.
2
26020050
i. Model 4081 Transmitter Parameters.
4-1 lists the range and default value of operator­adjustable variables used by the Model 4081 Transmitter. These variables may all be changed from the PROGRAM MENU screens.
Table 4-1. Model 4081 Transmitter Parameters
Parameter Range Default
Upp e r Range L i mit 2.0-25.0% 10.0% Upper Cell Temp.
650-1600°C 1600°C
Fault Value Analyzer Access
Code
000-999 (excluding 000 and 555)
000 (no code)
Table
IB-106-4081
4-7
Page 50
%
%
THERMOCOUPLE mV
26020018
26020017
Figure 4-13. T/C mV
Figure 4-12. SHOW FAULT
4-3. DIAGNOSTICS MENU
The DIAGNOSTIC S MENU branch o f the menu tree allows you to examine outputs, current faults, and unit information. None of the ite ms in the DIAGNOSTICS MENU are editable. T his branch of the me nu tree may be accessed by pressing DIAG on the IR C when in t he PROCESS DISPLAY screen (Normal or Faulted). Each screen in this branch is accessed sequentially by pressing NEXT. Refer to Fig ur e 4 -2 during the follow­ing menu and screen descriptions.
a. SHOW FAULT.
Refer to Figure 4-12. After pressing DIAG, this screen displays. Pressing EN­TER accesses a scree n displaying the current fa ult (if any). If more than one fault exists, and you are in the FAULT screen, the display cycles through all existing faults. Information on the fault screens can be found in Section V, TROUBLESHOOTING. Press EXIT to return from this fault sub-menu and press NEXT to access the T/C mV screen.
b. T/C mV.
Refer to F igur e 4-1 3. Use this screen to examine the cell thermocouple mV output. Three decimal places are displayed. Pressing NEXT ac­cesses the O2 CELL mV screen.
c. O2 CELL mV.
Refer to Fig ure 4 -14. Use this screen to examine the O2 CELL mV output. Pressing NEXT accesses the CELL I MP EDAN CE screen.
%
O CELL mV
2
Figure 4-14. O2 CELL mV
26020019
IB-106-4081
4-8
Page 51
O CONCENTRATION
2
O CONCENTRATION
2
%
O CELL
2
IMPEDANCE STATUS
26020020
Figure 4-15. CELL IMPEDANCE
d. CELL IMPEDANCE.
Refer to Figure 4-15. Use this screen to examine the O2 CELL IM­PEDANCE status. GOOD indicates the cell i s op­erating normally. WARN indicates the cell has degraded but is still operational. HI indicates that the cell has de graded but is still operational; how­ever, failure will occur soon. Pressing NEXT ac­cesses the PREVIOUS SLOPE screen .
%
CALCHECK CELL
SLOPE VALUE
Figure 4-16. PREVIOUS SLOPE
f. PREVIOUS CONSTANT.
Refer to Figure 4-17. Use this screen to examine the cell zero constant calculated from the most recent calibra­tion check. The constant represents the voltage generated by the cell when no difference exists between the amount of O
on the reference and
2
process sides of the cell. Press NEXT to access the MAX CELL T screen.
O CONCENTRATION
2
26020052
NOTE
Temperature influences cell impedance. Wait until the cell is at operating te mpera­ture before checking cell impedance. If checked before the cell reaches operating temperature [550°C (1022°F)], this screen displays a fail indication.
e. PREVIOUS SLOPE.
Refer to Figure 4-16. Use this screen to examine the slope calculated from the most recent calibration check. The slope is the amount of cell voltage generated for a given O value. For each calibration check, record the slope over the life of the probe. Tracking t he slope will indicate if the probe is degrading. Press NEXT to access the PREVIOUS CONSTANT screen.
%
2
CALCHECK CELL
CONSTANT VALUE
26020053
Figure 4-17. PREVIOUS CONSTANT
IB-106-4081
4-9
Page 52
of the analyzer. Before performing a calibratio n check, ensure the high calibration check gas and low calib­ration check gas O
percentages are entered into the
2
electronics via the PROGRAM MENU. To set these values, refer to paragraphs 4-2.f and 4-2.g.
%
Once these values are set, access the CALCHECK MENU branch by pr ess in g CAL on the IRC when in the PROCESS DISPLAY screen (Normal or Faulted). Each screen in this branch identifies a process step in the calibration check procedure. The first screen in the sequenc e is the IN MA NUAL? screen.
CELL
TEMPERATURE
MAXIMUM
Figure 4-18. MAX CELL T
g. MAX CELL T.
Refer to Figure 4-18. Use this screen to examine the maximum temperature at­tained by the O
cell. This value can be reset un-
2
der the PROGRAM MENU. Pressing NEXT accesses the SW VER screen.
h. SW VER.
Use this screen to see the software version number for the Model 4081 Transmitter. Pressing NEXT accesses the UNIT SER # screen.
i. UNIT SER #.
Use this screen to see the unit serial number for the Model 4081 Transmitter. Pressing NEXT accesses the SW BUILD NUMBER screen.
26020021
a. IN MANUAL?.
Refer to Figure 4-19.
Failure to remove the analyzer from automatic control loops prior to per­forming this procedure may result in a dangerous operating condition.
If the O2 output value is used in any automatic process control loops, the loop must be placed in manual be fore beginning a calibration check.
Once the analyzer is removed from any auto­matic control loops, press ENTER to edit the screen. Use the arrow keys to select Y (yes) and press ENTER to process the selection and to dis­play the ACCEPT HIGH O2 screen.
O CONCENTRATION
2
j. SW BUILD NUMBER.
Use this screen to see the software build number for the Model 4081 Transmitter. Pressing NEXT accesses the SW BUILD DATE screen.
k. SW BUILD DATE.
Use this screen to see the software build date for the Model 4081 Trans­mitter. Pressing NEXT returns to the beginning of the DIAGNOSTICS MENU branch (the SHOW FAULT screen).
4-4. CALCHECK MENU
The CALCHECK MENU branch of the menu tree (Figure 4-2) allows you to perform a calibration check
%
Y/N (FOR USER
RESPONSE)
26020054
Figure 4-19. IN MANUAL?
IB-106-4081
4-10
Page 53
O CONCENTRATION
2
O CONCENTRATION
2
%
%
HIGH CALIBRATION
CHECK GAS O VALUE
Figure 4-20. ACCEPT HIGH O2
b. ACCEPT HIGH O2.
Refer to Figure 4-20. After pressing ENTER to begin the calibration check, the high calibration check gas starts to flow. After waiting approximately three minutes for the displayed O
value to settle, press NEXT to accept
2
the high calibration check gas reading and apply the low calibratio n check gas. The next s creen to dis­play is the ACCEPT LO W O2 screen.
2
26020055
%
29760017
Figure 4-22. PURGING
d. PURGING.
The PURGING screen provides an opportunity for the O2 reading to return to the process gas concentration prior to exiting the calibration procedure. Once the displayed oxy­gen concentra tio n ha s retur ned to the pro cess gas value, press the NEXT button to display the SLOPE screen.
O CONCENTRATION
2
c. ACCEPT LOW O2.
Refer to Figure 4-21. Once the low calibration check gas is applied, wait approximately three minutes for the dis­played O
value to settle. Once the value settles,
2
press NEXT to accept the reading and to display the PURGING screen.
O CONCENTRATION
2
%
%
LOW CALIBRATION
CHECK GAS O VALUE
Figure 4-21. ACCEPT LOW O2
2
26020056
%
CALCHECK CELL
SLOPE VALUE
Figure 4-23. SLOPE
e. SLOPE.
Refer to Figure 4-23. Use this screen to examine the slope calculated from current calibration check. The slope is the amount of cell voltage generated for a given O
value. After
2
each calibration check, record the slope over the life of the probe. Tracking the slope will indicate if the probe is degrading. Press NEXT to access the CONSTANT screen.
26020057
IB-106-4081
4-11
Page 54
O CONCENTRATION
2
SIMULATE
SWITCH (3)
ON OFF
%
CALCHECK CELL
CONSTANT VALUE
Figure 4-24. CONSTANT
f. CONSTANT.
Refer to Figure 4-24. Use this screen to examine the cell zero constant calcu­lated from the current calibration check. The constant repr esents the voltage genera ted by the cell when no difference exists between the amount of O
on the reference and process sides
2
of the cell. Note this value for comparison against future calibration checks. Press RESET or EXIT to return to the PROCESS DISPLAY screen.
26020058
E4.000
40
K
123
ON
SECURITY
SWITCH (2)
ON OFF
Figure 4-25. Simulate and Security Switch Positions
This must be done while the instrument is powered on. The simulate function will not actuate unless it sees the transition from OFF to ON. To remove the device from the simulate mode, place the switch in the OFF position, or cycle power to the analyzer. Note that this switch does not actually place the ana­lyzer in the simulate mode, it only allows the simu­late mode to be enabled via fieldbus.
4-6. SECURITY SWITCH
29760020
4-5. SIMULATE SWITCH
The Model 4081FG is equipped with a simulate function. Located on the fieldbus board is a switch that controls the simulate enable status of the ana­lyzer. Refer to Figure 4-25. To allow the analyzer to be placed in simulation mode, place the switch in the ON position.
The Model 4081FG contains a security function which prevents parameter from being changed via fieldbus. Refer to Figure 4-25. To enable the security feature, set the security switch located on the fieldbus board to ON, then enable security in the resource block.
IB-106-4081
4-12
Page 55

