ROHM BU52004GUL, BU52014HFV Technical data

Hall IC Series
Omnipolar Detection Hall ICs (Polarity detection for both S and N features dual outputs)
BU52004GUL, BU52014HFV
Description
The BU52004GUL and BU52014HFV are bipolar Hall ICs incorporating a polarity determination circuit that enables operation (output) on both the S- and N-poles, with the polarity judgment based on the output processing configuration. These Hall IC products can be in with movie, mobile phone and other applications involving crystal panels to detect the (front-back) location or determine the rotational direction of the panel.
Features
1) Omnipolar detection (polarity detection for both S and N features dual outputs)
2) Micropower operation (small current using intermittent operation method)
3) Ultra-compact CSP4 package(BU52004GUL)
4) Small outline package (BU52014HFV)
5) Line up of supply voltage For 1.8V Power supply voltage (BU52014HFV) For 3.0V Power supply voltage (BU52004GUL)
6) Polarity judgment and output on both poles (OUT1: S-pole output; OUT2: N-pole output)
7) High ESD resistance 8kV(HBM)
Applications
Mobile phones, notebook computers, digital video camera, digital still camera, etc.
Product Lineup
Supply
Product name
BU52004GUL 2.403.30 +/-3.7 ※ 0.8 50 8.0 CMOS VCSP50L1 BU52014HFV 1.653.30 +/-3.0
Plus is expressed on the S-pole; minus on the N-pole
Absolute Maximum Ratings
BU52004GUL (Ta=25℃)
Power Supply Voltage VDD -0.1 ~ +4.5 Output Current IOUT ±1 mA Power Dissipation Pd 420 Operating Temperature Range Topr -40 ~ +85 Storage Temperature Range Tstg -40 ~ +125
1. Not to exceed Pd 2. Reduced by 4.20mW for each increase in Ta of 1℃ over 25℃
(mounted on 50mm×58mm Glass-epoxy PCB)
BU52014 HFV (Ta=25℃)
Power Supply Voltage VDD -0.1 ~ +4.5 Output Current IOUT ±0.5 mA Power Dissipation Pd 536 Operating Temperature Range Topr -40 ~ +85 Storage Temperature Range Tstg -40 ~ +125
3. Not to exceed Pd 4. Reduced by 5.36mW for each increase in Ta of 1℃ over 25℃
(mounted on 70mm×70mm×1.6mm Glass-epoxy PCB)
voltage
(V)
PARAMETERS SYMBOL LIMIT UNIT
PARAMETERS SYMBOL LIMIT UNIT
Operate point
(mT)
0.9 50 5.0 CMOS HVSOF5
Hysteresis
(mT)
Period
(ms)
Supply current
(AVG. )
(μA)
Output type Package
1
V
2
mW
3
V
4
mW
No.10045EDT01
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
1/11
2010.01 - Rev.D
BU52004GUL, BU52014HFV
6
Magnetic, Electrical Characteristics BU52004GUL (Unless otherwise specified, VDD3.0V, Ta=25℃)
PARAMETERS SYMBOL
LIMIT
MIN TYP MAX
UNIT CONDITIONS
Power Supply Voltage VDD 2.4 3.0 3.3 V
- 3.7 5.5
B
opS
Operate Point
Release Point
Hysteresis
B
-5.5 -3.7 -
opN
0.8 2.9 -
B
rpS
B
- -2.9 -0.8
rpN
B
- 0.8 -
hysS
B
- 0.8 -
hysN
mT
mT
mT
Period Tp - 50 100 ms
Output High Voltage VOH
DD
-0.4
- - V
V
Output Low Voltage VOL - - 0.4 V
Supply Current I Supply Current During Startup Time I Supply Current During Standby Time I
5. B = Magnetic flux density 1mT=10Gauss Positive (“+”) polarity flux is defined as the magnetic flux from south pole which is direct toward to the branded face of the sensor. After applying power supply, it takes one cycle of period (T Radiation hardiness is not designed.
- 8 12 μA Average
DD(AVG)
- 4.7 - mA During Startup Time Value
DD(EN)
- 3.8 - μA During Standby Time Value
DD(DIS)
) to become definite output.
