ROHM BU2280FV Technical data

High-performance Clock Generator Series
DVD-video Reference Clock Generators for A/V Equipments
Description
These clock generators are an IC generating three types of clocks - VIDEO, AUIDIO and SYSTEM clocks – necessary for DVD player systems, with a single chip through making use of the PLL technology. Particularly, the AUDIO clock is a DVD-Video reference and yet achieves high C/N characteristics to provide a low level of distortion factor.
Features
1) Connecting a crystal oscillator generates multiple clock signals with a built-in PLL.
2) AUDIO clock of high C/N characteristics providing a low level of distortion factor
3) The AUDIO clock provides switching selection outputs.
4) Single power supply of 3.3 V
Applications
DVD players
Lineup
Part name BU2280FV BU2360FV BU2362FV
Power source voltage [V] 3.0 ~ 3.6 2.7 ~ 3.6 2.7 ~ 3.6
Reference frequency [MHz] 27.0000 27.0000 27.0000
2 - - -
No.12005EBT04
DVD VIDEO
Output frequency [MHz]
Jitter 1σ [psec] 70 70 70
Long-term-Jitter p-p [nsec] 8.0 2.5 5.0
Package SSOP-B24 SSOP-B16 SSOP-B16
DVD AUDIO, CD (Switching outputs)
SYSTEM
768 (48k type) - - 36.8640
768 (44.1k type) 33.8688 33.8688 33.8688
384 (44.1k type) - - 16.9344
1 27.0000 27.0000 27.0000
1/2 - - -
768fs
512fs
384fs
256fs - - -
other - -
36.8640
/33.8688
24.5760
/22.5792
18.4320
/16.9344
- -
24.5760
/22.5792
- -
24.5760
/22.5792
36.8640
/16.9344
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
1/23
2012.02 - Rev.B
BU2280FV, BU2360FV, BU2362FV
Technical Note
Absolute Maximum Ratings (Ta=25℃)
Parameter Symbol BU2280FV BU2360FV BU2362FV Unit
Supply voltage
Input voltage
Storage temperature range
Power dissipation
*1 In the case of exceeding Ta = 25, 6.3mW to be reduced per 1 *2 In the case of exceeding Ta = 25, 4.5mW to be reduced per 1 *Operating is not guaranteed. *The radiation-resistance design is not carried out. *Power dissipation is measured when the IC is mounted to the printed circuit board.
VDD -0.5 ~ +7.0 -0.5 ~ +7.0 -0.5 ~ +7.0 V
VIN -0.5~VDD+0.5 -0.5~VDD+0.5 -0.5~VDD+0.5 V
Tstg
PD 630
-30 ~ +125 -30 ~ +125 -30 ~ +125
*1
450
*2
450
*2
Recommended Operating Range
Parameter Symbol BU2280FV BU2360FV BU2362FV Unit
Parameter VDD 3.0 ~ 3.6 2.7 ~ 3.6 2.7 ~ 3.6 V
Supply voltage VIH 0.8VDD~VDD 0.8VDD~VDD 0.8VDD~VDD V
mW
Input “H” Voltage VIL
0.0 ~ 0.2VDD 0.0 ~ 0.2VDD 0.0 ~ 0.2VDD V
Input “L” Voltage Topr -5 ~ +70 -25 ~ +85 -25 ~ +85
Operating temperature CL 15 15 15 pF
Output load CL_27M1 - 40 (CLK27M1) - pF
27M output load 1 CL_27M2 - 25 (CLK27M2) - pF
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
2/23
2012.02 - Rev.B
BU2280FV, BU2360FV, BU2362FV
Technical Note
Electrical characteristics BU2280FV(VDD=3.3V, Ta=25℃, Crystal frequency 27.0000MHz, unless otherwise specified.)
Parameter
Symbol
Min. Typ. Max.
Limits
Unit Conditions
Output L voltage VOL - - 0.4 V IOL=4.0mA
Output H voltage VOH 2.4 - - V IOH=-4.0mA
Consumption current IDD - 30 50 mA At no load
CLK768FS
CLK512FS
CLK384FS
CLK768-44 - 33.8688 - MHz At FSEL=L, XTAL×3136 / 625 / 4
CLK768-48 - 36.8640 - MHz At FSEL=H, XTAL×2048 / 375 / 4
CLK512-44 - 22.5792 - MHz At FSEL=L, XTAL×3136 / 625 / 6
CLK512-48 - 24.5760 - MHz At FSEL=H, XTAL×2048 / 375 / 6
CLK384-44 - 16.9344 - MHz At FSEL=L, XTAL×3136 / 625 / 8
CLK384-48 - 18.4320 - MHz At FSEL=H, XTAL×2048 / 375 / 8
CLK33M CLK33M - 33.8688 - MHz XTAL×147 / 40 / 4
CLK16M CLK16M - 16.9344 - MHz XTAL×147 / 40 / 8
Duty Duty 45 50 55 % Measured at a voltage of 1/2 of VDD
Period-Jitter 1σ P-J 1σ - 70 - psec *1
Period-Jitter MIN-MAX
Rise Time Tr - 2.5 - nsec
Fall Time Tf - 2.5 - nsec
P-J
MIN-MAX
- 420 - psec *2
Period of transition time required for the output reach 80% from 20% of VDD. Period of transition time required for the output reach 20% from 80% of VDD.
Output Lock-Time Tlock - - 1 msec *3
Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to XTALIN.
If the input frequency is set to 27.0000MHz, the output frequency will be as listed above.
BU2360FV(VDD=3.3V, Ta=25, Crystal frequency 27.0000MHz, unless otherwise specified.)
Parameter
Symbol
Min. Typ. Max.
Limits
Unit Conditions
Output L voltage VOL - - 0.4 V IOL=4.0mA
Output H voltage VOH 2.4 - - V IOH=-4.0mA
FSEL input VthL VthL 0.2VDD - - V *4
FSEL input VthH VthH - - 0.8VDD V *4
Hysteresis range Vhys 0.2 - - V Vhys = VthH - VthL *4
Action circuit current IDD - 27.0 40.5 mA At no load
CLK27M CLK27M - 27.0000 - MHz XTAL direct out
CLK33M CLK33M - 33.8688 - MHz XTAL×3136 / 625 / 4
CLK512FS
CLK512_48 - 24.5760 - MHz At FSEL=H, XTAL×2048 / 375 / 6
CLK512_44 - 22.5792 - MHz At FSEL=L, XTAL×3136 / 625 / 6
Duty Duty 45 50 55 % Measured at a voltage of 1/2 of VDD
Period-Jitter 1σ P-J 1σ - 70 - psec *1
Period-Jitter MIN-MAX
Rise Time Tr - 2.5 - nsec
Fall Time Tf - 2.5 - nsec
P-J
MIN-MAX
- 420 - psec *2
Period of transition time required for the output reach 80% from 20% of VDD. Period of transition time required for the output reach 20% from 80% of VDD.