SECTION V. TROUBLESHOOTING

Install all protective equipment covers an d safety ground leads after troubleshooti ng. Failure to install covers and ground leads could result in serious injury or death.
5
Life of the probe is negatively impacted by:
Continued operation at elevated temperatures
above 1300°C (2372°F). Operation in processes that contain high levels of
sulfur, SO
, or other acidic compounds.
2
5-1. GENERAL
This troubleshooting section describes how to iden­tify and isolate faults that may develop in the T wo­Wire In Situ Oxygen Analyzer.
5-2. PROBE LIFE
The zirconium oxide technology for measuring oxy­gen is very stable and should provide accurate service for several years.
50
40
30
20
SLOPE (mV/Dec)
NORMAL OPERATIONAL CONDITIONS
DETERIORATED PERFORMANCE, SLOW RESPONSE, HIGH MEASUREMENT ERROR
Operating cond itions wit h simult aneousl y high leve ls of SO
and low levels of O2 are particularly
2
damaging.
The health and accuracy of a given cell is closely re­lated to the resistance, or impedance, of the cell. Figure 5-1 illustrates that the amount of outp ut from a cell for a given O
value (represented as slope) will
2
remain very stable to the point where cell impedance increases to approximately 100 ohms.
DETERIORATED PERFORMANCE, SLOW RESPONSE, HIGH MEASUREMENT ERROR. CONDUCT FREQUENT CALIBRA­TION CHECKS.
10
48.0<S<51 mV/Dec
0
45.0<S<48 mV/Dec
IMPEDANCE,
S<45 mV/Dec
26020059
Figure 5-1. Slope vs. Impedance
IB-106-4081
5-1
Page 56
500
400
90
SPEED OF RESPONSE (t ), sec
300
200
100
0
AIR TO 0.4% O
0.4% O TO AIR
2
Figure 5-2. Speed of Response
Frequently conduct calibration checks to look for the following conditions:
Continued degradation of cell slope.
Sluggish response. (Note how long it takes the
cell to respond to the application of calibration check gases.) See Figure 5-2.
2
IMPEDANCE,
26020060
is present. When the error is corrected, the screen will return to a normal operation display unless an­other error exists.
The slope will be valid only for the process tem­perature at which the calibration check gases are flowed, so no adjustments to the electronics are made as a result of a calibration check.
Note that cells exposed to temperatures above 1300°C (2372°F) may lose the ability to measure ac­curately and respond quickly when returned to the lowest end of the operating temperature range [550°C (1022°F)].
5-3. FAULT INDICATIONS
The fault conditions for the Two-Wire In Situ Oxy­gen Analyzer will be indicated by the faulted opera­tion display as shown in Figure 5-3. This screen displays when a fault that invalidates the O
reading
2
%
29760012
Figure 5-3. Faulted Operation Display
IB-106-4081
5-2
Page 57
5-4. IDENTIFYING AND CORRECTING FAULT
INDICATIONS
A fault in the operation of the Two-Wire In Situ Oxygen Analyzer is indicated by the faulted opera­tion display. If no faults exist, the display will indi­cate NONE. Information on the current fault is found under the DIAGNOSTICS MENU as detailed in Section IV, OPERATION.
The following paragraphs describe the faults, possi­ble causes, and co r rective actions. Refer to Figure 5-4 as needed for test points and w iring information.
NOTE
Allow adequate time for the oxygen probe to reach its operating temperature [approx-
imately 500°°°°C (932°°°°F)] before investigating a fau lt. The SHOW FAULTS screen of the DIAGNOSTICS menu will indicate a fault until the unit reaches operating temperature.
NOTE
The probe uses a Type B thermocouple to measure the cell temperature. A Type B thermocouple output table may be useful for troubleshooting.
FACTORY-INSTALLED
JUMPER
TERMINAL
BLOCK (TB1)
PROBE
CABLE
SHIELD
GROUND
CELL AND THERMOCOUPLE
3
12
CELL + (BK)
7
6
5
4
THERMOCOUPLE
8
9
10
11
+(GY)
EARTH
GROUND
TERMINALS
FIELDBUS
12
13
DIGITAL (- )
14 15
FIELDBUS
16
DIGITAL (+)
FIELDBUS DIGITAL
29760013
CELL - (WH)
THERMOCOUPLE
- (RD)
Figure 5-4. Model 4081 Transmitter Terminal Block
IB-106-4081
5-3
Page 58
%
%
26020025
Figure 5-5. Fault 1, Open Thermocouple
a. Fault 1, Open Thermocouple.
The thermocou­ple connection is open. The fault displays as shown in Figure 5-5.
Refer to Figure 5-4 and check the thermo-
1.
couple wiring connections at terminals 8 and 10. Ensure the wires are properly con­nected.
Remove power. Disconnect the thermocou-
2.
ple wires (gray and red) from terminals 10 and 8. Measure the continuity across the gray and red thermocouple leads. The measurement should read approximately 1-2 ohms. Larger values indicate the ther­mocouple is open.
If the thermocouple is open, replace the
3.
oxygen probe per paragraph 6-2.
26020024
Figure 5-6. Fault 2, Reversed Thermocouple
b. Fault 2, Reversed Thermocouple Active.
thermocouple connections are reversed. The fault displays as shown in Figure 5-6.
Allow adequate time for the oxygen probe
1.
to reach operating temperatures. Probe temperatures below approximately 500°C (932°F) may result in this fau lt.
Refer to Figure 5-4. Check the gray (to
2.
terminal 10) and red (to terminal 8) wires for the proper placement.
Using a multimeter, measure between ter-
3.
minals 8(-) and 10(+). If the reading is negative, the thermocouple wiring is re­versed. Rewire as necessary.
If the wiring is correct and the probe is at
4.
operating temperature, then the transmitter electronics are bad. Replace the PC board stack assembly per paragraph 6-1.
The
IB-106-4081
5-4
Page 59
%
%
26020026
Figure 5-7. Fault 3, Shorted Thermocouple
c. Fault 3, Shorted Thermocouple.
The thermo­couple connections are shorted. The fault dis­plays as shown in Figure 5-7.
Allow adequate time for the oxygen probe
1.
to reach operating temperatures. Probe temperatures below approximately 500°C (932°F) may result in this fau lt.
Refer to Figure 5-4. Using a multimeter,
2.
measure between terminals 8(-) and 10(+).
If the multimeter reading, in voltage mode,
3.
is between -0.5 and +0.5 mV, the thermo­couple is shorted.
If the thermocouple is shorted, replace the
4.
oxygen probe per paragraph 6-2.
If the thermocouple is not shorted, then re-
5.
place the PC board stack assembly per paragrap h 6-1.
26020027
Figure 5-8. Fault 4, High Probe Temperature
d. Fault 4, High Probe Temperature.
The probe’s temperature has exceeded the maximum cell temperature setpoint. The fault displays as shown in Figure 5-8.
If the probe temperature exceeds the maxi-
1.
mum cell temperature setpoint, the
OUNDATION
F questionable O
Verify that the upper cell temperature set-
2.
fieldbus signal willl indicate a
level.
2
point is configured as desired under the PROGRAM MENU (see Section IV, OP­ERATION).
IB-106-4081
5-5
Page 60
%
%
26020028
Figure 5-9. Fault 5, O2 Cell Open
e. Fault 5, O
2
Cell Open.
The O
2
cell connection is open. The fault displays as shown in Figure 5-9.
Allow adequate time for the oxygen probe
1.
to reach operating temperatures. Probe temperatures below approximately 500°C (932°F) may result in this fau lt.
Refer to Figure 5-4 and check the O
2.
wiring connections at terminals 7 and 8. Ensure the wires are properly connected.
NOTE
Check the cell output voltage at the probe terminals -- not at the electronics.
Apply low calibration check gas (0.4% O
3.
Measure the cell output from the O wires at the probe terminal block. The cell output s hould be 100 ±20 mV. If no voltage can be measured, the cell is open.
cell
2
cell
2
26020029
Figure 5-10. Fault 6, Cell Impedance Too High
f. Fault 6, Cell Impedance Too High.
The O
2
cell impedance has exceeded 100 ohms. The fault displays as shown in Figure 5-10.
This fault is usually indicated in conjunc-
1.
tion with Fault 5, Cell Open. Correcting Fault 5 should correct Fault 6.
If Fault 6 appears independently, the cell
2.
has degraded beyond specification.
If the O
3.
cell has become too old, replace
2
the oxygen probe per paragraph 6-2.
).
2
If the O
4.
cell is open, replace the oxygen
2
probe per paragraph 6-2.
IB-106-4081
5-6
Page 61
%
Figure 5-11. Fault 7, Reversed O2 Cell
26020030
g. Fault 7, Reversed O
Cell.
The O
cell connec-
2
2
tions are reversed. The fault displays as shown in Figure 5-11.
Refer to Figure 5-4. Check the black (to
1.
terminal 7) and white (to terminal 8) wires for the proper placement. Rewire if necessary.
Apply the low calibration check gas
2.
(0.4% O
Using a multimeter, measure between ter-
3.
).
2
minals 7(+) and 8(-). If the cell output reading is nega tive, the O
cell wiring is re-
2
versed.
If the wiring is correct, check if the multi-
4.
meter reading is the same as the reading shown on the O
CELL mV diagnostics
2
screen (see Section IV, OPERATION).
If the reading is different, the transmitter
5.
electronics are faulty. Replace the PC board stack assembly per paragraph 6-1.
IB-106-4081
5-7
Page 62
6
1. Housing 9. O-ring
2. O-ring 10. PC Board Stack (CPU, Analog,
3. Lockwasher and F
OUNDATION
Fieldbus Boards)
4. Screw 11. Display Board
5. Terminal End Cap 12. Screw
6. Terminal Block 13. Circuit End Cap
7. Ground Screw 14. Screw
8. Washer 15. Cover Lock
2
1
7
8
4
3
5
6
9
10
15
13
14
STANDOFF
11
12
RIBBON
CABLE
Figure 6-1. Two-Wire In Situ Oxygen Analyzer Exploded View
OUNDATION
F
FIELDBUS
BOARD
STANDOFF
ANALOG BOARD
CPU BOARD
29760014
IB-106-4081
6-0
Page 63