P
BU52014HFV (Unless otherwise specified, V
PARAMETERS SYMBOL
DD=1.80V, Ta=25℃)
LIMIT
MIN TYP MAX
UNIT CONDITIONS
Power Supply Voltage VDD 1.65 1.80 3.30 V
- 3.0 5.0
B
opS
Operate Point
Release Point
Hysteresis
B
-5.0 -3.0 -
opN
B
0.6 2.1 -
rpS
B
- -2.1 -0.6
rpN
B
- 0.9 -
hysS
B
- 0.9 -
hysN
mT
mT
mT
Period Tp - 50 100 ms
Output High Voltage VOH
DD
-0.2
- - V
V
Output Low Voltage VOL - - 0.2 V
Supply Current 1 I
Supply Current During Startup Time 1 I
Supply Current During Standby Time 1 I
Supply Current 2 I
Supply Current During Startup Time 2 I
Supply Current During Standby Time 2 I
6. B = Magnetic flux density
1mT=10Gauss Positive (“+”) polarity flux is defined as the magnetic flux from south pole which is direct toward to the branded face of the sensor. After applying power supply, it takes one cycle of period (T Radiation hardiness is not designed.
DD1(AVG)
DD1(EN)
DD1(DIS)
DD2(AVG)
DD2(EN)
DD2(DIS)
) to become definite output.
P
- 5 8 μA VDD=1.8V, Average
- 2.8 - mA
- 1.8 - μA
- 8 12 μA VDD=2.7V, Average
- 4.5 - mA
- 4.0 - μA
Technical Note
OUTPUTOUT1 (respond the south pole) OUTPUTOUT2 (respond the north pole) OUTPUTOUT1 (respond the south pole) OUTPUTOUT2 (respond the north pole)
5
B
<B<B
rpN
I
=-1.0mA
OUT
B<B
opN
I
=+1.0mA
OUT
, B
rpS
<B
opS
OUTPUTOUT1 (respond the south pole) OUTPUTOUT2 (respond the north pole) OUTPUTOUT1 (respond the south pole) OUTPUTOUT2 (respond the north pole)
<B<B
B
rpN
I
=-0.5mA
OUT
B<B
opN
I
=+0.5mA
OUT
=1.8V,
V
DD
rpS
, B
<B
opS
During Startup Time Value V
=1.8V,
DD
During Standby Time Value
=2.7V,
V
DD
During Startup Time Value
=2.7V,
V
DD
During Standby Time Value
5
6
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
2/11
2010.01 - Rev.D
BU52004GUL, BU52014HFV
Figure of measurement circuit
Bop/Brp
Tp
Technical Note
200Ω
VDD
100μF
VDD
GND
OUT
VDD
Oscilloscope
V
Bop and Brp are measured with applying the magnetic field from the outside.
Fig.1 B
measurement circuit
op,Brp
VOH
VDD
100μF
VDD
GND
OUT
I
V
OUT
Fig.3 V
measurement circuit
OH
VOL
VDD
100μF
VDD
GND
OUT
V
I
OUT
Fig.4 V
measurement circuit
OL
The period is monitored by Oscilloscope.