Output Lock-Time Tlock - - 1 msec *3
Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to XTALIN.
If the input frequency is set to 27.0000MHz, the output frequency will be as listed above.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
3/23
2012.02 - Rev.B
BU2280FV, BU2360FV, BU2362FV
Technical Note
BU2362FV(VDD=3.3V, Ta=25, Crystal frequency 27.0000MHz, unless otherwise specified.)
Parameter Symbol
Min. Typ. Max.
Limits
Unit Conditions
Output L voltage VOH 2.4 - - V IOH=-4.0mA
Output H voltage VOL - - 0.4 V IOL=4.0mA
Action circuit current IDD - 35 45 mA At no load
CLK512FS
CLKA
CLK512-44 - 22.5792 - MHz At FSEL1=OPEN XTAL*3136/625/6
CLK512-48 - 24.5760 - MHz At FSEL1=L XTAL*2048/375/6
CLKA-A - 16.9344 - MHz At FSEL1=OPEN XTAL*3136/625/8
CLKA-B - 36.8640 - MHz At FSEL1=L XTAL*2048/375/8
CLK36M CLK36M - 36.8640 - MHz XTAL*2048/375/4
CLK33M CLK33M - 33.8688 - MHz XTAL*3136/625/4
CLK16M CLK16M - 16.9344 - MHz XTAL*3136/625/8
CLK27M CLK27M - 27.0000 - MHz XTAL direct out
Duty Duty 45 50 55 % Measured at a voltage of 1/2 of VDD
Period-Jitter 1σ P-J 1σ - 70 - psec *1
Period-Jitter MIN-MAX
Rise Time Tr - 2.5 - nsec
Fall Time Tf - 2.5 - nsec
P-J
MIN-MAX
- 420 - psec *2
Period of transition time required for the output reach 80% from 20% of VDD. Period of transition time required for the output reach 20% from 80% of VDD.
Output Lock-Time Tlock - - 1 msec *3
Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to XTALIN.
If the input frequency is set to 27.0000MHz, the output frequency will be as listed above.
Common to BU2280FV, BU2360FV and BU2362FV: *1 Period-Jitter 1σ
This parameter represents standard deviation (1 ) on cycle distribution data at the time when the output clock cycles are sampled 1000 times consecutively with the TDS7104 Digital Phosphor Oscilloscope of Tektronix Japan, Ltd.
*2 Period-Jitter MIN-MAX
This parameter represents a maximum distribution width on cycle distribution data at the time when the output clock cycles are sampled 1000 times consecutively with the TDS7104 Digital Phosphor Oscilloscope of Tektronix Japan, Ltd.
*3 Output Lock-Time
The Lock-Time represents elapsed time after power supply turns ON to reach a 3.0V voltage, after the system is switched from Power-Down state to normal operation state, or after the output frequency is switched, until it is stabilized at a specified frequency, respectively.
BU2360FV 4 This parameter represents lower and upper limit voltages at the Schmitt trigger input PIN having hysteresis
characteristics shown in figure below. The width requested by these differences is assumed to be a hysteresis width.
0.2VDD 0.8VDD
hys
V
Output Voltage [V]
0
VthLV
Input Voltage [V]
th
H
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
4/23
2012.02 - Rev.B
BU2280FV, BU2360FV, BU2362FV
Reference data (BU2280FV basic data)
Technical Note
RBW=1kHz
VBW=100Hz
1.0V/div
5.0nsec/div
Fig.1 33.9MHz output waveform
VDD=3.3V, at CL=15pF
1.0V/div
5.0nsec/div
Fig.4 36.9MHz output waveform
VDD=3.3V, at CL=15pF
1.0V/div
500psec/div
Fig.2 33.9MHz Period-Jitter
VDD=3.3V, at CL=15pF
1.0V/div
500psec/div
Fig.5 36.9MHz Period-Jitter
VDD=3.3V, at CL=15pF
10dB/div
10kHz/div
Fig.3 33.9MHz Spectrum
VDD=3.3V, at CL=15pF
RBW=1kHz
VBW=100Hz
10dB/div
10kHz/div
Fig.6 36.9MHz Spectrum
VDD=3.3V, at CL=15pF
RBW=1kHz
VBW=100Hz
1.0V/div
5.0nsec/div
Fig.7 22.6MHz output waveform
VDD=3.3V, at CL=15pF
1.0V/div
5.0nsec/div
Fig.10 24.6MHz output waveform
VDD=3.3V, at CL=15pF
1.0V/div
500psec/div
Fig.8 22.6MHz Period-Jitter
VDD=3.3V, at CL=15pF
1.0V/div
500psec/div
Fig.11 24.6MHz Period-Jitter
VDD=3.3V, at CL=15pF
10dB/div
10kHz/div
Fig.9 22.6MHz Spectrum
VDD=3.3V, at CL=15pF
RBW=1kHz
VBW=100Hz
10kHz/div
Fig.12 24.6MHz Spectrum
VDD=3.3V, at CL=15pF
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
5/23
2012.02 - Rev.B
BU2280FV, BU2360FV, BU2362FV
Reference data (BU2280FV basic data)
Technical Note
RBW=1kHz
VBW=100Hz
1.0V/div
10.0nsec/div
Fig.13 16.9MHz output waveform
VDD=3.3V, at CL=15pF
1.0V/div
10.0nsec/div
Fig.16 18.4MHz output waveform
VDD=3.3V, at CL=15pF
1.0V/div
500psec/div
Fig.14 16.9MHz Period-Jitter
VDD=3.3V, at CL=15pF
1.0V/div
500psec/div
Fig.17 18.4MHz Period-Jitter
VDD=3.3V, at CL=15pF
10dB/div
10kHz/div