SECTION VI. MAINTENANCE AND SERVICE

Install all protective equipment covers and safety ground leads after equipment repair or service. Failure to install cov­ers and ground leads could result in se­rious injury or death.
Disconnect and lock out power before working on any electrical components.
6-1. MODEL 4081 ELECTRONICS REPLACEMENT
Before replacing any electronic components, verify that the power to the Model 4081 Transmitter is removed. Refer to Table 8-1 for replacement part numbers.
a. Display Board Replacement.
lowing procedure to replace display board (11, Figure 6-1).
Loosen screw (14) until cover lock (15)
1.
disengages from the knurled surface of cir­cuit end cap (13).
Remove circuit end cap (13).
2.
Remove three screws (12) retaining the
3.
electronics in place.
Lift display board (11) and disconnect the
4.
ribbon cable connector between the display board and the CPU board of PC board stack (10).
Using a replacement display board, connect
5.
the ribbon cable connector between the dis­play board and the CPU board of PC board stack (10). Ensure the cable connector is fully seated.
Reposition display board (11) on the stand-
6.
offs. Rotate the display board 90 degrees either way as desired.
Install and tighten all three screws (12).
7.
Install circuit end cap (13).
8.
Use the fol-
Tighten cover lock screw (14) until cover
9.
lock (15) engages knurled surface of circuit end cap (13).
b. PC Board Stack Replacement.
(10, Figure 6-1) is composed of the CPU board and the analog board. Use the following proce­dure to replace these boards as a set.
Loosen cover lock screw (14) until cover
1.
lock (15) disengages from the knurled sur­face of circuit end cap (13).
Remove circuit end cap (13). Remove three
2.
screws (12).
Lift display board (11) and disconnect the
3.
ribbon cable connector between the display board and the CPU board of PC board stack (10).
Lift the CPU board from housing (1) by the
4.
standoffs.
Remove two screws (4) and lockwashers
5.
(3). Lift terminal block (6) until the analog board is unplugged from the terminal board.
Reinstall terminal block (6), lockwashers
6.
(3), and screws (4).
Lift the analog board from housing (1) by
7.
the standoffs.
Install replacement PC board stack (10) into
8.
housing (1). Carefully seat the analog board onto housing pins. Press firmly o n the CP U board standoffs to ensure good contact.
Connect the ribbon cable connector be-
9.
tween display board (11) and the CPU board of PC board stack (10). Ensure the cable connector is fully seated.
10. Reposition display board (11) on the stand­offs. Rotate the display board 90 degrees either way as desired.
11. Install and tighten all three screws (1 2) and circuit end cap (13).
12. Tighten cover lock screw (14) until cover lock (15) engages knurled surface of circuit end cap (13).
PC board stack
IB-106-4081
6-1
Page 64
Use heat resistant gloves and clothing when removing the probe. The probe can be as hot as 1600°°°°C (2912°°°°F). This can cause severe burns.
6-2. OXYGEN PROBE REPLACEMENT
The oxygen p rob e is de signed wit h c era mic mate ria ls to provide maximum life at elevated temperatures and is not rebuildable. The condition of the sensing cell can be determined periodically by two methods:
Note the cell impedance at the electronics. Whe n the
impedance displays a warning indication (WARN), increase the frequency of impedance readings. A cell with a sustained high impedance indication (HI) indi­cates a probe that is beyond its useful life.
Conduct a calibration check. Follow the prompts
provided by the electronics through the process of flowing two calibration check gases of known val­ues. Record the generated slope and constant val­ues.
Refer to Table 8-1 for replacement probe part num­bers. Before replacing the probe, verify that the refer­ence air and calibration check gas lines are turned off and disconnected from the probe.
Remove the end cap of the probe to expose the
a.
terminal block.
Refer to Figure 6-2. Disconnect the four wires
b.
(two oxygen signal wires and two thermocouple wires) from the terminal block.
Disconnect the reference air and the calibration
c.
check gas lines.
Unscrew the probe from the stack and remove.
d.
Using a replacement probe, refer to paragraph
e.
2-2.c for mechanical installation instructions.
Refer to paragraph 2-3.b for electrical installa-
f.
tion instructions.
Probe replacement may be conducted online as long as the process in which the probe is mounted is oper­ating at a negative, or slightly positive, pressure. Re­fer to Section V, TROUBLESHOOTING, for more information.
Do not install or remove probes from a process where pressures are more than a few inches of H2O positive pressure. Ho t gases may escape from the stack and cause severe personal injury.
Do not insert or withdraw a probe into or out of a hot process faster than 1 in. (25.4 mm) per minute or instrument damage from thermal shock may occur.
Also, ash, slag, or other materials can build up on the probe body in some ap­plications. If this buildup is cau sing dif­ficulty when withdrawing the probe, DO NOT FORCE. Rotate the probe back and forth to attempt to loosen the mate­rial on the probe body. Or, wait until the process cools down and access the buildup from inside the furnace.
Refer to paragraph 2-4 for reference air and cali-
g.
bration check gas installation instructions.
TERMINAL BLOCK
CONDUIT
THERMOCOUPLE + (GY)
THERMOCOUPLE - (RD)
CELL - (WH)
CELL + (BK)
Figure 6-2. Oxygen Probe Terminal Block
26020004
IB-106-4081
6-2
Page 65
7

SECTION VII. REPLACEMENT PARTS

Table 7-1. Replacement Parts List
Figure and
Index No. Part Number Description
1-1, 2 1A99372H01 Model 4081 Transmitter CENELEC 1-1, 2 1A99372H02 Model 4081 Transmitter CSA 1-1, 2 1A99372H03 Model 4081 Transmitter FM 1-1, 3 5R10092G01 20” Replacement Oxygen Probe, with Alumina Outer Protection Tube 1-1, 3 5R10092G02 26” Replacement Oxygen Probe, with Alumina Outer Protection Tube 1-1, 3 5R10092G03 38” Replacement Oxygen Probe, with Alumina Outer Protection Tube 1-1, 3 5R10092G09 20” Replacement Oxygen Probe, with Inconel 600 Outer Protection Tube 1-1, 3 5R10092G010 26” Replacement Oxygen Probe, with Inconel 600 Outer Protection Tube 1-1, 3 5R10092G011 38” Replacement Oxygen Probe, with Inconel 600 Outer Protection Tube 6-1, 10 23811-03 PC Board Stack Assembly (CPU and Analog Boards) - F 6-1, 11 23652-01 Display Board 6-1, 6 23581-00 Terminal Block 6-1, 13 23593-01 Circuit End Cap (with Glass)
OUNDATION
fieldbus
IB-106-4081
7-1/7-2
Page 66
Page 67
8

SECTION VIII. RETURNING EQUIPMENT TO THE FACTORY

If factory repair of defective equipment is required,
8-1.
proceed as follows:
Secure a return authorization number from a
a.
Rosemount Analytical Sales Office or represen­tative before returning the equipment. Equipment must be returned with complete identification in accordance with Rosemount instructions or it will not be accepted.
In no event will Rosemount be responsible for equipment returned without proper authorization and identification.
Carefully pack defective unit in a sturdy box
b.
with sufficient shock absorbing material to en­sure that no additional damage will occ ur during shipping.
In a cover letter, describe completely:
c.
The symptoms from which it was deter-
1.
mined that the equipment is faulty.
The environment in which the equipment
2.
has been operating (housing, weather, vi­bration, dust, etc.).
Site from which equipment was removed.
3.
Whether warr a nt y o r non war r ant y se r vic e i s
4.
requested.
Enclose a cover letter and purchase order and
d.
ship the defective equipment according to in­structions provided in Rosemount Return Authorization, prepaid, to:
American
Rosemount Analytical Inc. RMR Department 1201 N. Main Street Orrville, Ohio 44667
European
Rosemount Ireland Equipment Return Repair Dept. 151 Shannon Industrial Estate Co. Clare Ireland
If warranty service is requested, the defective unit will be carefully inspected and tested at the factory. If failure was due to conditions listed in the standard Rosemount warranty, the defective unit will be repaired or replaced at Rosemount’s option, and an operating unit will be re turned to the customer in accordance with shipping in­structions furnished in the cover letter.
Complete shipping instructions for return of
5.
equipment.
Reference the return authorization number.
6.
For equipment no longer under warranty, the equipment will be repaired at the factory and re­turned as directed by the purchase order and shipping instru ct i ons .
IB-106-4081
8-1/8-2
Page 68
Page 69
A B C D E F G H
I