Fig.2 Tp measurement circuit
Product Name I
BU52004GUL 1.0mA
BU52014HFV 0.5mA
Product Name I
BU52004GUL 1.0mA
BU52014HFV 0.5mA
VDD
GND
OUT
OUT
OUT
IDD
A
VDD
Fig.5 I
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
2200μF
measurement circuit
DD
VDD
GND
OUT
3/11
2010.01 - Rev.D
BU52004GUL, BU52014HFV
Technical (Reference) Data BU52004GUL (VDD=2.4V3.3V type)
8.0
6.0 V
=3.0V
DD
4.0
2.0
0.0
-2.0
-4.0
-6.0
MAGNETIC FLUX DENSITY [mT]
-8.0
-60 - 40 -20 0 20 40 60 80 100
AMBIEN T TEMPER ATU RE [℃]
Fig.6 Bop,Brp –
Ambient temperature
100
90
Ta = 25°C
80
70
60
50
40
PERIOD [ms]
30
20
10
0
2.0 2.4 2. 8 3.2 3.6
SUPPLLY VOLTAGE[V]
Fig.9 TP – Supply voltage
Bop S
Brp S
Brp N
Bop N
BU52014HFV (V
8.0
6.0
MAGNETIC FLUX DENSITY [mT]
VDD=1.8V
4.0
2.0
0.0
-2.0
-4.0
-6.0
-8.0
-60 - 40 -20 0 20 40 60 80 100
AMBIEN T TEMPER ATU RE [℃]
DD=1.65V3.3V type)
Bop S
Brp S
Brp N
Bop N
8.0
6.0
Ta = 25°C
4.0
2.0
0.0
-2.0
-4.0
-6.0
MAGNETIC FLUX DENSITY [mT]
-8.0
2.02.42.83.23.6
SUPPLY VOLTAGE [V
Fig.7 Bop,Brp –
Supply voltage
20.0
18.0
VDD=3.0V
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
AVERAGE SUPPLY CURRENT [µA]
-60 - 40 - 20 0 20 40 60 80 100
AMBIEN T TEMPER ATURE [℃]
Fig.10 IDD – Ambient
temperature
8.0
6.0
Ta = 25°C
4.0
2.0
0.0
-2.0
-4.0
-6.0
MAGNETIC FLUX DENSITY [mT]
-8.0
1.4 1.8 2.2 2.6 3.0 3. 4
SUPPLY VOLTAGE [V
Bop S
Brp S
Brp N
Bop N
Brp N
Bop N
Bop S
Brp S
Technical Note
100
95
VDD=3.0V
90 85 80 75 70 65 60
PERIOD [ms]
55 50 45 40
-60 - 40 - 20 0 20 40 60 80 100
AMBIEN T T EMPER ATU RE [℃]
Fig.8 TP– Ambient
temperature
20.0
18.0
Ta = 25°C
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
AVERAGE SUPPLY CURRENT [µA]
0.0
2.0 2. 4 2.8 3.2 3. 6
SUPPLY VOLTAGE [V]
Fig.11 IDD – Supply voltage
100
90
V
=1.8V
0
-60 - 40 -20 0 20 40 60 80 100 AMBIEN T TEMPER ATURE [℃]
PERIOD [ms]
80
70
60
50
40
30
20
10
Fig.12 Bop,Brp –
Ambient temperature
100
90
Ta = 25°C
80
70
60
50
40
PERIOD [ms]
30
20
10
0
1.4 1.8 2.2 2.6 3.0 3.4 3.8
SUPPLY VOLT AGE [V]
Fig.15 TP– Supply voltage
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
Fig.13 Bop,Brp – Supply voltage
20.0
18.0
VDD=1.8V
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
AVERAGE SUPPLY CURRENT [µA]
-60 - 40 -20 0 20 40 60 80 100
AMBIEN T TEMPER ATURE [℃]
Fig.16 IDD – Ambient
temperature
4/11
Fig.14 TP– Ambient
temperature
20.0
18.0
Ta = 25°C
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
AVERAGE SUPPLY CURRENT [µ A]
0.0
1.4 1.8 2.2 2.6 3.0 3.4
SUPPLY VOLTAGE[V]
Fig.17 IDD – Supply voltage
2010.01 - Rev.D
BU52004GUL, BU52014HFV
Block Diagram
BU52004GUL
VDD
A1
TIMING LOGIC
HALL
ELEMENT
LATCH
×
OFFSET
DYNAMIC
CANCELLATION
SAMPLE
& HOLD
LATCH
Fig.18
PIN No. PIN NAME FUNCTION COMMENT
A1 VDD POWER SUPPLY
A2 GND GROUND
B1 OUT1 OUTPUT( respond the south pole)
B2 OUT2 OUTPUT( respond the north pole)
BU52014HFV
VDD
4
TIMING LOGIC
HALL
ELEMENT
×
DYNAMIC
SAMPLE
OFFSET
CANCELLATION
& HOLD
LATCH
LATCH
Fig.19
PIN No. PIN NAME FUNCTION COMMENT
1 OUT2
( respond the north pole)
OUTPUT
2 GND GROUND
3 N.C. OPEN or Short to GND.
4 VDD POWER SUPPLY
5 OUT1
( respond the south pole)
OUTPUT
GND
VDD
GND
VDD
B1
B2
A2
Technical Note
0.1µF
Adjust the bypass capacitor value
as necessary, according to
voltage noise conditions, etc.