Fig.15 16.9MHz Spectrum
VDD=3.3V, at CL=15pF
RBW=1kHz
VBW=100Hz
10dB/div
10kHz/div
Fig.18 18.4MHz Spectrum
VDD=3.3V, at CL=15pF
RBW=1kHz
VBW=100Hz
1.0V/div
5.0nsec/div
Fig.19 27MHz output waveform
VDD=3.3V, at CL=15pF
1.0V/div
LT Jitter 6.2nsec LT Jitter 8.1nsec
2.0nsec/div
Fig.22 24.6MHz LT Jitter
VDD=3.3V, at CL=15pF
1.0V/div
500psec/div
Fig.20 27MHz Period-Jitter
VDD=3.3V, at CL=15pF
1.0V/div
2.0nsec/div
Fig.23 22.6MHz LT Jitter
VDD=3.3V, at CL=15pF
10dB/div
10kHz/div
Fig.21 27MHz Spectrum
VDD=3.3V, at CL=15pF
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
6/23
2012.02 - Rev.B
BU2280FV, BU2360FV, BU2362FV
55
Reference data (BU2280FV Temperature and Supply voltage variations data)
55
54
53
52
51
50
Duty[%]
49
48
Duty
47
46
45
VDD=3.7V
-25 0 25 50 75 100
Fig.24 33.9MHz
Temperature-Duty
55
54
53
Duty[%]
Duty
52
51
50
49
48
47
46
45
VDD=2.9V
VDD=3.7V
-25 0 25 50 75 100
Fig.27 36.9MHz
Temperature-Duty
55
54
53
52
51
50
Duty[%]
49
VDD=3.3V
48
Duty
47
46
45
-25 0 25 50 75 100
Fig.30 22.6MHz
Temperature-Duty
55
54
53
52
VDD=2.9V
51
50
Duty[%]
49
48
Duty
47
46
45
-25 0 25 50 75 100
Fig.33 24.6MHz
Temperature-Duty
VDD=3.3V
Temperature:T[℃]
Temperature:T[℃]
VDD=3.7V
Temperature:T[℃]
VDD=3.3V
VDD=3.7V
Temperature:T[℃]
VDD=2.9V
VDD=3.3V
VDD=2.9V
100
90
PJ-1σ[psec]
Period-jitter1σ
80
70
60
50
40
30
20
10
VDD=3.3V
0
-25 0 25 50 75 100
Temperature:T[℃]
VDD=2.9V
VDD=3.7V
Fig.25 33.9MHz
Temperature-Period-Jitter 1σ
100
90
80
70
60
PJ-1σ[psec]
50
40
30
20
Period-jitter1σ
10
0
VDD=3.3V
-25 0 25 50 75 100
Temperature:T[℃]
VDD=2.9V
VDD=3.7V
Fig.28 36.9MHz
Temperature-Period-Jitter 1σ
100
90
80
70
60
PJ-1σ[psec]
50
40
30
20
Period-jitter1σ
10
0
VDD=3.7V
VDD=2.9V
-25 0 25 50 75 100
Temperature:T[℃]
VDD=3.3V
Fig.31 22.6MHz
Temperature-Period-Jitter 1σ
100
90
80
VDD=2.9V
70
60
PJ-1σ[psec]
50
40
30
20
Period-jitter1σ
10
0
-25 0 25 50 75 100
VDD=3.3V
VDD=3.7V
Temperature:T[℃]
Fig.34 24.6MHz
Temperature-Period-Jitter 1σ
Technical Note
600
500
400
300
200
PJ-MIN-MAX[psec]
Period-jitterMIN-MAX
100
0
-25 0 25 50 75 100
Temperature-Period-Jitter MIN-MAX
600
500
400
300
200
PJ-MIN-MAX[psec]
Period-jitterMIN-MAX
100
0
-25 0 25 50 75 100
Temperature r-Period-Jitter MIN-MAX
600
500
400
300
200
PJ-MIN-MAX[psec]
Period-jitterMIN-MAX
100
0
-25 0 25 50 75 100
Temperature-Period-Jitter MIN-MAX
600
500
400
300
200
PJ-MIN-MAX[psec]
Period-jitterMIN-MAX
100
0
-25 0 25 50 75 100
Temperature-Period-Jitter MIN-MAX
VDD=3.3V
VDD=3.7V
Temperature:T[℃]
Fig.26 33.9MHz
VDD=3.7V
VDD=3.3V
Temperature:T[℃]
Fig.29 36.9MHz
VDD=3.7V
VDD=2.9V
Temperature:T[℃]
Fig.32 22.6MHz
VDD=3.7V
VDD=3.3V
VDD=2.9V
Temperature:T[℃]
Fig.35 24.6MHz
VDD=2.9V
VDD=2.9V
VDD=3.3V
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
7/23
2012.02 - Rev.B
BU2280FV, BU2360FV, BU2362FV
Reference data (BU2280FV Temperature and Supply voltage variations data)
55
54
53
Duty[%]
Duty
Duty[%]
Duty
Duty[%]
Duty
52
51
50
49
48
47
46
45
55
54
53
52
51
50
49
48
47
46
45
55
54
53
52
51
50
49
48
47
46
45
VDD=2.9V
-25 0 25 50 75 100
Temperature:T[℃]
Fig.36 16.9MHz
Temperature-Duty
VDD=2.9V
-25 0 25 50 75 100
Temperature:T[℃]
Fig.39 18.4MHz
Temperature-Duty
VDD=3.7V
-25 0 25 50 75 100
Temperature:T[℃]
Fig.42 27MHz
Temperature-Duty
VDD=3.7V
VDD=3.3V
VDD=3.7V
VDD=3.3V
VDD=3.3V
VDD=2.9V
100
90
80
70
VDD=3.7V
60
PJ-1σ[psec]
50
40
30
VDD=2.9V
20
10
Period-jitter1σ
0
-25 0 25 50 75 100
Temperature:T[℃]
VDD=3.3V
Fig.37 16.9MHz
Temperature-Period-Jitter 1σ
100
90
80
70
60
PJ-1σ[psec]
50
40
30
20
10
Period-jitter1σ
0
-25 0 25 50 75 100
VDD=2.9V
Temperature:T[℃]
VDD=3.7V
VDD=3.3V
Fig.40 18.4MHz
Temperature-Period-Jitter 1σ
100
90
PJ-1σ[psec]
Period-jitter1σ
80
70
60
50
40
30
20
10
VDD=2.9V
0
-25 0 25 50 75 100
Temperature:T[℃]
VDD=3.3V
VDD=3.7V
Fig.43 27MHz
Temperature-Period-Jitter 1σ
50
40
IDD[mA]
30
20
10
Circuit Current
0
VDD=3.7V
VDD=2.9V
-25 0 25 50 75 100
Temperature:T[℃]
VDD=3.3V
Fig.45 Action circuit current
(with maximum output load)
Temperature-Consumption current
Technical Note
600
500
400
300
200
PJ-MIN-MAX[psec]
Period-jitterMIN-MAX
100
0
-25 0 25 50 75 100
VDD=3.7V
Temperature:T[℃]
Fig.38 16.9MHz
Temperature-Period-Jitter MIN-MAX
600
500
400
300
200
PJ-MIN-MAX[psec]
Period-jitterMIN-MAX
100
0
-25 0 25 50 75 100
VDD=2.9V