INDEX

This index is an alphabeti zed listing of parts, terms, and procedures related to the Two-Wire In Situ Oxygen Analyzer. Every item listed in the index refers to a location in the manual by page number or numbers.
A
Absolute Temperature, 1-2 ACCEPT HIGH O2 Screen, 4-11 ACCEPT LOW O2 Screen, 4-11 Accuracy, 1-6 Adapter Plate, 2-3 Ambient Temperature Limits, Electronics, 1-6 Arithmetic Constant, 1-2
C
CAL Key, 4-3 CALCHECK Menu, 4-2, 4-10 Calibration Check Gas, 1-4, 1-6, 2-11 Calibration Check Gas Flow Rate, 3-2 Cell Constant, 1-2 CELL IMPE DANC E Sc ree n, 4-9 Cell Impedance Too High Fault, 5-6 CELL T HI Screen, 4-5 Check Valve, 1-4 Component Checklist, 1-1 CONSTANT Screen, 4-12
D
DIAG Key, 4-3 Diagnostics Menu, 4-2, 4-8 Display Board, 2-9 Display Board Positioning, 2-9 Display Board Replacement, 6-1 DISPLAY CODE Screen, 4-4 Drip Loop, 2-6
E
Earth Ground, 2-11 Electrical Installation, 2-10 Electromagnetic Interference (EMI), 2-10 ENTER Key, 4-3 EXIT Key, 4-3
H
Hazardous Area Certification, 1-6 Hazardous Area Certification, IRC, 1-6 Hazardous Area Certification, Probe, 1-6 High Probe Temperature Fault, 5-5
I
IN MANUAL? Screen, 4-10 Infrared Remote Control (IRC), 1-1, 1-3 Inner Probe, 1-6 Inputs, 1-6 Inspect, 2-1 Instrument Air, 1-4, 2-11 Insulation, 2-6 Intrinsic Safe, 1-5 Intrinsic S afety (IS), 1-3 IP65, 1-4, 1-6 IRC, 4-3 IRC Power Requirements, 1-6
L
Lengths, Probe, 1-3, 1-6 Liquid Crystal Display (LCD), 4-1
M
Materials of Construction, 1-6 Materials of Construction, Electronics, 1-6 MAX CELL T Screen, 4-1 0 Mechanical Installation, Probe, 2-1 Menu Arrows, 4-3 Menu Tree, 4-2 Minimum Operating Temperatures, 3-1 Model 4081 Transmitter, 1-1, 1-3, 2-6, 2-7, 2-11, 4-7 Model 4081 Transmitter, Installation, 2-7 Mounting Bracket, 2-7 Mounting Dimensions, Transmitter, 2-7, 2-8 Mounting Position, Probe, 1-6
F
Fault Indications, 5-2 Faulted Operation Display, 3-1 Fieldbus, 1-2
G
Grounding, 2-11
N
NEMA, 1-4 NEMA 4X, 1-6 Nernst Equation, 1-2 NEXT Key, 4-3 Normal Operation Display, 3-1, 4-1
IB-106-4081
I-1
Page 70
O
O2 CELL mV Screen, 4-8
Cell Open Fault, 5-6
O
2
Open Thermocouple Fault, 5-4 Outer Protection Tube, 1-6 Output, 1-6 Oxygen probe, 1-3 Oxygen Probe, 1-1, 2-10 Oxygen Probe Gas Connection, 2-11 Oxygen Pro be Re pl a cem en t , 6- 2 Oxygen Probe, Installing, 2-1 Oxygen Probe, Locating, 2-1
P
Packaging, 1-4 Packing List, 2-1 Partial Pressure, 1-2 PC Board Stack Replacement, 6-1 Plant Air Connection, 2-12 Pneumatic Installation, 2-11 PREVIOUS C O NSTANT Scre e n, 4-9 PREVIOUS SLO PE S c re en, 4-9 Probe Insertion Depth, 2-6 Probe Insertion Rate, 2-6 Probe Installation Details, 2-2 Probe Lengths, 1-6 Probe Life, 5-1 Probe Mounting, 1-6 Probe Mounting Flange, 2-3 Product Matrix, 1-0 PROG Key, 4-3 Program Menu, 4-2, 4-4 Protective Cover, 2-1
R
Radio Frequency Interference (RFI), 2-10 Reference Air, 1-2, 1-4, 1-6, 2-11 Reference Air Set, 1-1 Relative Humidity, 1-6 Replacment Parts, 7-1 RESET Key, 4-3 RESET MAX CELL T Screen, 4-5
Returning E qu ipm en t , 8-1 Reversed O Reversed Thermocouple Fault, 5-4
Cell Fault, 5-7
2
S
Security Switch, 4-12 Selected Distributed Control Systems, 1-3 SET CODE Screen, 4-7 SET HI BOTTLE O2, 4-6 SET HI BOTTLE O2 Screen, 4-6 SET LO B OTTLE O2 Screen, 4-7 SET O2 FILTER TIME Screen, 4-6 Shipping Weight, 1-6 Shorted Thermocouple Fault, 5-5 SHOW FAULT Screen, 4-8 Simulate and Secu r ity Sw it ch Pos it ion s , 4- 12 Simulate Switch, 4-12 SLOPE Scre en , 4- 11 Slope vs. Impedance, 5-1 Specifications, 1-6 Speed of Installation, 1-6 Speed of Response, 5-2 Speed of Withdrawal, 1-6 SW BUILD DATE Screen, 4-10 SW BUILD NUMBER Screen, 4-10 SW VER Screen, 4-10
T
T/C mV Screen, 4-8 Temperature Limits, 1-6 Transmitter LCD, 4-1 Transmitter Terminal Block, 5-3 Troubleshooting, 5-1 Two-Wire In Situ Oxygen Analyzer, 1-1, 6-0 Type B thermocouple, 1-2 Typical System Installation, 1-5
U
UNIT SER # Screen, 4-10
Z
Zirc onia Disc, 1- 2
IB-106-4081
I-2
Page 71
APPENDIX A. 4081FG TRANSDUCER BLOCK PARAMETER
DESCRIPTIONS
Parameter
Mnemonic Valid Range
ALERT_KEY See FF-891 section 5.3. 4 BLOCK_ALM See FF-891 section 5.3. 8 BLOCK_ERR See FF-891 section 5.3. 6 BUILD_DATE 0 N/A This is the date that the 4081FG software was built. 43 BUILD_NUMBER 0-65445 27 The build number of the 4081FG software. 42 CAL_CONSTANT ±20.0 mV This paramet er represents the constant (offset) value
CAL_MINIMUM_ SPAN
CAL_POINT_HI 0.0-25.0 %O2 See FF-903 section 3.3. In the 4081FG, a calibration
CAL_POINT_LO 0.0-25.0 %O2 See FF-903 section 3.3. In the 4081FG, a calibration
CAL_SLOPE 34.5-57.5 mV/Decade This parameter represents the slope value calculated
CAL_STATE See Table 1 0 Enumera ted This param eter represents the present state the
CAL_STEP 0: No effect
CAL_UNIT See FF-903 section
COLLECTION_ DIRECTORY
DETAILED_STATUS See Table 4 0 Enumerated This is a bit- enumerated va lue used to commun icate
MODE_BLK See FF-891 section 5.3. 5 PRIMARY_VALUE See FF-903 section 3.3. In the 4081FG, this is the
PRIMARY_VALUE_ RANGE
PRIMARY_VALUE_ TYPE
SECONDARY_ VALUE
1: Go to next step 2: Abort procedure
4.10 Units Codes
See section 4.1 in FF-903
Initial
Value Units Description
calculated in the calibration check procedure. See FF-903 section 3.3. In the 4081FG, a calibration
is used for checking the analyzer only. The calculation of the Primary Value is not effected.
is used for checking the analyzer only. The calculation of the Primary Value is not effected.
is used for checking the analyzer only. The calculation of the Primary Value is not effected.
during a calibr at ion check proce dur e .
calibration check cycle is in. Refer to table 1 for the definition of states.
0 Enumerated This parameter is used to step the transmitter through
1342 (%) Enumerated See FF-903 section 3.3. In the 4081FG, a calibration
65535
(other)
Enumerated See FF-903 section 3.3 and 4.1. In the 4081FG, this
a sensor calibration check. Setting this parameter to 1 requests the transmitter to move to the next cycle state of the calib ration check procedure. The transmitter will set this parameter value back to 0 when it has completed processing the step request. Setting this parameter to a value of 2 will caus e the present calibration to be aborted.
is used for checking the analyzer only. The calculation of the Primary Value is not effected.
See FF-891 section 5.3. 12
the status of the 4081FG (This is similar in nature to the command 48 status bits in HART). See Table 5.
present % O being applied.
See FF-903 section 3.3. In the 4081FG, this range is 0-40% and the number of displayable units is 2.
parameter is fixed at a value of 1001(°C). See FF-903 section 3.3. In the 4081FG, this is the
temperature of the O calculated O2 value is dependent on this temperature along with the sensor raw mV value.
reading and should reflect any test gas
2
sensor. The value of the
2
Index
Number
21
18
16
17
20
22
23
19
40
14
15
13
38
IB-106-4081
A-1
Page 72
Parameter Mnemonic Valid Range
SECONDARY_ VALUE_UNIT
SENSOR_CAL_ DATE
SENSOR_CAL_ LOC See FF-903 section 3.3. 29 SENSOR_CAL_
METHOD SENSOR_CAL_ WHO See FF-903 section 3.3. 31 SENSOR_FILTER_
VALUE SENSOR_
IMPEDANCE SENSOR_RANGE See FF-903 section 3.3. In the 4081FG, this is the O2
SENSOR_RAW_MV_ VALUE
SENSOR_RAW_TC_ MV_VALUE
SENSOR_SN 0-4000000 0 See FF-903 section 3.3. 27 SENSOR_TEMP_
HIGH_ALARM SENSOR_TEMP_
MAXIMUM SENSOR_TEMP_
MAXIMUM_RESET SENSOR_TYPE See FF-903 section
ST_REV See FF-891 section 5.3. 1 STATS_ATTEMPTS 0-16777215 0 Total number of messages sent to the transducer a/d
STATS_FAILURES 0-16777215 0 Total number of fai led a/d board message attempts. 45 STATS_TIMEOUTS 0-16777215 0 Total number of t imed out a/d board message
STRATEGY See FF-891 section 5.3. 3 TAG_DESC See FF-891 section 5.3. 2 TRANSDUCER_
DIRECTORY TRANSDUCER_
TYPE UPDATE_EVT See FF-891 section 5.3. 7 VERSION N/A This is the version of the 4081FG software. 41 XD_ERROR See Table 5 and FF-903 section 3.3. 11
See section 4.1 in FF-903
0-300 0 Sec This is the filter value of the sensor. Valid range is
See Table Enumerated This is the status of the sensor impedance based on
±INF mV This is the raw sign al from the O2 sensor. 33
±INF mV This is the raw sign al from the O2 sensor
0-1600 1600 °C This is the temperature of the sensor where the
-32k-32k °C The maximum temperatur e the sensor has been
0 = Do Not Reset 1 = Reset High
4.2 Transducer Types
Initial Value Units Description
01001 (°C) Enumerated See FF-903 section 3.3 and 4.10. In the 4081FG, this
0 Reset Maximum Cell Temp to current temp. 36
65535
(ZrO2)
Enumerated See FF-903 section 3.3 and 4.3. 25
parameter is fixed at a value of 1001 (°C). See FF-903 section 3.3. 30
See FF-903 sections 3.3 and 4.5. 28
0-300 sec.
the last impedance measurement.
sensor 0-25%.
thermocouple.
temperature too high alarm is set in detailed status.
exposed to.
board.
attempts.
See FF-903 section 3.3. 9
See FF-903 section 3.3. 10
Index
Number
39
32
24
26
34
37
35
44
46
IB-106-4081
A-2
Page 73
Appendix
B Analog Input (AI)
Function Block
OUT_D
AI
OUT = The block output value and status OUT_D = Discrete output that signals a selected
alarm condition
OUT
The Analog Input (AI) function block processes field device measurements and makes them available to other function blocks. The output value from the AI block is in engineering units and contains a status indicating the quality of the measurement. The measuring device may have several measurements or derived values available in different channels. Use the channel number to define the variable that the AI block processes.
The AI block supports alarming, signal scaling, signal filtering, signal status calculation, mode control, and simulation. In Automatic mode, the block’s output parameter (OUT) reflects the process variable (PV) value and status. In Manual mode, OUT may be set manually. The Manual mode is reflected on the output status. A discrete output (OUT_D) is provided to indicate whether a selected alarm condition is active. Alarm detection is based on the OUT value and user specified alarm limits. Figure B-1 on page B-4 illustrates the internal components of the AI function block, and Table B-1 lists the AI block parameters and their units of measure, descriptions, and index numbers.
fieldbus-fbus_31a
TABLE B-1. Definitions of Analog Input Function Block System Parameters .
Parameter Index
Number
ACK_OPTION 23 None Used to set auto acknowledgment of alarms. ALARM_HYS 24 Percent The amount the alarm value must return within the alarm limit before the associated active
ALARM_SEL 38 None Used to select the process alarm conditions that will cause the OUT_D parameter to be set. ALARM_SUM 22 None The summary alarm is used for all process alarms in the block. The cause of the alert is
ALERT_KEY 04 None The identification number of the plant unit. This information may be used in the host for
Units Description
alarm condition clears.
entered in the subcode field. The first alert to become active will set the Active status in the Status parameter. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
sorting alarms, etc.
B-1
Page 74
Model 4081FG Oxygen Analyzer with F
OUNDATION
fieldbus Communications
Parameter Index
Number
BLOCK_ALM 21 None The block alarm is used for all configuration, hardware, connection failure or system
BLOCK_ERR 06 None This parameter reflects the error status associated with the hardware or software
CHANNEL 15 None The CHANNEL value is used to select the measurement value. Refer to the appropriate
FIELD_VAL 19 Percent The value and status from the transducer block or from the simulated input when simulation
GRANT_DENY 12 None Options for controlling access of host computers and local control panels to operating,
HI_ALM 34 None The HI alarm data, which includes a value of the alarm, a timestamp of occurrence and the
HI_HI_ALM 33 None The HI HI alarm data, which includes a value of the alarm, a timestamp of occurrence and
HI_HI_LIM 26 EU of PV_SCALE The setting for the alarm limit used to detect the HI HI alarm condition. HI_HI_PRI 25 None The priority of the HI HI alarm.
Units Description
problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status parameter. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
components associated with a block. It is a bit string, so that multiple errors may be shown.
device manual for information about the specific channels available in each device. You must configure the CHANNEL parameter before you can configure the XD_SCALE
parameter.
is enabled.
tuning, and alarm parameters of the block. Not used by device.
state of the alarm.
the state of the alarm.
HI_LIM 28 EU of PV_SCALE The setting for the alarm limit used to detect the HI alarm condition. HI_PRI 27 None The priority of the HI alarm. IO_OPTS 13 None Allows the selection of input/output options used to alter the PV. Low cutoff enabled is the
L_TYPE 16 None Linearization type. Determines whether the field value is used directly (Direct), is converted
LO_ALM 35 None The LO alarm data, which includes a value of the alarm, a timestamp of occurrence and
LO_LIM 30 EU of PV_SCALE The setting for the alarm limit used to detect the LO alarm condition. LO_LO_ALM 36 None The LO LO alarm data, which includes a value of the alarm, a timestamp of occurrence and
LO_LO_LIM 32 EU of PV_SCALE The setting for the alarm limit used to detect the LO LO alarm condition. LO_LO_PRI 31 None The priority of the LO LO alarm. LO_PRI 29 None The priority of the LO alarm. LOW_CUT 17 % If percentage value of transducer input fails below this, PV = 0. MODE_BLK 05 None The actual, target, permitted, and normal modes of the block.
only selectable option.
linearly (Indirect), or is converted with the square root (Indirect Square Root).
the state of the alarm.
the state of the alarm.
Target: The mode to “go to” Actual: The mode the “block is currently in” Permitted: Allowed modes that target may take on
Normal: Most common mode for target OUT 08 EU of OUT_SCALE The block output value and status. OUT_D 37 None Discrete output to indicate a selected alarm condition. OUT_SCALE 11 None The high and low scale values, engineering units code, and number of digits to the right of
PV 07 EU of XD_SCALE The process variable used in block execution.
the decimal point associated with OUT.
B-2
Page 75
Model 4081FG Oxygen Analyzer with F
OUNDATION
fieldbus Communications
Parameter Index
Number
PV_FTIME 18 Seconds The time constant of the first-order PV filter. It is the time required for a 63% change in the
SIMULATE 09 None A group of data that contains the current transducer value and status, the simulated
STRATEGY 03 None The strategy field can be used to identify grouping of blocks. This data is not checked or
ST_REV 01 None The revision level of the static data associated with the function block. The revision value
TAG_DESC 02 None The user description of the intended application of the block. UPDATE_EVT 20 None This alert is generated by any change to the static data. VAR_INDEX 39 % of OUT Range The average absolute error between the PV and its previous mean value over that
VAR_SCAN 40 Seconds The time over which the VAR_INDEX is evaluated. XD_SCALE 10 None The high and low scale values, engineering units code, and number of digits to the right of