A1
B1
Surface
0.1μF
5
1
Surface
A2
A1
A2
B2
B2
B1
Reverse
4
3
4
3
Reverse
5
2
1
OUT1
The CMOS output terminals enable direct
connection to the PC, with no external pull-up
resistor required.
OUT2
GND
Adjust the bypass capacitor
OUT1
5
value as necessary, according to voltage noise conditions, etc.
The CMOS output terminals enable direct connection to the PC, with no external pull-up resistor required.
OUT2
1
2
GND
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
5/11
2010.01 - Rev.D
BU52004GUL, BU52014HFV
Description of Operations
Micropower Operation (Small current using intermittent action)
I
DD
(Offset Cancelation)
(Magnetic Field Detection Mechanism)
Period 50ms
Startup time
Standby
Fig.20
VDD
I
B
×
GND
Fig.21
S
S N
Flux direction
The Hall IC cannot detect magnetic fields that run horizontal to the package top layer. Be certain to configure the Hall IC so that the magnetic field is perpendicular to the top layer.
Hall Voltage
The dual output bipolar detection Hall IC adopts an intermittent operation method to save energy. At startup, the Hall elements, amp, comparator and other detection circuits power ON and magnetic detection begins. During standby, the detection circuits power OFF, thereby reducing current consumption. The detection results are held while standby is active, and then output.
t
Technical Note
Reference period: 50ms (MAX100ms) Reference startup time: 48μs
The Hall elements form an equivalent Wheatstone (resistor) bridge circuit. Offset voltage may be generated by a differential in this bridge resistance, or can arise from changes in resistance due to package or bonding stress. A dynamic offset cancellation circuit is employed to cancel this offset voltage. When Hall elements are connected as shown in Fig. 21 and a magnetic field is applied perpendicular to the Hall elements, voltage is generated at the mid-point terminal of the bridge. This is known as Hall voltage. Dynamic cancellation switches the wiring (shown in the figure) to redirect the current flow to a 90˚ angle from its original path, and thereby cancels the Hall voltage. The magnetic signal (only) is maintained in the sample/hold circuit during the offset cancellation process and then released.
Fig.22
S
S
N
N
Flux direction
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
6/11
2010.01 - Rev.D
BU52004GUL, BU52014HFV
OUT1
High
The OUT1 pin detects and outputs for the S-pole only. Since it is unipolar, it does not recognize the N-pole.
OUT2
High
Low
The OUT2 pin detects and outputs for the N-pole only. Since it is unipolar, it does not recognize the S-pole. The dual output Omnipolar detection Hall IC detects magnetic fields running perpendicular to the top surface of the package. There is an inverse relationship between magnetic flux density and the distance separating the magnet and the Hall IC: when distance increases magnetic density falls. When it drops below the operate point (Bop), output goes HIGH. When the magnet gets closer to the IC and magnetic density rises, to the operate point, the output switches LOW. In LOW output mode, the distance from the magnet to the IC increases again until the magnetic density falls to a point just below Bop, and output returns HIGH. (This point, where magnetic flux density restores HIGH output, is known as the release point, Brp.) This detection and adjustment mechanism is designed to prevent noise, oscillation and other erratic system operation.
S
S N
Flux
N-Pole
S
S N
Flux
Bop N Brp N
N-Pole
OUT 1[V]
High
Magnetic flux density [mT]
Fig.23 S-Pole Detection
Magnetic density [mT]
Fig.24 N-Pole Detection
0
OUT 2[V]
High
0
N
N S
Flux
Brp S
N
N
S
Flux
Bop S
S-Pole
S-Pole
Technical Note
High
Low
B
High
B
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
7/11
2010.01 - Rev.D
BU52004GUL, BU52014HFV
Technical Note
Intermittent Operation at Power ON
Power ON
VDD
Supply current
(Intermittent action)
OUT
(No magnetic field present)
(Magnetic field present)
Startup time
Indefinite
Indefinite
Standby time
High
Low
Startup time
Standby time
Fig.25
The dual output Omnipolar detection Hall IC adopts an intermittent operation method in detecting the magnetic field during startup, as shown in Fig. 25. It outputs to the appropriate terminal based on the detection result and maintains the output condition during the standby period. The time from power ON until the end of the initial startup period is an indefinite interval, but it cannot exceed the maximum period, 100ms. To accommodate the system design, the Hall IC output read should be programmed within 100ms of power ON, but after the time allowed for the period ambient temperature and supply voltage.