Temperature:T[℃]
Fig.41 18.4MHz
Temperature-Period-Jitter MIN-MAX
600
500
400
300
200
PJ-MIN-MAX[psec]
Period-jitterMIN-MAX
100
VDD=2.9V
VDD=3.7V
0
-25 0 25 50 75 100
Temperature:T[℃]
Fig.44 27MHz
Temperature-Period-Jitter MIN-MAX
VDD=2.9V
VDD=3.3V
=
VDD=3.3V
VDD=3.3V
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
8/23
2012.02 - Rev.B
BU2280FV, BU2360FV, BU2362FV
Reference data (BU2360FV basic data)
Technical Note
RBW=1kHz
VBW=100Hz
1.0V/div
5.0nsec/div
Fig.46 27MHz output waveform
VDD=3.3V, at CL=40pF
1.0V/div
5.0nsec/div
Fig.49 27MHz output waveform
VDD=3.3V, at CL=25pF
1.0V/div
500psec/div
Fig.47 27MHz Period-Jitter
VDD=3.3V, at CL=40pF
1.0V/div
500psec/div
Fig.50 27MHz Period-Jitter
VDD=3.3V, at CL=25pF
10dB/div
10kHz/div
Fig.48 27MHz Spectrum
VDD=3.3V, at CL=40pF
RBW=1kHz
VBW=100Hz
10dB/div
10kHz/div
Fig.51 27MHz Spectrum
VDD=3.3V, at CL=25pF
RBW=1kHz
VBW=100Hz
1.0V/div
5.0nsec/div
Fig.52 33.9MHz output waveform
VDD=3.3V, at CL=15pF
1.0V/div
5.0nsec/div
Fig.55 24.6MHz output waveform
VDD=3.3V, at CL=15pF
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
1.0V/div
500psec/div
Fig.53 33.9MHz Period-Jitter
VDD=3.3V, at CL=15pF
1.0V/div
500psec/div
Fig.56 24.6MHz Period-Jitter
VDD=3.3V, at CL=15pF
9/23
10dB/div
10kHz/div
Fig.54 33.9MHz Spectrum
VDD=3.3V, at CL=15pF
RBW=1kHz
VBW=100Hz
10dB/div
10kHz/div
Fig.57 24.6MHz Spectrum
VDD=3.3V, at CL=15pF
2012.02 - Rev.B
BU2280FV, BU2360FV, BU2362FV
Reference data (BU2360FV basic data)
Technical Note
RBW=1kHz
VBW=100Hz
1.0V/div
5.0nsec/div
Fig.58 22.6MHz output waveform
VDD=3.3V, at CL=15pF
1.0V/div
500psec/div
Fig.59 22.6MHz Period-Jitter
VDD=3.3V, at CL=15pF
1.0V/div
1.0nsec/div
Fig61. 24.6MHz LT Jitter
VDD=3.3V, at CL=15pF
LT Jitter 2.3nsec
1.0V/div
LT Jitter 2.5nsec
1.0nsec/div
Fig62. 22.6MHz LT Jitter
VDD=3.3V, at CL=15pF
Reference data (BU2360FV Temperature and Supply voltage variations data)
55
54
53
52
Duty[%]
Duty
Duty[%]
Duty
51
50
49
48
47
46
45
55
54
53
52
51
50
49
48
47
46
45
VDD=3.7V
VDD=2.4V
-25 0 25 50 75 100
Temperature:T[℃]
Fig.63 27MHz (40pF)
Temperature-Duty
VDD=3.7V
-25 0 25 50 75 100
Temperature:T[℃]
Fig.66 27MHz (25pF)
Temperature-Duty
VDD=3.3V
VDD=2.4V
VDD=3.3V
100
90
80
70
60
PJ-1σ[psec]
50
40
30
20
10
Period-jitter1σ
0
-25 0 25 50 75 100
VDD=2.4V
VDD=3.7V
VDD=3.3V
Temperature:T[℃]
Fig.64 27MHz (40pF)
Temperature-Period-Jitter 1σ
100
90
80
70
60
PJ-1σ[psec]
50
40
30
20
Period-jitter1σ
10
0
-25 0 25 50 75 100
VDD=2.4V
VDD=3.7V
Temperature:T[℃]
Fig.67 27MHz (25pF)
Temperature-Period-Jitter 1σ
VDD=3.3V
10dB/div
10kHz/div
Fig.60 22.6MHz Spectrum
VDD=3.3V, at CL=15pF
600
500
400
300
200
PJ-MIN-MAX[psec]
Period-jitterMIN-MAX
100
0
-25 0 25 50 75 100
VDD=3.3V
Temperature:T[℃]
VDD=2.4V
VDD=3.7V
Fig.65 27MHz (40pF)
Temperature-Period-Jitter MIN-MAX
600
500
400
300
200
PJ-MIN-MAX[psec]
Period-jitterMIN-MAX
100
0
-25 0 25 50 75 100
VDD=2.4V
VDD=3.7V
Temperature:T[℃]
VDD=3.3V
Fig.68 27MHz (25pF)
Temperature-Period-Jitter MIN-MAX
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
10/23
2012.02 - Rev.B
BU2280FV, BU2360FV, BU2362FV
Reference data (BU2360FV Temperature and Supply voltage variations data)
55
54
53
52
51
50
Duty[%]
49
48
Duty
47
46
45
-25 0 25 50 75 100
55
54
53
52
51
50
Duty[%]
49
48
Duty
47
46
45
-25 0 25 50 75 100
VDD=2.4V
VDD=3.7V
Temperature:T[℃]
Fig.69 33.9MHz
Temperature-Duty
VDD=3.3V
Temperature:T[℃]
Fig.72 24.6MHz
Temperature-Duty
VDD=3.3V
VDD=2.4V
VDD=3.7V
100
90
80
70
60
PJ-1σ[psec]
50
40
30
20
10
Period-jitter1σ
0
-25 0 25 50 75 100
VDD=2.4V
VDD=3.7V
Temperature:T[℃]
Fig.70 33.9MHz
Temperature-Period-Jitter 1σ
100
90
80
70
60
PJ-1σ[psec]
50
VDD=3.3V
40
30
20
Period-jitter1σ
10
0
-25 0 25 50 75 100
Temperature:T[℃]
VDD=3.7V
VDD=2.4V
Fig.73 24.6MHz
Temperature-Period-Jitter 1σ
VDD=3.3V
55
54
53
]
52
Duty[
Duty
VDD=2.4V
51
50
49
48
47
46
45
-25 0 25 50 75 100
Fig.75 22.6MHz
Temperature-Duty
50
40
IDD[mA]
30
VDD=3.3V
VDD=3.7V
Temperature:T[℃]
VDD=3.7V
VDD=3.3V
100
90
VDD=3.7V
80
70
60
PJ-1σ[psec]
50
40
VDD=2.4V
30
20
10
Period-jitter1σ
0
-25 0 25 50 75 100
VDD=3.3V
Temperature:T[℃]
Fig.76 22.6MHz
Temperature-Period-Jitter 1σ
20
10
Circuit Current
0
Temperature-Consumption current
VDD=2.4V
-25 0 25 50 75 100
Temperature:T[℃]
Fig.78 Action circuit current