Simulation

Units Description
IN value.
transducer value and status, and the enable/disable bit.
processed by the block.
will be incremented each time a static parameter value in the block is changed.
evaluation time defined by VAR_SCAN.
the decimal point associated with the channel input value. The XD_SCALE units code must match the units code of the measurement channel in the
transducer block. If the units do not match, the block will not transition to MAN or AUTO
To support testing, you can either change the mode of the block to manual and adjust the output value, or you can enable simulation through the configuration tool and manually enter a value for the measurement value and its status. In both cases, you must first set the ENABLE jumper on the field device.
NOTE
All fieldbus instruments have a simulation jumper. As a safety measure, the jumper has to be reset every time there is a power interruption. This measure is to prevent devices that went through simulation in the staging process from being installed with simulation enabled.
With simulation enabled, the actual measurement value has no impact on the OUT value or the status.
B-3
Page 76
Model 4081FG Oxygen Analyzer with F
FIGURE B-1. Analog Input Function Block Schematic.
OUNDATION
Analog
Measurement
Access Analog
SIMULATE
NOTES: OUT = block output value and status. OUT_D = discrete output that signals a selected alarm condition.
fieldbus Communications
HI_HI_LIM
Meas.
CHANNEL
OUT_SCALE
XD_SCALE
ALARM_HYS
Convert
FIELD_VAL
HI_LIM
LO_LO_LIM
LO_LIM
LOW_CUT
L_TYPE
Cutoff
IO_OPTS
ALARM_TYPE
Alarm
Detection
Filter
PV_FTIME
STATUS_OPTS
PV
MODE
Status
Calc.
OUT_D
OUT
FIELDBUS-FBUS_02A
FIGURE B-2. Analog Input Function Block Timing Diagram.

Filtering

OUT (mode in man)
OUT (mode in auto)
PV
63% of Change
FIELD_VAL
Time (seconds)
PV_FTIME
The filtering feature changes the response time of the device to smooth variations in output readings caused by rapid changes in input. You can adjust the filter time constant (in seconds) using the PV_FTIME parameter. Set the filter time constant to zero to disable the filter feature.
FIELDBUS-FBUS_03A
B-4
Page 77

Signal Conversion

Model 4081FG Oxygen Analyzer with F
OUNDATION
fieldbus Communications
You can set the signal conversion type with the Linearization Type (L_TYPE) parameter. You can view the converted signal (in percent of XD_SCALE) through the FIELD_VAL parameter.
FIELD_VAL
100 Channel Value EU*@0%()×
=
--------------------------------------------------------------------------------------
EU*@100% EU*@0%()
* XD_SCALE values
You can choose from direct, indirect, or indirect square root signal conversion with the L_TYPE parameter.
Direct
Direct signal conversion allows the signal to pass through the accessed channel input value (or the simulated value when simulation is enabled).
PV Channel Value=
Indirect
Indirect signal conversion converts the signal linearly to the accessed channel input value (or the simulated value when simulation is enabled) from its specified range (XD_SCALE) to the range and units of the PV and OUT parameters (OUT_SCALE).

Block Errors

FIELD_VAL

PV
--------------------------------

100
EU**@100% EU**@0%()EU**@0%+×=
** OUT_SCALE values
Indirect Square Root
Indirect Square Root signal conversion takes the square root of the value computed with the indirect signal conversion and scales it to the range and units of the PV and OUT parameters.
FIELD_VAL

PV
--------------------------------

100
EU**@100% EU**@0%()EU**@0%+×=
** OUT_SCALE values
When the converted input value is below the limit specified by the LOW_CUT parameter, and the Low Cutoff I/O option (IO_OPTS) is enabled (True), a value of zero is used for the converted value (PV). This option is useful to eliminate false readings when the differential pressure measurement is close to zero, and it may also be useful with zero-based measurement devices such as flowmeters.
NOTE Low Cutoff
is the only I/O option supported by the AI block. You can set
the I/O option in Manual or Out of Service mode only.
Table B-2 lists conditions reported in the BLOCK_ERR parameter. Conditions in italics are inactive for the AI block and are given here only for your reference.
B-5
Page 78
Model 4081FG Oxygen Analyzer with F
TABLE B-2. BLOCK_ERR Conditions.
OUNDATION
Condition
Number
0 Other
1 Block Configuration Error: the selected channel carries a measurement that
2 Link Configuration Error
3 Sim ulate Active: Simulation is enabled and the block is using a sim ulated value
4 Local Override 5 Device Fault State Set 6 Device Needs Maintenance Soon
7 Input F ailure/Process V ariable has Bad Status: The hardware is bad, or a bad
8 Output Failure: The output is bad based primarily upon a bad input.
9 Memory Failure 10 Lost Static Data 11 Lost NV Data 12 Readback Check Failed 13 Device Needs Maintenance Now 14 Power Up
15 Out of Service: The actual mode is out of service.
fieldbus Communications
Condition Name and Description
is incompatible with the engineering units selected in XD_SCALE, the L_TYPE parameter is not configured, or CHANNEL = zero.
in its execution.
status is being simulated.

Modes

Alarm Detection

The AI Function Block supports three modes of operation as defined by the MODE_BLK parameter:
Manual (Man) The block output (OUT) may be set manually
Automatic (Auto) OUT reflects the analog input measurement or the simulated value when simulation is enabled.
Out of Service (O/S) The block is not processed. FIELD_VAL and PV are not updated and the OUT status is set to Bad: Out of Service. The BLOCK_ERR parameter shows Out of Service. In this mode, you can make changes to all configurable parameters. The target mode of a block may be restricted to one or more of the supported modes.
A block alarm will be generated whenever the BLOCK_ERR has an error bit set. The types of block error for the AI block are defined above.
Process Alarm detection is based on the OUT value. You can configure the alarm limits of the following standard alarms:
• High (HI_LIM)
• High high (HI_HI_LIM)
• Low (LO_LIM)
• Low low (LO_LO_LIM)
B-6
Page 79
Model 4081FG Oxygen Analyzer with F
OUNDATION
fieldbus Communications
In order to avoid alarm chattering when the variable is oscillating around the alarm limit, an alarm hysteresis in percent of the PV span can be set using the ALARM_HYS parameter. The priority of each alarm is set in the following parameters:
• HI_PRI
• HI_HI_PRI
• LO_PRI
• LO_LO_PRI
Alarms are grouped into five levels of priority:
Priority
Number
0 The priority of an alarm condition changes to ) after the condition that caused
1 An alarm condition with a priority of 1 is recognized by the system, but is not
2 An alarm condition with a priority of 2 is reported to the operator, but does not
3-7 Alarm conditions of priority 3 to 7 are advisory alarms of increasing priority.
8-15 Alarm conditions of priority 8 to 15 are critical alarms of increasing priority.
Priority Description
the alarm is corrected.
reported to the operator.
require operator attention (such as diagnostics and system alerts).

Status Handling

Normally, the status of the PV reflects the status of the measurement value, the operating condition of the I/O card, and any active alarm condition. In Auto mode, OUT reflects the value and status quality of the PV. In Man mode, the OUT status constant limit is set to indicate that the value is a constant and the OUT status is Good .
The Uncertain - EU range violation status is always set, and the PV status is set high- or low-limited if the sensor limits for conversion are exceeded.
In the STATUS_OPTS parameter, you can select from the following options to control the status handling:
BAD if Limited – sets the OUT status quality to Bad when the value
is higher or lower than the sensor limits.
Uncertain if Limited – sets the OUT status quality to Uncertain
when the value is higher or lower than the sensor limits.
Uncertain if in Manual mode – The status of the Output is set to
Uncertain when the mode is set to Manual
NOTES
1. The instrument must be in Manual or Out of Service mode to set the status option.
2. The AI block only supports the BAD if Limited option. Unsupported options are not grayed out; they appear on the screen in the same manner as supported options.
B-7
Page 80
Model 4081FG Oxygen Analyzer with F