Magnet Selection
Of the two representative varieties of permanent magnet, neodymium generally offers greater magnetic power per volume than ferrite, thereby enabling the highest degree of miniaturization, Thus, neodymium is best suited for small equipment applications. Fig. 26 shows the relation between the size (volume) of a neodymium magnet and magnetic flux density. The graph plots the correlation between the distance (L) from three versions of a 4mm X 4mm cross-section neodymium magnet (1mm, 2mm, and 3mm thick) and magnetic flux density. Fig. 27 shows Hall IC detection distance – a good guide for determining the proper size and detection distance of the magnet. Based on the BU52014HFV operating point max 5.0 mT, the minimum detection distance for the 1mm, 2mm and 3mm magnets would be 7.6mm, 9.22mm, and 10.4mm, respectively. To increase the magnet’s detection distance, either increase its thickness or sectional area.
Y
10
9
8
7
6
5
4
3
Magnetic flux density[mT]
2
1
0
02468101214161820
X
Magnet size
Fig.27 Magnet Dimensions and
Flux Density Measuring Point
t=1mm
Distance between magnet and Hall IC [mm]
t
X=Y=4mm t=1mm,2mm,3mm
t=3mm
t=2mm
7.6mm
9.2mm
10.4mm
Fig.26
Magnet
Magnet material: NEOMAX-44H (material) Maker: NEOMAX CO.,LTD.
t
L: Variable
Flux density measuring point
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
8/11
2010.01 - Rev.D
BU52004GUL, BU52014HFV
Position of the Hall Effect IC(Reference)
0.2
HVSOF5
0.6
HVSOF5
(UNITmm)
(UNITmm)
Footprint dimensions (Optimize footprint dimensions to the board design and soldering condition)
Terminal Equivalent Circuit Diagram
VCSP50L1
0.55
0.55
0.35
VCSP50L1
Strings Size(Typ)
OUT1, OUT2
Fig.28
e 0.50
b3 0.25 SD 0.25 SE 0.25
Because they are configured for CMOS (inverter) output, the output pins require no external resistance and allow direct
VDD
GND
connection to the PC. This, in turn, enables reduction of the current that would otherwise flow to the external resistor during magnetic field detection, and supports overall low current (micropower) operation.
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
9/11
2010.01 - Rev.D
BU52004GUL, BU52014HFV
Operation Notes
1) Absolute maximum ratings Exceeding the absolute maximum ratings for supply voltage, operating conditions, etc. may result in damage to or destruction of the IC. Because the source (short mode or open mode) cannot be identified if the device is damaged in this way, it is important to take physical safety measures such as fusing when implementing any special mode that operates in excess of absolute rating limits.
2) GND voltage Make sure that the GND terminal potential is maintained at the minimum in any operating state, and is always kept lower than the potential of all other pins.
3) Thermal design Use a thermal design that allows for sufficient margin in light of the power dissipation (Pd) in actual operating conditions.
4) Pin shorts and mounting errors Use caution when positioning the IC for mounting on printed circuit boards. Mounting errors, such as improper positioning or orientation, may damage or destroy the device. The IC may also be damaged or destroyed if output pins are shorted together, or if shorts occur between the output pin and supply pin or GND.
5) Positioning components in proximity to the Hall IC and magnet Positioning magnetic components in close proximity to the Hall IC or magnet may alter the magnetic field, and therefore the magnetic detection operation. Thus, placing magnetic components near the Hall IC and magnet should be avoided in the design if possible. However, where there is no alternative to employing such a design, be sure to thoroughly test and evaluate performance with the magnetic component(s) in place to verify normal operation before implementing the design.