(with maximum output load)
Technical Note
600
500
400
300
200
PJ-MIN-MAX[psec]
Period-jitterMIN-MAX
100
0
VDD=2.4V
VDD=3.7V
-25 0 25 50 75 100
Temperature:T[℃]
Fig.71 33.9MHz
Temperature-Period-Jitter MIN-MAX
600
500
400
300
VDD=3.3V
200
PJ-MIN-MAX[psec]
Period-jitterMIN-MAX
100
0
-25 0 25 50 75 100
Temperature:T[℃]
Fig.74 24.6MHz
Temperature-Period-Jitter MIN-MAX
600
500
400
300
200
PJ-MIN-MAX[psec]
Period-jitterMIN-MAX
100
0
VDD=3.7V
VDD=2.4V
-25 0 25 50 75 100
Temperature:T[℃]
Fig.77 22.6MHz
Temperature-Period-Jitter MIN-MAX
VDD=3.3V
VDD=2.4V
VDD=3.7V
VDD=3.3V
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
11/23
2012.02 - Rev.B
BU2280FV, BU2360FV, BU2362FV
Reference data(BU2362FV basic data)
Technical Note
RBW=1kHz
VBW=100Hz
1.0V/div
5.0nsec/div
Fig.79 33.9MHz output waveform
VDD=3.3V, at CL=15pF
1.0V/div
5.0nsec/div
Fig.82 36.9MHz output waveform
VDD=3.3V, at CL=15pF
1.0V/div
500psec/div
Fig.80 33.9MHz Period-Jitter
VDD=3.3V, at CL=15pF
1.0V/div
500psec/div
Fig.83 36.9MHz Period-Jitter
VDD=3.3V, at CL=15pF
10dB/div
10kHz/div
Fig.81 33.9MHz Spectrum
VDD=3.3V, at CL=15pF
RBW=1kHz
VBW=100Hz
10dB/div
10kHz/div
Fig.84 36.9MHz Spectrum
VDD=3.3V, at CL=15pF
RBW=1kHz
VBW=100Hz
1.0V/div
5.0nsec/div
Fig.85. 22.6MHz output waveform
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
VDD=3.3V, at CL=15pF
1.0V/div
5.0nsec/div
Fig.88 24.6MHz output waveform
VDD=3.3V, at CL=15pF
1.0V/div
500psec/div
Fig.86 22.6MHz Period-Jitter
VDD=3.3V, at CL=15pF
1.0V/div
500psec/div
Fig.89 24.6MHz Period-Jitter
VDD=3.3V, at CL=15pF
12/23
10dB/div
10kHz/div
Fig.87 22.6MHz Spectrum
VDD=3.3V, at CL=15pF
RBW=1kHz
VBW=100Hz
10dB/div
Fig.90 24.6MHz Spectrum
VDD=3.3V, at CL=15pF
2012.02 - Rev.B
BU2280FV, BU2360FV, BU2362FV
Reference data(BU2362FV basic data)
Technical Note
RBW=1kHz
VBW=100Hz
1.0V/div
5.0nsec/div
Fig.91 16.9MHz output waveform
VDD=3.3V, at CL=15pF
1.0V/div
5.0nsec/div
Fig.94 27MHz output waveform
VDD=3.3V, at CL=15pF
1.0V/div
500psec/div
Fig.92 16.9MHz Period-Jitter
VDD=3.3V, at CL=15pF
1.0V/div
500psec/div
Fig.95 27MHz Period-Jitter
VDD=3.3V, at CL=15pF
10dB/div
10kHz/div
Fig.93 16.9MHz Spectrum
VDD=3.3V, at CL=15pF
RBW=1kHz
VBW=100Hz
10dB/div
10kHz/div
Fig.96 27MHz Spectrum
VDD=3.3V, at CL=15pF
1.0V/div
LT Jitter 4.8nsec
2.0nsec/div
Fig.97 24.6MHz LT Jitter
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
VDD=3.3V, at CL=15pF
1.0V/div
2.0nsec/div
Fig.98 22.6MHz LT Jitter
VDD=3.3V, at CL=15pF
13/23
2012.02 - Rev.B
BU2280FV, BU2360FV, BU2362FV
Reference data (BU2362FV Temperature and Supply voltage variations data)
55
54
53
52
51
50
Duty[%]
49
48
Duty
47
46
45
-25 0 25 50 75 100
55
54
53
52
51
50
Duty[%]
49
48
Duty
47
46
45
-25 0 25 50 75 100
55
54
53
]
52
51
50
Duty[
49
48
Duty
47
46
45
-25 0 25 50 75 100
55
54
53
52
51
50
Duty[%]
49
48
Duty
47
46
45
-25 0 25 50 75 100
VDD=3.3V
VDD=2.4V
Temperature:T[℃]
Fig.99 33.9MHz
Temperature-Duty
VDD=2.4V
VDD=3.3V
VDD=3.7V
Temperature:T[℃]
Fig.102 36.9MHz
Temperature-Duty
VDD=2.4V
VDD=3.3V
VDD=3.7V
Tem per atu re:T[℃]
Fig.105 22.6MHz
Temperature-Duty
VDD=2.4V
VDD=3.3V
Temperature:T[℃]
Fig.108 24.6MHz
Temperature-Duty
VDD=3.7V
VDD=3.7V
100
90
80
70
VDD=2.4V
60
PJ-1σ[psec]
50
40
30
20
10
Period-jitter1σ
0
-25 0 25 50 75 100
VDD=3.7V
VDD=3.3V
Temperature:T[℃]
Fig.100 33.9MHz
Temperature-Period-Jitter 1σ
100
90
80
PJ-1σ[psec]
Period-jitter1σ
70
60
50
40
30
20
10
VDD=2.4V
0
-25 0 25 50 75 100
VDD=3.7V
VDD=3.3V
Temperature:T[℃]
Fig.103 36.9MHz
Temperature-Period-Jitter 1σ
100
90
80
70
60
PJ-1σ[psec]
50
40
30
20
10
Period-jitter1σ
0
-25 0 25 50 75 100
VDD=3.7V
VDD=3.3V
Temperature:T[℃]
Fig.106 22.6MHz
Temperature-Period-Jitter 1σ
100
90
80
VDD=2.4V
70
60
PJ-1σ[psec]
50
40
30
20
Period-jitter1σ
10
VDD=3.3V
0
-25 0 25 50 75 100
Temperature:T[℃]
Fig.109 24.6MHz
Temperature-Period-Jitter 1σ
VDD=2.4V
VDD=3.7V
Technical Note
100
90
80
70
60
PJ-1σ[psec]
Period-jitter1σ
VDD=2.4V
50
40
30
20
10
0
-25 0 25 50 75 100
Temperature:T[℃]
Fig.101 33.9MHz
Temperature-Period-Jitter MIN-MAX
600
500
400
300
200
PJ-MIN-MAX[psec]
Period-jitterMIN-MAX
100
VDD=2.4V
0
-25 0 25 50 75 100
Temperature:T[℃]
Fig.104 36.9MHz
Temperature-Period-Jitter MIN-MAX
600
500
400
300
200
PJ-MIN-MAX[psec]
Period-jitterMIN-MAX
100
0
VDD=3.7V
VDD=3.3V