Advanced Features

Application Information

The AI function block provided with Fisher -Rosemount fieldbus devices provides added capability through the addition of the following parameters:
ALARM_TYPE – Allows one or more of the process alarm conditions
detected by the AI function block to be used in setting its OUT_D parameter.
OUT_D – Discrete output of the AI function block based on the
detection of process alarm condition(s). This parameter may be linked to other function blocks that require a discrete input based on the detected alarm condition.
VAR_SCAN – Time period in seconds over which the variability index
(VAR_INDEX) is computed.
VAR_INDEX – Process variability index measured as the integral of
average absolute error between PV and its mean value over the previous evaluation period. This index is calculated as a percent of OUT span and is updated at the end of the time period defined by VAR_SCAN.
The configuration of the AI function block and its associated output channels depends on the specific application. A typical configuration for the AI block involves the following parameters:
OUNDATION
CHANNEL If the device supports more than one measurement,
L_TYPE
SCALING XD_SCALE provides the range and units of the
fieldbus Communications
verify that the selected channel contains the appropriate measurement or derived value.
Select Direct when the measurement is already in the engineering units that you want for the block output.
Select Indirect when you want to convert the measured variable into another, for example, pressure into level or flow into energy.
Select Indirect Square Root when the block I/O parameter value represents a flow measurement made using differential pressure, and when square root extraction is not performed by the transducer.
measurement and OUT_SCALE provides the range and engineering units of the output.
B-8
Page 81
Application Example: Temperature T ransmitter
TABLE B-3. Analog Input Function Block Configuration for a Typical T emper ature Transmitter.
FIGURE B-3. Analog Input Function Block Diagram for a Typical T emper ature Transmitter.
Model 4081FG Oxygen Analyzer with F
OUNDATION
fieldbus Communications
Situation
A temperature transmitter with a range of –200 to 450 ˚C.
Solution
Table B-3 lists the appropriate configuration settings, and Figure B-3 illustrates the correct function block configuration.
.
Parameter Configured Values
L_TYPE Direct
XD_SCALE Not Used
OUT_SCALE Not Used
Temperature
Measurement
OUT_D
AI Function Block
OUT
To Another Function Block
FIELDBUS-FBUS_04A
B-9
Page 82
Model 4081FG Oxygen Analyzer with F
Application Example: Pressure Transmitter used to Measure Level in an Open Tank
Situation #1
The level of an open tank is to be measured using a pressure tap at the bottom of the tank. The level measurement will be used to control the level of liquid in the tank. The maximum level at the tank is 16 ft. The liquid in the tank has a density that makes the level correspond to a pressure of 7.0 psi at the pressure tap (see Figure B-4).
FIGURE B-4. Situation #1 Diagram.
OUNDATION
16 ft
fieldbus Communications
Full Tank
7.0 psi measured at the transmitter
TABLE B-4. Analog Input Function Block Configuration for a Pressure T ransmitter used in Le vel Measurement (situation #1).
FIGURE B-5. Function Block Diagram for a Pressure Transmitter used in Level Measurement.
Solution to Situation #1
Table B-4 lists the appropriate configuration settings, and Figure B-5 illustrates the correct function block configuration.
Parameter Configured Values
L_TYPE Indirect
XD_SCALE 0 to 7 psi
OUT_SCALE 0 to 16 ft
Analog
Measurement
AI
Function
Block
BKCAL_IN
Function
CAS_IN
PID
Block
OUT_D
OUT
OUT
CAS_IN
BKCAL_OUT
AO
Function
Block
B-10
Page 83
FIGURE B-6. Situation #2 Diagram.
Model 4081FG Oxygen Analyzer with F
OUNDATION
fieldbus Communications
Situation #2
The transmitter in situation #1 is installed below the tank in a position where the liquid column in the impulse line, when the tank is empty, is equivalent to 2.0 psi (see Figure B-6).
16 ft
Empty Tank
0 ft
2.0 psi measured at the transmitter
TABLE B-5. Analog Input Function Block Configuration for a Pressure T ransmitter used in Le vel Measurement (Situation #2).
Solution
Table B-5 lists the appropriate configuration settings.
Parameter Configured Values
L_TYPE Indirect
XD_SCALE 2 to 9 psi
OUT_SCALE 0 to 16 ft
B-11
Page 84
Model 4081FG Oxygen Analyzer with F
Application Example: Differential Pressure Transmitter to Measure Flow
Situation
The liquid flow in a line is to be measured using the differential pressure across an orifice plate in the line, and the flow measurement will be used in a flow control loop. Based on the orifice specification sheet, the differential pressure transmitter was calibrated for 0 to 20 inH configured to take the square root of the differential pressure.
Solution
Table B-6 lists the appropriate configuration settings, and Figure B-7 illustrates the correct function block configuration.
TABLE B-6. Analog Input Function Block Configuration for a Differential Pressure T r ansmitter .
FIGURE B-7. Function Block Diagram for a Differential Pressure Transmitter Used in a Flow Measurement.
OUNDATION
0 for a flow of 0 to 800 gal/min, and the transducer was not
2
fieldbus Communications
Parameter Configured Values
L_TYPE Indirect Square Root
XD_SCALE 0 to 20 in.
OUT_SCALE 0 to 800 gal/min.
Analog
Measurement
Function
Block
AI
OUT_D
OUT
BKCAL_IN BKCAL_OUT
PID
Function
Block
IN
AO
Function
Block
B-12
Page 85

Troubleshooting

TABLE B-7. Troubleshooting.
Model 4081FG Oxygen Analyzer with F
OUNDATION
fieldbus Communications
Refer to Table B-7 to troubleshoot any problems that you encounter.
Symptom
Mode will not leave OOS
Process and/or block alarms will not work.
Value of output does not make sense
Cannot set HI_LIMIT, HI_HI_LIMIT, LO_LIMIT, or LO_LO_LIMIT Values
Possible Causes Corrective Action
1.Target mode not set. 1. Set target mode to something other than OOS.
2.Configuration error 2.BLOCK_ERR will show the configuration error bit set. The following are parameters that must be set before the block is allowed out of OOS:
a. CHANNEL must be set to a valid
value and cannot be left at initial value of 0.
b. XD_SCALE.UNITS_INDX must
match the units in the transducer block channel value.
c. L_TYPE must be set to Direct,
Indirect, or Indirect Square Root and cannot be left at initial value of 0.
3.Resource block 3.The actual mode of the Resource block is OOS. See Resource Bloc k Diagnostics for corrective action.
4.Schedule 4.Block is not scheduled and therefore cannot execute to go to Target Mode. Schedule the block to execute.
1.Features 1.FEATURES_SEL does not have Alerts enabled. Enable the Alerts bit.
2.Notification 2.LIM_NOTIFY is not high enough. Set equal to MAX_NOTIFY.
3.Status Options 3.STATUS_OPTS has Propagate Fault Forward bit set. This should be cleared to cause an alarm to occur.
1.Linearization T ype 1.L_TYPE must be set to Direct, Indirect, or Indirect Square Root and cannot be left at initial value of 0.
2.Scaling 2.Scaling parameters are set incorrectly:
a. XD_SCALE.EU0 and EU100 should
match that of the transducer block channel value.
b. OUT_SCALE.EU0 and EU100 are
not set properly.
1.Scaling 1.Limit values are outside the OUT_SCALE.EU0 and OUT_SCALE.EU100 values. Change OUT_SCALE or set values within range.
B-13
Page 86
Model 4081FG Oxygen Analyzer with F
OUNDATION
fieldbus Communications
B-14
Page 87
Appendix
C PID Function Block
BKCAL_IN
CAS_IN FF_VAL
IN
TRK_IN_D
TRK_VAL
BKCAL_IN = The analog input value and status from another
block’s BKCAL_OUT output that is used for backward output tracking for bumpless transfer and to pass limit status.
CAS_IN = The remote setpoint value from another function
block. FF_VAL = The feedforward control input value and status. IN = The connection for the process variable from
another function block.
The PID function block combines all of the necessary logic to perform proportional/integral/derivative (PID) control. The block supports mode control, signal scaling and limiting, feedforward control, override tracking, alarm limit detection, and signal status propagation.
The block supports two forms of the PID equation: Standard and Series . You can choose the appropriate equation using the FORM parameter. The Standard ISA PID equation is the default selection.
BKCAL_OUT
OUT
PID
fieldbus-fbus_34a
TRK_IN_D = Initiates the external tracking function. TRK_VAL = The value after scaling applied to OUT in
Local Override mode.
BKCAL_OUT = The value and status required by the
BKCAL_IN input of another function block to prevent reset windup and to provide bumpless transfer to closed loop control.
OUT = The block output and status.
Standard Out GAIN e 1
Series Out GAIN e× 1
Where
GAIN: proportional gain value
τ
: integral action time constant (RESET parameter) in seconds
r
s: laplace operator
τ
: derivative action time constant (RATE parameter)
d
α: fixed smoothing factor of 0.1 applied to RATE F: feedforward control contribution from the feedforward input (FF_VAL parameter) e: error between setpoint and process variable

×

×
1
++
----------------
τ
s 1+
r
1
------ -
+
+
s
τ
r
τ
d
-------------------------- -
ατ
s 1+
τ
d