6) Slide-by position sensing Fig.29 depicts the slide-by configuration employed for position sensing. Note that when the gap (d) between the magnet and the Hall IC is narrowed, the reverse magnetic field generated by the magnet can cause the IC to malfunction. As seen in Fig.30, the magnetic field runs in opposite directions at Point A and Point B. Since the dual output Omnipolar detection Hall IC can detect the S-pole at Point A and the N-pole at Point B, it can wind up switching output ON as the magnet slides by in the process of position detection. Fig. 31 plots magnetic flux density during the magnet slide-by. Although a reverse magnetic field was generated in the process, the magnetic flux density decreased compared with the center of the magnet. This demonstrates that slightly widening the gap (d) between the magnet and Hall IC reduces the reverse magnetic field and prevents malfunctions.
7) Operation in strong electromagnetic fields Exercise extreme caution about using the device in the presence of a strong electromagnetic field, as such use may cause the IC to malfunction.
8) Common impedance Make sure that the power supply and GND wiring limits common impedance to the extent possible by, for example, employing short, thick supply and ground lines. Also, take measures to minimize ripple such as using an inductor or capacitor.
9) GND wiring pattern When both a small-signal GND and high-current GND are provided, single-point grounding at the reference point of the set PCB is recommended, in order to separate the small-signal and high-current patterns, and to ensure that voltage changes due to the wiring resistance and high current do not cause any voltage fluctuation in the small-signal GND. In the same way, care must also be taken to avoid wiring pattern fluctuations in the GND wiring pattern of external components.
10) Exposure to strong light Exposure to halogen lamps, UV and other strong light sources may cause the IC to malfunction. If the IC is subject to such exposure, provide a shield or take other measures to protect it from the light. In testing, exposure to white LED and fluorescent light sources was shown to have no significant effect on the IC.
1) Power source design
1
Since the IC performs intermittent operation, it has peak current when it’s ON. Please taking that into account and under examine adequate evaluations when designing the power source.
Magnet
Slide
d
Hall IC
L
Fig.29
Flux
A
S
N
Fig.30
B
Flux
10
8 6 4 2 0
-2
-4
-6
-8
-10
Magnetic fux density[mT]
012345678910
Horizontal distance f rom the magnet [mm]
Technical Note
Reverse
Fig.31
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
10/11
2010.01 - Rev.D
BU52004GUL, BU52014HFV
)
V
Technical Note
Ordering part number
B U 5 2 0 0 4 G U L - E 2
Part No. Part No.
Package 52004 52014
CSP50L1
HVSOF5
0.6MAX
1.6±0.05
1.2±0.05
(MAX 1.28 include BURR)
+0.03
–0.02
0.02
4-φ0.25±0.05
(BU52004GUL)
1PIN MARK
1.10±0.1
0.05
BA
B
B A
0.30±0.1
1.6±0.05
1.0±0.05
(0.05)
4
5
(0.91)
321
S
0.5
0.1 S
0.22±0.05
A
21
(0.41)
0.08 S
0.50
1.10±0.1
0.10±0.05
0.30±0.1
0.50
(0.8)
(0.3)
45
1
32
0.08
0.55MAX
M
S
(Unit : mm
0.2MAX
0.13±0.05
(Unit : mm)
<Tape and Reel information>
Quantity
Direction of feed
<Tape and Reel information>
Quantity
Direction of feed
Packaging and forming specification GUL: VCSP50L1 HFV: HVSOF5
E2: Embossed tape and reel
(VSCP50L1)
TR: Embossed tape and reel
(HVSOF5)
Embossed carrier tapeTape 3000pcs
E2
The direction is the 1pin of product is at the upper left when you hold
()
reel on the left hand and you pull out the tape on the right hand
Reel
Embossed carrier tapeTape 3000pcs
TR
The direction is the 1pin of product is at the upper right when you hold
()
reel on the left hand and you pull out the tape on the right hand
Reel
1pin
Order quantity needs to be multiple of the minimum quantity.
Order quantity needs to be multiple of the minimum quantity.
Direction of feed
1pin
Direction of feed
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
11/11
2010.01 - Rev.D
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.
The content specied herein is subject to change for improvement without notice.
The content specied herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specications, which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specied in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.
The technical information specied herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.
Notice
The Products specied in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, ofce-automation equipment, commu­nication devices, electronic appliances and amusement devices).
The Products specied in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, re or any other damage caused in the event of the failure of any Product, such as derating, redundancy, re control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel­controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specied herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved.
http://www.rohm.com/contact/
R1010
A
Loading...