-25 0 25 50 75 100
Temperature:T[℃]
Fig.107 22.6MHz
Temperature-Period-Jitter MIN-MAX
600
500
400
300
200
PJ-MIN-MAX[psec]
Period-jitterMIN-MAX
100
0
VDD=3.7V
-25 0 25 50 75 100
Temperature:T[℃]
Fig.110 24.6MHz
Temperature-Period-Jitter MIN-MAX
VDD=3.3V
VDD=3.7V
VDD=3.7V
VDD=3.3V
VDD=2.4V
VDD=2.4V
VDD=3.3V
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
14/23
2012.02 - Rev.B
BU2280FV, BU2360FV, BU2362FV
Reference data (BU2362FV Temperature and Supply voltage variations data)
55
54
53
52
Duty[%]
Duty
VDD=2.4V
51
50
49
48
47
46
45
-25 0 25 50 75 100
Temperature:T[℃]
Fig.111 16.9MHz
Temperature-Duty
VDD=3.7V
VDD=3.3V
100
90
80
70
VDD=3.7V
60
PJ-1σ[psec]
50
40
30
20
Period-jitter1σ
10
VDD=3.3V
0
-25 0 25 50 75 100
VDD=2.4V
Temperature:T[℃]
Fig.112 16.9MHz
Temperature-Period-Jitter 1σ
55
54
53
52
51
Duty[%]
Duty
VDD=3.3V
50
49
48
VDD=2.4V
47
46
45
-25 0 25 50 75 100
Temperature:T[℃]
Fig.114 27MHz
Temperature-Duty
VDD=3.7V
100
90
80
70
VDD=3.3V
60
PJ-1σ[psec]
50
40
30
20
Period-jitter1σ
10
0
-25 0 25 50 75 100
VDD=2.4V
VDD=3.7V
Temperature:T[℃]
Fig.115 27MHz
Temperature-Period-Jitter 1σ
50
40
IDD[mA]
30
VDD=3.7V
20
VDD=3.7V
VDD=2.4V
10
Circuit Current
0
-25 0 25 50 75 100
Fig.117 Action circuit current
(with maximum output load)
Temperature-Consumption current
VDD=3.3V
Temperature:T[℃]
Technical Note
600
500
PJ-MIN-MAX[psec]
Period-jitterMIN-MAX
Temperature-Period-Jitter MIN-MAX
PJ-MIN-MAX[psec]
Period-jitterMIN-MAX
Temperature-Period-Jitter MIN-MAX
VDD=3.7V
400
300
200
100
0
-250 255075100
VDD=3.3V
VDD=2.4V
Temperature:T[℃]
Fig.113 16.9MHz)
600
500
VDD=2.4V
400
300
200
100
0
-25 0 25 50 75 100
Temperature:T[℃]
VDD=3.3V
VDD=3.7V
Fig.116 27MHz
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
15/23
2012.02 - Rev.B
BU2280FV, BU2360FV, BU2362FV
Block diagram, Pin assignment BU2280FV
8:XTALIN
9:XTALOUT
XTALIN=27.0000MHz
XTAL
OSC
21:OE
23:CTRLFS
(FSEL=OPEN:48.0kHz type FSEL=L :44.1kHz type)
1:VDD1 24:CLK27M3
2:VSS1 23:CTRLFS
3:CLK27M1 22:CLK768FS
4:CLK27M2 21:OE
5:AVDD 20:CLK384FS
6:AVDD 19:DVDD
7:AVSS 18:DVSS
8:XTALIN 17:DVSS
9:XTALOUT 16:CLK512FS1
10:VSS2 15:CLK512FS2
11:VDD2 14:VDD2
12:CLK33M 13:VSS2
CTRLFS CLK384FS CLK512FS CLK768FS
L 16.9344MHz 22.5792MHz 33.8688MHz
OPEN 18.4320MHz 24.5760MHz 36.8640MHz
PLL1
PLL2
1/4
1/6
1/8
1/4
1/6
1/8
Fig.118
BU2280FV
BU2280FV
Fig.119
Technical Note
3:CLK27M1
(27.0000MHz)
4:CLK27M2
(27.0000MHz)
24:CLK27M3
(27.0000MHz)
12:CLK33M
(33.8688MHz)
22:CLK768FS
(CTRLFS=OPEN:36.8640MHz CTRLFS=L :33.8688MHz)
16:CLK512FS1
(CTRLFS=OPEN:24.5760MHz CTRLFS=L :22.5792MHz)
15:CLK512FS2
(CTRLFS=OPEN:24.5760MHz CTRLFS=L :22.5792MHz)
20:CLK384FS
(CTRLFS=OPEN:18.4320MHz CTRLFS=L :16.9344MHz)
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
16/23
2012.02 - Rev.B
BU2280FV, BU2360FV, BU2362FV
Block diagram, Pin assignment BU2360FV
XTALIN=27.0000MHz
7:XTALIN
8:XTALOUT
16:OE
14:FSEL
(FSEL=OPEN:48.0kHz type FSEL=L :44.1kHz type)
XTAL
OSC
PLL1
PLL2
1/4
1/6
1/6
Technical Note
3:CLK27M
(27.0000MHz)
4:CLK27M
(27.0000MHz)
15:CLK33M1
(33.8688MHz)
13:CLK33M2
(33.8688MHz)
10:CLK512FS1
(FSEL=OPEN:24.5760MHz FSEL=L :22.5792MHz)
9:CLK512FS2
(FSEL=OPEN:24.5760MHz FSEL=L :22.5792MHz)
Fig.120
1:VDD2 16:OE
2:VSS2 15:CLK33M1
3:CLK27M1 14:FSEL
4:CLK27M2 13:CLK33M2
5:AVDD 12:DVDD
6:AVSS 11:DVSS
7:XTALIN 10:CLK512FS1
8:XTALOUT 9:CLK512FS2
BU2360FV
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
Fig.121
FSEL CLK512FS1 / 2
L 22.5792MHz
OPEN 24.5760MHz
17/23
2012.02 - Rev.B
BU2280FV, BU2360FV, BU2362FV
3:C
5
6
SS
SS
8
S
9:C
Block diagram, Pin assignment
BU2362FV
8:XTALIN
7:XTALOUT
XTALIN=27.0000MHz
XTAL OSC
14:FSEL1
1:VDD2 16:CLK36M
2:VSS2 15:CLK33M
LK27M 14:FSEL1
4:TEST 13:CLK16M
:AVDD
:AV
7:XTALOUT
:XTALIN
FSEL1 CLK512FS CLKA
OPEN 22.5792MHz 16.9344MHz
L 24.5760MHz 36.8640MHz
PLL1
PLL2
1/4
1/6
1/8
1/4
1/6
Fig.122
BU2362FV
12:DVDD
11: DV
10:CLK512F
LKA
Fig.123
Technical Note
3:CLK27M (27.0000MHz)
15:CLK33M (33.8688MHz)
13:CLK16M (16.9344MHz)
16:CLK36M (36.8640MHz)
9:CLKA (FSE=OPEN:16.9344MHz
FSEL=L :36.8640MHz)
10:CLK512FS (FSE=OPEN:22.5792MHz
FSEL=L :24.5760MHz)
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
18/23
2012.02 - Rev.B
BU2280FV, BU2360FV, BU2362FV
Example of application circuit BU2280FV
0.1µF
27.0000MHz
27.0000MHz