-------------------------- -

ατ
d
s1+×
d
s s1+×
F
+×=
F
+=
C-1
Page 88
Model 4081FG Oxygen Analyzer with F
OUNDATION
fieldbus Communications
To further customize the block for use in your application, you can configure filtering, feedforward inputs, tracking inputs, setpoint and output limiting, PID equation structures, and block output action. Table C-1 lists the PID block parameters and their descriptions , units of measure, and index numbers, and Figure C-1 on page C-5 illustrates the internal components of the PID function block.
TABLE C-1. PID Function Block System Parameters.
Parameter Index
Number
ACK_OPTION 46 None Used to set auto acknowledgment of alarms.
ALARM_HYS 47 Percent The amount the alarm value must return to within the alarm limit before the associated active
ALARM_SUM 45 None The summary alarm is used for all process alarms in the block. The cause of the alert is
ALERT_KEY 04 None The identification number of the plant unit. This information may be used in the host for
Units Description
alarm condition clears.
entered in the subcode field. The first alert to become active will set the Active status in the Status parameter. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
sorting alarms, etc.
ALG_TYPE 74 None Selects filtering algorithm as Backward or Bilinear.
BAL_TIME 25 Seconds The specified time for the internal working value of bias to return to the operator set bias.
BIAS 66 EU of OUT_SCALE The bias value used to calculate output for a PD type controller.
BKCAL_HYS 30 Percent The amount the output value must change away from the its output limit before limit status
BKCAL_IN 27 EU of OUT_SCALE The analog input value and status from another block’s BKCAL_OUT output that is used for
BKCAL_OUT 31 EU of PV_SCALE The value and status required by the BKCAL_IN input of another block to prevent reset
BLOCK_ALM 44 None The block alarm is used for all configuration, hardware, connection failure, or system
BLOCK_ERR 06 None This parameter reflects the error status associated with the hardware or software
BYPASS 17 None Used to override the calculation of the block. When enabled, the SP is sent directly
CAS_IN 18 EU of PV_SCALE The remote setpoint value from another block.
Also used to specify the time constant at which the integral term will move to obtain balance when the output is limited and the mode is AUTO, CAS, or RCAS.
is turned off.
backward output tracking for bumpless transfer and to pass limit status.
windup and to provide bumpless transfer of closed loop control.
problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the active status in the status parameter. As soon as the Unreported status is cleared by the alert reporting task, and other block alert may be reported without clearing the Active status, if the subcode has changed.
components associated with a block. It is a bit string so that multiple errors may be shown.
to the output.
CONTROL_OPTS 13 None Allows you to specify control strategy options. The supported control options for the PID
DV_HI_ALM 64 None The DV HI alarm data, which includes a value of the alarm, a timestamp of occurrence, and
DV_HI_LIM 57 EU of PV_SCALE The setting for the alarm limit used to detect the deviation high alarm condition.
DV_HI_PRI 56 None The priority of the deviation high alarm.
block are Track enable, Track in Manual, SP-PV Track in Man, SP-PV Track in LO or IMAN, Use PV for BKCAL OUT, and Direct Acting
the state of the alarm.
C-2
Page 89
Model 4081FG Oxygen Analyzer with F
Parameter Index
Number
DV_LO_ALM 65 None The DV LO alarm data, which includes a value of the alarm, a timestamp of occurrence, and
DV_LO_LIM 59 EU of PV_SCALE The setting for the alarm limit use to detect the deviation low alarm condition.
DV_LO_PRI 58 None The priority of the deviation low alarm.
ERROR 67 EU of PV_SCALE The error (SP-PV) used to determine the control action.
FF_ENABLE 70 None Enables the use of feedforward calculations
FF_GAIN 42 None The feedforward gain value. FF_VAL is multiplied by FF_GAIN before it is added to the
FF_SCALE 41 None The high and low scale values, engineering units code, and number of digits to the right of
FF_VAL 40 EU of FF_SCALE The feedforward control input value and status.
GAIN 23 None The proportional gain value. This value cannot = 0.
GRANT_DENY 12 None Options for controlling access of host computers and local control panels to operating,
Units Description
the state of the alarm.
calculated control output.
the decimal point associated with the feedforward value (FF_VAL).
tuning, and alarm parameters of the block. Not used by the device.
OUNDATION
fieldbus Communications
HI_ALM 61 None The HI alarm data, which includes a value of the alarm, a timestamp of occurrence, and the
HI_HI_ALM 60 None The HI HI alarm data, which includes a value of the alarm, a timestamp of occurrence, and
HI_HI-LIM 49 EU of PV_SCALE The setting for the alarm limit used to detect the HI HI alarm condition.
HI_HI_PRI 48 None The priority of the HI HI Alarm.
HI_LIM 51 EU of PV_SCALE The setting for the alarm limit used to detect the HI alarm condition.
HI_PRI 50 None The priority of the HI alarm.
IN 15 EU of PV_SCALE The connection for the PV input from another block.
LO_ALM 62 None The LO alarm data, which includes a value of the alarm, a timestamp of occurrence, and the
LO_LIM 53 EU of PV_SCALE The setting for the alarm limit used to detect the LO alarm condition.
LO_LO_ALM 63 None The LO LO alarm data, which includes a value of the alarm, a timestamp of occurrence, and
LO_LO_LIM 55 EU of PV_SCALE The setting for the alarm limit used to detect the LO LO alarm condition.
LO_LO_PRI 54 None The priority of the LO LO alarm.
LO_PRI 52 None The priority of the LO alarm.
state of the alarm.
the state of the alarm.
state of the alarm.
the state of the alarm.
MATH_FORM 73 None Selects equation form (series or standard).
MODE_BLK 05 None The actual, target, permitted, and normal modes of the block.
Target: The mode to “go to” Actual: The mode the “block is currently in” Permitted: Allowed modes that target may take on Normal: Most common mode for target
OUT 09 EU of OUT SCALE The block input value and status.
OUT_HI_LIM 28 EU of OUT_SCALE The maximum output value allowed.
C-3
Page 90
Model 4081FG Oxygen Analyzer with F
Parameter Index
Number
OUT-LO_LIM 29 EU of OUT_SCALE The minimum output value allowed
OUT_SCALE 11 None The high and low scale values, engineering units code, and number of digits to the right of
PV 07 EU of PV_SCALE The process variable used in block execution.
PV_FTIME 16 Seconds The time constant of the first-order PV filter. It is the time required for a 63 percent change
PV_SCALE 10 None The high and low scale values, engineering units code, and number of digits to the right of
RATE 26 Seconds The derivative action time constant.
RCAS_IN 32 EU of PV_SCALE Target setpoint and status that is provided by a supervisory host. Used when mode is RCAS.
RCAS_OUT 35 EU of PV_SCALE Block setpoint and status after ramping, filtering, and limiting that is provided to a supervisory
RESET 24 Seconds per repeat The integral action time constant.
ROUT_IN 33 EU of OUT_SCALE Target output and status that is provided by a supervisory host. Used when mode is ROUT.
Units Description
OUNDATION
the decimal point associated with OUT.
in the IN value.
the decimal point associated with PV.
host for back calculation to allow action to be taken under limiting conditions or mode change. Used when mode is RCAS.
fieldbus Communications
ROUT_OUT 36 EU of OUT_SCALE Block output that is provided to a supervisory host for a back calculation to allow action to
SHED_OPT 34 None Defines action to be taken on remote control device timeout.
SP 08 EU of PV_SCALE The target block setpoint value. It is the result of setpoint limiting and setpoint
SP_FTIME 69 Seconds The time constant of the first-order SP filter. It is the time required for a 63 percent change
SP_HI_LIM 21 EU of PV_SCALE The highest SP value allowed.
SP_LO_LIM 22 EU of PV_SCALE The lowest SP value allowed.
SP_RATE_DN 19 EU of PV_SCALE per
second
SP-RATE_UP 20 EU of PV_SCALE per
second
SP_WORK 68 EU of PV_SCALE The working setpoint of the block after limiting and filtering is applied.
STATUS_OPTS 14 None Allows you to select options for status handling and processing. The supported status option
STRATEGY 03 None The strategy field can be used to identify grouping of blocks. This data is not checked or
ST_REV 01 None The revision level of the static data associated with the function block. The revision value will
be taken under limiting conditions or mode change. Used when mode is RCAS.
rate of change limiting.
in the IN value.
Ramp rate for downward SP changes. When the ramp rate is set to zero, the SP is used immediately.
Ramp rate for upward SP changes. When the ramp rate is set to zero, the SP is used immediately.
for the PID block is Target to Manual if Bad IN.
processed by the block.
be incremented each time a static parameter value in the block is changed.
STRUCTURE. CONFIG
TAG_DESC 02 None The user description of the intended application of the block.
TRK_IN_D 38 None Discrete input that initiates external tracking.
75 None Defines PID equation structure to apply controller action.
C-4
Page 91
Model 4081FG Oxygen Analyzer with F
Parameter Index
Number
TRK_SCALE 37 None The high and low scale values, engineering units code, and number of digits to the right of
TRK_VAL 39 EU of TRK SCALE The value (after scaling from TRK_SCALE to OUT_SCALE) applied to OUT in LO mode.
UBETA 72 Percent Used to set disturbance rejection vs. tracking response action for a 2.0 degree of
UGAMMA 71 Percent Used to set disturbance rejection vs. tracking response action for a 2.0 degree of
UPDATE_EVT 43 None This alert is generated by any changes to the static data.
Units Description
the decimal point associated with the external tracking value (TRK_VAL).
freedom PID.
freedom PID.
OUNDATION
fieldbus Communications
FIGURE C-1. PID Function Block Schematic.
FF_GAIN FF_SCALE
FF_VAL
BKCAL_IN
TRK_IN_D
CAS_IN
IN
TRK_VAL
RCAS_IN
Operator
Setpoint
MODE
RCAS_OUT
Setpoint Limiting
and
Filtering
SP_HI_LIM SP_LO_LIM SP_RATE_DN SP_RATE_UP SP_FTIME
Scaling
and
Filtering
PV_SCALE PV_FTIME
Convert
Feedforward
Calculation
Equation
Detection
HI_HI_LIM HI_LIM DV_HI_LIM DV_LO_LIM LO_LIM LO_LO_LIM
PID
GAIN RATE RESET
Alarm
ROUT_IN
OUT_HI_LIM OUT_LO_LIM OUT_SCALE
Operator Output
ROUT_OUT
Output
Limiting
BKCAL_OUT
OUT
TRK_SCALE OUT_SCALE
fieldbus-fbus_13a
C-5
Page 92
Model 4081FG Oxygen Analyzer with F
Setpoint Selection and Limiting
The setpoint of the PID block is determined by the mode. You can configure the SP_HI_LIM and SP_LO_LIM parameters to limit the setpoint. In Cascade or RemoteCascade mode, the setpoint is adjusted by another function block or by a host computer, and the output is computed based on the setpoint.
In Automatic mode, the setpoint is entered manually by the operator, and the output is computed based on the setpoint. In Auto mode, you can also adjust the setpoint limit and the setpoint rate of change using the SP_RATE_UP and SP_RATE_DN parameters.
In Manual mode the output is entered manually by the operator, and is independent of the setpoint. In RemoteOutput mode, the output is entered by a host computer, and is independent of the setpoint.
Figure C-2 illustrates the method for setpoint selection.
FIGURE C-2. PID Function Block Setpoint Selection.
OUNDATION
Operator
Setpoint
Auto
Man
Cas
fieldbus Communications
SP_HI_LIM
SP_LO_LIM
Setpoint
Limiting
SP_RATE_UP SP_RATE_DN
Limiting
Rate
Auto Man
Cas
fieldbus-fbus_01a
Filtering

Feedforward Calculation

Tracking
The filtering feature changes the response time of the device to smooth variations in output readings caused by rapid changes in input. You can configure the filtering feature with the FILTER_TYPE parameter, and you can adjust the filter time constant (in seconds) using the PV_FTIME or SP_FTIME parameters. Set the filter time constant to zero to disable the filter feature.
The feedforward value (FF_VAL) is scaled (FF_SCALE) to a common range for compatibility with the output scale (OUT_SCALE). A gain value (FF_GAIN) is applied to achieve the total feedforward contribution.
You enable the use of output tracking through the control options. You can set control options in Manual or Out of Service mode only.
The Track Enable control option must be set to True for the track function to operate. When the Track in Manual control option is set to
True , tracking can be activated and maintained only when the block is
in Manual mode. When Track in Manual is False , the operator can override the tracking function when the block is in Manual mode. Activating the track function causes the block’s actual mode to revert to
Local Override .
The TRK_VAL parameter specifies the value to be converted and tracked into the output when the track function is operating. The TRK_SCALE parameter specifies the range of TRK_VAL.
C-6
When the TRK_IN_D parameter is True and the Track Enable control option is True , the TRK_VAL input is converted to the appropriate value and output in units of OUT_SCALE.
Page 93
Output Selection and Limiting
Bumpless T ransfer and Setpoint T racking
Model 4081FG Oxygen Analyzer with F
Output selection is determined by the mode and the setpoint. In
Automatic , Cascade , or RemoteCascade mode, the output is computed
by the PID control equation. In Manual and RemoteOutput mode, the output may be entered manually (see also Setpoint Selection
and Limiting on page C-6). You can limit the output by configuring the
OUT_HI_LIM and OUT_LO_LIM parameters. You can configure the method for tracking the setpoint by configuring
the following control options (CONTROL_OPTS):
SP-PV Track in Man — Permits the SP to track the PV when the
target mode of the block is Man.
SP-PV Track in LO or IMan — Permits the SP to track the PV when
the actual mode of the block is Local Override (LO) or Initialization Manual (IMan).
When one of these options is set, the SP value is set to the PV value while in the specified mode.
You can select the value that a master controller uses for tracking by configuring the Use PV for BKCAL_OUT control option. The BKCAL_OUT value tracks the PV value. BKCAL_IN on a master controller connected to BKCAL_OUT on the PID block in an open cascade strategy forces its OUT to match BKCAL_IN , thus tracking the PV from the slave PID block into its cascade input connection (CAS_IN). If the Use PV for BKCAL_OUT option is not selected, the working setpoint (SP_WRK) is used for BKCAL_OUT.
OUNDATION
fieldbus Communications
PID Equation Structures
You can set control options in Manual or Out of Service mode only. When the mode is set to Auto , the SP will remain at the last value (it will no longer follow the PV.
Configure the STRUCTURE parameter to select the PID equation structure. You can select one of the following choices:
• PI Action on Error, D Action on PV
• PID Action on Error
• I Action on Error, PD Action on PV
Set RESET to zero to configure the PID block to perform integral only control regardless of the STRUCTURE parameter selection. When RESET equals zero, the equation reduces to an integrator equation with a gain value applied to the error:
GAIN e s()×
-------------------------------
s
Where
GAIN: proportional gain value
e: error
s: laplace operator

Reverse and Direct Action

To configure the block output action, enable the Direct Acting control option. This option defines the relationship between a change in PV and the corresponding change in output. W ith Direct Acting enabled (True), an increase in PV results in an increase in the output.
You can set control options in Manual or Out of Service mode only.
C-7
Page 94
Model 4081FG Oxygen Analyzer with F
NOTE Track Enable , Track in Manual , SP-PV Track in Man , SP-PV Track in LO or IMan , Use PV for BKCAL_OUT , and Direct Acting are the only
control options supported by the PID function block. Unsupported options are not grayed out; they appear on the screen in the same manner as supported options.

Reset Limiting

The PID function block provides a modified version of feedback reset limiting that prevents windup when output or input limits are encountered, and provides the proper behavior in selector applications.

Block Errors

Table C-2 lists conditions reported in the BLOCK_ERR parameter. Conditions in italics are inactive for the PID block and are given here only for your reference.
TABLE C-2. BLOCK_ERR Conditions
.
OUNDATION
Condition
Number
0 Other
1 Block Configuration Error: The BY_PASS parameter is not configured and is
2 Link Configuration Error 3 Simulate Active
4 Local Override : The actual mode is LO.
5 Device Fault State Set 6 Device Needs Maintenance Soon
7 Input F ailure/Process Variable has Bad Status: The parameter linked to IN is
8 Output Failure
9 Memory Failure 10 Lost Static Data 11 Lost NV Data 12 Readback Check Failed 13 Device Needs Maintenance Now 14 Power Up
15 Out of Service: The actual mode is out of service.
fieldbus Communications
Condition Name and Description
set to 0, the SP_HI_LIM is less than the SP_LO_LIM, or the OUT_HI_LIM is less than the OUT_LO_LIM.
indicating a Bad status.

Modes

C-8
The PID function block supports the following modes:
Manual (Man)—The block output (OUT) may be set manually. Automatic (Auto)—The SP may be set manually and the block
algorithm calculates OUT.
Cascade (Cas)—The SP is calculated in another block and is provided
to the PID block through the CAS_IN connection.
RemoteCascade (RCas)—The SP is provided by a host computer that
writes to the RCAS_IN parameter.
RemoteOutput (Rout)—The OUT is provided by a host computer that
writes to the ROUT_IN parameter.
Local Override (LO)—The track function is active. OUT is set by
TRK_VAL. The BLOCK_ERR parameter shows Local override.
Page 95

Alarm Detection

Model 4081FG Oxygen Analyzer with F
OUNDATION
fieldbus Communications
Initialization Manual (IMan)—The output path is not complete (for
example, the cascade-to-slave path might not be open). In IMan mode, OUT tracks BKCAL_IN.
Out of Service (O/S)—The block is not processed. The OUT status is
set to Bad: Out of Service . The BLOCK_ERR parameter shows Out of service.
You can configure the Man, Auto, Cas, and O/S modes as permitted modes for operator entry.
A block alarm will be generated whenever the BLOCK_ERR has an error bit set. The types of block error for the AI block are defined above.
Process alarm detection is based on the PV value. You can configure the alarm limits of the following standard alarms:
• High (HI_LIM)
• High high (HI_HI_LIM)
• Low (LO_LIM)
• Low low (LO_LO_LIM)
Additional process alarm detection is based on the difference between SP and PV values and can be configured via the following parameters:
• Deviation high (DV_HI_LIM)
• Deviation low (DV_LO_LIM)
In order to avoid alarm chattering when the variable is oscillating around the alarm limit, an alarm hysteresis in percent of the PV span can be set using the ALARM_HYS parameter. The priority of each alarm is set in the following parameters:
• HI_PRI
• HI_HI_PRI
• LO_PRI
• LO_LO_PRI
• DV_HI_PRI
• DV_LO_PRI
Alarms are grouped into five levels of priority:
Priority
Number
0 The priority of an alarm condition changes to ) after the condition that caused
1 An alarm condition with a priority of 1 is recognized by the system, but is not
2 An alarm condition with a priority of 2 is reported to the operator, but does not
3-7 Alarm conditions of priority 3 to 7 are advisory alarms of increasing priority.
8-15 Alarm conditions of priority 8 to 15 are critical alarms of increasing priority.
Priority Description
the alarm is corrected.
reported to the operator.
require operator attention (such as diagnostics and system alerts).
C-9
Page 96
Model 4081FG Oxygen Analyzer with F
Status Handling
Application Information
Closed Loop Control
If the input status on the PID block is reverts to
Bad IN
can set the status option in
NOTE Target to Manual if Bad IN
PID function block. Unsupported options are not grayed out; they appear on the screen in the same manner as supported options.
The PID function block is a powerful, flexible control algorithm that is designed to work in a variety of control strategies. The PID block is configured differently for different applications. The following examples describe the use of the PID block for closed-loop control (basic PID loop), feedforward control, cascade control with master and slave, and complex cascade control with override.
To implement basic closed loop control, compute the error difference between the process variable (PV) and setpoint (SP) values and calculate a control output signal using a PID (Proportional Integral Derivative) function block.
The proportional control function responds immediately and directly to a change in the PV or SP. The proportional term in the loop output based on the current magnitude of the error multiplied by a gain value.
OUNDATION
fieldbus Communications
Bad
, the mode of the block
Manual
status option to direct the target mode to revert to manual. You
. In addition, you can select the
Manual
is the only status option supported by the
or
Out of Service
Target to Manual if
mode only.
GAIN
applies a change
The integral control function reduces the process error by moving the output in the appropriate direction. The integral term correction based on the magnitude and duration of the error. Set the RESET parameter to zero for integral-only control. To reduce reset action, configure the RESET parameter to be a large value.
The derivative term change in error. Derivative control is typically used in temperature control where large measurement lags exist.
The MODE parameter is a switch that indicates the target and actual mode of operation. Mode selection has a large impact on the operation of the PID block:
Manual
output signal directly.
Automatic
automatic correction of error using the
tuning values.
Cascade and Remote Cascade modes use a setpoint from another block in a cascaded configuration.
Remote Out mode is similar to Manual mode except that the block output is supplied by an external program rather than by the operator.
Initialization Manual is a non-target mode used with cascade configurations while transitioning from manual operation to automatic operation.
Local Override is a non-target mode that instructs the block to revert to Local Override when the tracking or fail-safe control options are activated.
Out of Service mode disables the block for maintenance.
mode allows the operator to set the value of the loop
RA TE
applies a correction based on the anticipated
mode allows the operator to select a setpoint for
GAIN, RESET, and RATE
RESET
applies a
C-10
Page 97
Model 4081FG Oxygen Analyzer with FOUNDATION fieldbus Communications
Abrupt changes in the quality of the input signal can result in unexpected loop behavior. To prevent the output from changing abruptly and upsetting the process, select the SP-PV Track in Man I/O option. This option automatically sets the loop to Manual if a Bad input status is detected. While in manual mode, the operator can manage control manually until a Good input status is reestablished.
Application Example: Basic PID Block for Steam Heater Control
FIGURE C-3. PID Function Block Steam Heater Control Example.
Situation
A PID block is used with an AI block and an AO block to control the flow steam used to heat a process fluid in a heat exchanger. Figure C-3 illustrates the process instrumentation diagram.
TCV
101
Steam Supply
TT
100
Steam Heater
Condensate
TC
101
TT
101
Solution
The PID loop uses TT101 as an input and provides a signal to the analog output TCV101. The BKCAL_OUT of the AO block and the BKCAL_IN of the PID block communicate the status and quality of information being passed between the blocks. The status indication shows that communications is functioning and the I/O is working properly. Figure C-4 illustrates the correct function block configuration.
fieldbus-fbus_14a
FIGURE C-4. PID Function Block Diagram for Steam Heater Control Example.
Outlet
Temperature
Input
AI
Function
Block
TT101
OUT
BKCAL_IN
IN
PID
Function
Block
TC101
OUT
CAS_IN
AO
Function
Block
TCV101
BKCAL_OUT
OUT
fieldbus-fbus_15a
C-11
Page 98
Model 4081FG Oxygen Analyzer with FOUNDATION fieldbus Communications
Application Example: Feedforward Control
FIGURE C-5. PID Function Block Feedforward Control Example.
Situation
In the previous example, control problems can arise because of a time delay caused by thermal inertia between the two flow streams (TT100 and TT101). Variations in the inlet temperature (TT100) take an excessive amount of time to be sensed in the outlet (TT101). This delay causes the product to be out of the desired temperature range.
Solution
Feedforward control is added to improve the response time of the basic PID control. The temperature of the inlet process fluid (TT100) is input to an AI function block and is connected to the FF_VAL connector on the PID block. Feedforward control is then enabled (FF_ENABLE), the feedforward value is scaled (FF_SCALE), and a gain (FF_GAIN) is determined. Figure C-5 illustrates the process instrumentation diagram, and Figure C-6 illustrates the correct function block configuration.
TCV
101
Steam Supply
TT
100
FF
TC
101
TT
101
FIGURE C-6. Function Block Diagram for Feedforward Control.
Outlet
Temperature
Input
AI
Function
Block
TT101
Inlet
Temperature
Input
Steam Heater
BKCAL_IN
OUT OUT
FF_VAL
IN
PID
Function
Block
TC101
Condensate
CAS_IN
AO
Function
Block
TCV101
fieldbus-fbus_16a
BKCAL_OUT
OUT
C-12
AI
Function
Block
TT100
OUT
fieldbus-fbus_17a
Page 99
Model 4081FG Oxygen Analyzer with FOUNDATION fieldbus Communications
Application Example: Cascade Control with Master and Slave Loops
FIGURE C-7. PID Function Block Cascade Control Example.
Situation
A slave loop is added to a basic PID control configuration to measure and control steam flow to the steam heater. Variations in the steam pressure cause the temperature in the heat exchanger to change. The temperature variation will later be sensed by TT101. The temperature controller will modify the valve position to compensate for the steam pressure change. The process is slow and causes variations in the product temperature. Figure C-7 illustrates the process instrumentation diagram.
Steam Supply
FT
101
FC
101
TCV
101
TT
100
Steam Heater
TC
101
TT
101
Condensate
Solution
If the flow is controlled, steam pressure variations will be compensated before they significantly affect the heat exchanger temperature. The output from the master temperature loop is used as the setpoint for the slave steam flow loop. The BKCAL_IN and BKCAL_OUT connections on the PID blocks are used to prevent controller windup on the master loop when the slave loop is in Manual or Automatic mode, or it has reached an output constraint. Figure C-8 illustrates the correct function block configuration.
fieldbus-fbus_18a
C-13
Page 100
Model 4081FG Oxygen Analyzer with FOUNDATION fieldbus Communications
FIGURE C-8. PID Function Block Diagram for Cascade Control Example.
Outlet
Temperature
Input
BKCAL_IN
BKCAL_OUT
Steam
Flow
Input
AI
Function
Block
TT 101
AI
Function
Block
FT 101
OUT
OUT
IN
BKCAL_IN
CAS_IN
IN
PID
Function
Block
TC 101
PID
Function
Block
FC 101
OUT
OUT
BKCAL_OUT
IN
AO
Module
Block
TCV 101
C-14
Loading...