0.1µF
33.8688MHz
0.1µF
1:VDD1
2:VSS1
3:CLK27M1
4:CLK27M2
5:AVDD
6:AVDD
7:AVSS
8:XTALIN
9:XTALOUT
10:VSS2
11: VDD 2
12:CLK33M
BU2280FV
Fig.124
Description of terminal
PIN No. PIN Name PIN Function
1 VDD1 Power supply for 27MHz
2 VSS1 GND for 27MHz
3 CLK27M1 27.0000MHz Clock output terminal 1
4 CLK27M2 27.0000MHz Clock output terminal 2
5 AVDD Power supply for Analog block
6 AVDD Power supply for Analog block
7 AVSS GND for Analog block
8 XTALIN Crystal input terminal
9 XTALOUT Crystal output terminal
10 VSS2 GND for 33MHz
11 VDD2 Power supply for 33MHz
12 CLK33M 33.8688MHz Clock output terminal
13 VSS2 GND for 33MHz
14 VDD2 Power supply for 33MHz
15 CLK512FS2 CTRLFS=OPEN:24.5760MHz, CTRLFS=L:22.5792MHz
16 CLK512FS1 CTRLFS=OPEN:24.5760MHz, CTRLFS=L:22.5792MHz
17 DVSS GND for Digital block
18 DVSS GND for Digital block
19 DVDD Power supply for Digital block
20 CLK384FS CTRLFS=OPEN:18.4320MHz, CTRLFS=L:16.9344MHz
21 OE Output enable (with pull-up), OPEN:enable, L:disable
22 CLK768FS CTRLFS=OPEN:36.8640MHz, CTRLFS=L:33.8688MHz
15, 16, 20, 22PIN output selection (with pull-up)
23 CTRLFS
OPEN:24.5760MHz(15PIN, 16PIN), 18.4320MHz(20PIN), 36.8640MHz(22PIN) L:22.5792MHz(15PIN, 16PIN), 16.9344MHz(20PIN), 33.8688MHz(22PIN)
24 CLK27M3 27.0000MHz Clock output terminal 3
Note) Basically, mount ICs to the printed circuit board for use.
(If the ICs are not mounted to the printed circuit board, the characteristics of ICs may not be fully demonstrated.) Mount 0.1F capacitors in the vicinity of the IC PINs between 1PIN (VDD1) and 2PIN (VSS1), 5PIN-6PIN (AVDD) and 7PIN (AVSS), 10PIN (VSS2) and 11PIN (VDD2), 13PIN(VSS2) and 14PIN (VDD2), 17PIN-18PIN (DVSS) and 19PIN(DVDD), respectively. Depending on the conditions of the printed circuit board, mount an additional electrolytic capacitor between the power supply and GND terminal. For EMI protection, it is effective to put ferrite beads in the origin of power supply to be fed to BU2280FV from the printed circuit board or to insert a capacitor (of 1 or less), which bypasses high frequency desired, between the power supply and the GND terminal.
24:CLK27M3
23:CTRLFS
22:CLK768FS
21:OE
20:CLK384FS
19:DVDD
18:DVSS
17:DVSS
16:CLK512FS1
15:CLK512FS2
14:VDD2
13:VSS2
27.0000MHz
OPEN:48.0kHz type L:44.1kHz type
36.8640MHz or 33.8688MHz
OPEN:Enable L:Disable
18.4320MHz or 16.9344MHz
0.1µF
24.5760MHz or 22.5792MHz
24.5760MHz or 22.5792MHz
0.1µF
Technical Note
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
19/23
2012.02 - Rev.B
BU2280FV, BU2360FV, BU2362FV
Example of application circuit BU2360FV
0.1µF
27.0000MHz
27.0000MHz
0.1µF
1:VDD2
2:VSS2
3:CLK27M1
4: CLK27M2
5:AVDD
6:AVSS 11:DVSS
BU2360FV
7:XTALIN
8:XTALOUT
Fig.125
Description of terminal
PIN No. PIN name PIN function
1 VDD2 Power supply for 27MHz
2 VSS2 GND for 27MHz
3 CLK27M1 27.0000MHz Clock output terminal 1 (CL=40pF)
4 CLK27M2 27.0000MHz Clock output terminal 2 (CL=25pF)
5 AVDD Power supply for Analog block
6 AVSS GND for Analog block
7 XTALIN Crystal input terminal
8 XTALOUT Crystal output terminal
9 CLK512FS2 FSEL=OPEN:24.5760MHz, FSEL=L:22.5792MHz
10 CLK512FS1 FSEL=OPEN:24.5760MHz, FSEL=L:22.5792MHz
11 DVSS GND for Digital block
12 DVDD Power supply for Digital block
13 CLK33M2 33.8688MHz Clock output terminal 2
14 FSEL
9, 10PIN output selection (with pull-up) OPEN:24.5760MHz(9, 10PIN), L:22.5792MHz(9, 10PIN)
15 CLK33M1 33.8688MHz Clock output terminal 1
16 OE Output enable (with pull-up), OPEN:enable, L:disable
Note) Basically, mount ICs to the printed circuit board for use.
(If the ICs are not mounted to the printed circuit board, the characteristics of ICs may not be fully demonstrated.) Mount 0.1F capacitors in the vicinity of the IC PINs between 1PIN (VDD2) and 2PIN (VSS2), 5PIN (AVDD) and 6PIN (AVSS), 11PIN (DVSS) and 12PIN (DVDD), respectively. Depending on the conditions of the printed circuit board, mount an additional electrolytic capacitor between the power supply and GND terminal. For EMI protection, it is effective to put ferrite beads in the origin of power supply to be fed to BU2360FV from the printed circuit board or to insert a capacitor (of 1 or less), which bypasses high frequency desired, between the power supply and the GND terminal.
16:OE
15:CLK33M1
14:FSEL
13:CLK32M2
12:DVDD
10:CLK512FS1
9:CLK512FS2
Technical Note
OPEN:Enable
L:Disable
33.8688MHz
OPEN:48.0kHz type
L:44.1kHz type
33.8688MHz
0.1µF
24.5760MHz
or 22.5792MHz
24.5760MHz
or 22.5792MHz
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
20/23
2012.02 - Rev.B
BU2280FV, BU2360FV, BU2362FV
Technical Note
Example of application circuit BU2362FV
1:VDD2
16:CLK36M
36.8640MHz
2:VSS2
BU2362FV
27.0000MHz
27.0000MHz
3:CLK27M
4:TEST
5:AVDD
6:AVSS
7:XTALOUT
8:XTALIN
15:CLK33M
14:FSEL1
13:CLK16M
12:DVDD
11:DVSS
10:CLK512FS1
9:CLKA
33.8688MHz
H:44.1kHz mode L:48kHz mode
16.9344MHz
22.5792MHz
or 24.5670MHz
16.9344MHz
or 36.8640MHz
Fig.126
Description of terminal
Pin No. PIN NAME Function
1 VDD2 Power supply for CLK27, CLK36M
2 VSS2 GND for CLK27, CLK36M
3 CLK27M 27MHz Clock output terminal
4 TEST
Input pin for TEST : with pull-down (Please set ”L” or OPEN, normally)
5 AVDD Power supply for Analog block
6 AVSS GND for Analog block
7 XTALOUT Crystal output terminal
8 XTALIN Crystal input terminal
9 CLKA CLKA output terminal (16.9344MHz or 36.8640MHz)
10 CLK512FS 512fs Clock output terminal (22.5792MHz or 24.5760MHz)
11 DVSS Power supply for Digital block
12 DVDD GND for Digital block
13 CLK16M 16.9344MHz Clock output terminal
14 FSEL1 CLKA or CLK512FS pin output select : with pull-up
15 CLK33M 33.8688MHz Clock output terminal
16 CLK36M 36.8640MHz Clock output terminal
Notes for use (BU2362FV) Basically, mount ICs to the printed circuit board for use. (If the ICs are not mounted to the printed circuit board, the characteristics of ICs may not be fully demonstrated.) Mount 0.1F capacitors in the vicinity of the IC PINs between 1PIN (VDD2) and 2PIN (VSS2), 5PIN (AVDD) and 6PIN (AVSS), 11PIN (DVSS) and 12PIN (DVDD), respectively. For the fine-tuning of frequencies, insert several numbers of pF in the 7PIN and 8PIN to GND. Depending on the conditions of the printed circuit board, mount an additional electrolytic capacitor between the power supply and GND terminal. For EMI protection, it is effective to put ferrite beads in the origin of power supply to be fed to BU2362FV from the printed circuit board or to insert a capacitor (of 1 or less), which bypasses high frequency desired, between the power supply and the GND terminal.
*Even though we believe that the example of recommended circuit is worth of a recommendation, please be sure to thoroughly recheck the characteristics
before use.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
21/23
2012.02 - Rev.B
BU2280FV, BU2360FV, BU2362FV
Notes for use
1) Absolute Maximum Ratings An excess in the absolute maximum ratings, such as applied voltage (VDD or VIN), operating temperature range (Topr), etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc.
2) Recommended operating conditions These conditions represent a range within which characteristics can be provided approximately as expected. The electrical characteristics are guaranteed under the conditions of each parameter.
3) Reverse connection of power supply connector The reverse connection of power supply connector can break down ICs. Take protective measures against the breakdown due to the reverse connection, such as mounting an external diode between the power supply and the IC’s power supply terminal.
4) Power supply line Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines. In this regard, for the digital block power supply and the analog block power supply, even though these power supplies has the same level of potential, separate the power supply pattern for the digital block from that for the analog block, thus suppressing the diffraction of digital noises to the analog block power supply resulting from impedance common to the wiring patterns. For the GND line, give consideration to design the patterns in a similar manner. Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal. At the same time, in order to use an electrolytic capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant.
5) GND voltage Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric transient.
6) Short circuit between terminals and erroneous mounting In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or between the terminal and the power supply or the GND terminal, the ICs can break down.
7) Operation in strong electromagnetic field Be noted that using ICs in the strong electromagnetic field can malfunction them.
8) Inspection with set PCB On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress. Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set PCB to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to the jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention to the transportation and the storage of the set PCB.
9) Input terminals In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input terminal. Therefore, pay thorough attention not to handle the input terminals, such as to apply to the input terminals a voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input terminals when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.
10) Ground wiring pattern If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the small-signal GND. Pay attention not to caus
11) External capacitor In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.
e fluctuations in the GND wiring pattern of external parts as well.
Technical Note
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
22/23
2012.02 - Rev.B
BU2280FV, BU2360FV, BU2362FV
Ordering part number
B U 2 2 8 0 F V - E 2
Part No. Part No.
SSOP-B24
7.8 ± 0.2
(MAX 8.15 include BURR)
24
7.6 ± 0.3
5.6 ± 0.2
1
2280 2360,2362
13
0.3Min.
12
0.15 ± 0.1
Package
FV:SSOP-B24 FV:SSOP-B16
<Tape and Reel information>
Embossed carrier tapeTape
Quantity
Direction of feed
2000pcs E2
The direction is the 1pin of product is at the upper left when you hold
()
reel on the left hand and you pull out the tape on the right hand
Packaging and forming specification E2: Embossed tape and reel
Technical Note
1.15 ± 0.1
0.1
SSOP-B16
6.4±0.3
1.15±0.1
0.10
9
8
0.22±0.1
0.1
Direction of feed
(Unit : mm)
Reel
1pin
Order quantity needs to be multiple of the minimum quantity.
<Tape and Reel information>
Embossed carrier tapeTape
Quantity
Direction
0.3Min.
0.15±0.1
0.1
(Unit : mm)
of feed
2500pcs E2
The direction is the 1pin of product is at the upper left when you hold
()
reel on the left hand and you pull out the tape on the right hand
Direction of feed
Reel
1pin
Order quantity needs to be multiple of the minimum quantity.
0.65
0.22 ± 0.1
5.0±0.2
16
4.4±0.2
1
0.65
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
23/23
2012.02 - Rev.B
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.
The content specied herein is subject to change for improvement without notice.
The content specied herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specications, which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specied in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.
The technical information specied herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.
The Products specied in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, ofce-automation equipment, commu­nication devices, electronic appliances and amusement devices).
The Products specied in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, re or any other damage caused in the event of the failure of any Product, such as derating, redundancy, re control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel­controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specied herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.
Notice
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.
Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
R1120
A
Loading...