ROHM BD9011EKN, BD9011KV, BD9775FV Technical data

Large Current External FET Controller Type Switching Regulator
Dual-output, high voltage, high-efficiency step-down Switching Regulator (Controller type)
BD9011EKN , BD9011KV , BD9775FV
Overview
The BD9011EKN/KV is a 2-ch synchronous controller with rectification switching for enhanced power management efficiency. It supports a wide input range, enabling low power consumption ecodesign for an array of electronics.
Features
1) Wide input voltage range: 3.9V to 30V
2) Precision voltage references: 0.8V±1%
3) FET direct drive
4) Rectification switching for increased efficiency
5) Variable frequency: 250k to 550kHz (external synchronization to 550kHz)
6) Built-in selected OFF latch and auto remove over current protection
7) Built-in independent power up/power down sequencing control
8) Make various application , step-down , step-up and step-up-down
9) Small footprint packages: HQFN36V, VQFP48C
Applications Car audio and navigation systems, CRTTV,LCDTV,PDPTV,STB,DVD,and PC systems,portable CD and DVD players, etc.
Absolute Maximum Ratings (Ta=25℃)
TECHNICAL NOTE
Parameter Symbol
EXTVCC Voltage EXTVCC 34 *1 V COMP1,2 Voltage COMP1,2
VCCCL1,2 Voltage VCCCL1,2 34 *1 V DET1,2 Voltage DET1,2
CL1,2 Voltage CL1,2 34 V RTSYNC Voltage RT、SYNC
SW1,2 Voltage SW1,2 34 *1 V
BOOT1,2 Voltage BOOT1,2 40 *1 V
BOOT1,2-SW1,2
Voltage
STB, EN1,2 Voltage STB, EN1,2 VCC V
VREG5,5A
VREG33 VREG33 VREG5 V Storage temperature Tstg -55 to +150
SS1,2FB1,2
*1 Regardless of the listed rating, do not exceed Pd in any circumstances. *2 Mounted on a 70mm x 70mm x 0.8mm glass-epoxy board. De-rated at 7.44mW/℃(
above 25℃.
BOOT1,2-SW1,2 7
VREG5,5A 7 V
SS1,2FB1,2
Rating Unit
*1
V
VREG5
V
Parameter Symbol
Power Dissipation
Operating
temperature
Junction temperature Tj +150
HQFN36V or 8.8mW/℃(VQFP48C
Pd
Topr
Rating Unit
VREG5 V
*2
0.875
HQFN36V
*2
1.1
VQFP48C
-40 to +105
W
W
Apr.2008
Operating conditions (Ta=25℃)
Parameter Symbol Min. Typ. Max. Unit
Input voltage 1 EXTVCC 3.9 *1 *2 12 30 V
Input voltage 2 VCC 3.9 *1 *2 12 30 V
BOOTSW voltage BOOTSW 4.5 5 VREG5 V
Carrier frequency OSC 250 300 550 kHz
Synchronous frequency SYNC OSC - 550 kHz
Synchronous pulse duty Duty 40 50 60
Min OFF pulse TMIN - 100 - nsec
This product is not designed to provide resistance against radiation.
*1 After more than 4.5V, voltage range.
*2 In case of using less than 6V, Short to VCC, EXTVCC and VREG5.
Electrical characteristics (Unless otherwise specified, Ta=25
VCC=12V STB=5V EN1,2=5V)
Parameter Symbol
Min. Typ. Max.
Unit Conditions
VIN bias current IIN - 5 10 mA
Shutdown mode current IST - 0 10 μA VSTB=0V
Error Amp Block
Limit
Feedback reference voltage
Feedback reference voltage
(Ta=-40 to 105℃)
VOB 0.792 0.800 0.808 V
VOB+ 0.784 0.800 0.816 V Ta=-40 to 105℃ ※
Open circuit voltage gain Averr - 46 - dB
VO input bias current IVo+ - - 1 μA
[FET Driver Block]
HG high side ON resistance
HG low side ON resistance
LG high side ON resistance
LG low side ON resistance
HGhon - 1.5 - Ω
HGlon - 1.0 - Ω
LGhon - 1.5 - Ω
LGlon - 0.5 - Ω
Oscillator
Carrier frequency FOSC 270 300 330 kHz RT=100 kΩ
Synchronous frequency Fsync - 500 - kHz RT=100 kΩ,SYNC=500kHz
[Over Current Protection Block]
CL threshold voltage
CL threshold voltage
Ta=-40 to 105℃)
Vswth 70 90 110 mV
Vswth+ 67 90 113 mV Ta=-40 to 105℃ ※
VREG Block
VREG5 output voltage VREG5 4.8 5 5.2 V IREF=6mA
VREG33 reference voltage VREG33 3.0 3.3 3.6 V IREG=6mA
VREG5 threshold voltage VREG_UVLO 2.6 2.8 3.0 V VREG:Sweep down
VREG5 hysteresis voltage DVREG_UVLO 50 100 200 mV VREG:Sweep up
[Soft start block]
Charge current
Charge current
(Ta=-40 to 105℃)
ISS 6.5 10 13.5 μA VSS=1V
ISS+ 6 10 14 μA VSS=1V,Ta=-40 to 105℃ ※
Note: Not all shipped products are subject to outgoing inspection.
2/28
Reference data (Unless otherwise specified, Ta=25℃)
p
p
]
L
100
90
80
70
60
50
40
EFFICIENCY[%]
30
20
10
0
0123
2.6V 3.3V
1.8V
1.2V
OUT PUT CURRE NT:Io[A]
5.0V
VIN=12V
Fig.1 Efficiency 1
0.816
0.812
0.808
0.804
0.800
0.796
0.792
0.788
RE FER ENC E VOL TAG E : VO B[V ]
0.784
-40 -15 10 35 60 85 110 AMBIENT TEMPERATURE : Ta[℃]
100
90
80
70
60
50
40
EFFICIENCY[%]
30
20
10
3.3V
0
6 9 12 15 18 21 24
INPUT VOLTAGE : V
Fig.2 Efficiency 2
110
100
90
80
70
過電流検出電圧 : Vswth[ mV]
60
-40 -15 10 35 60 85 110 AMBIENT TEMPERATURE : Ta[℃]
5.0V
Io=2A
[V]
IN
6
5
4
3
2
CIRC UIT CURRENT [mA]
1
0
0102030
INPUT VOLTAGE:V
105℃
25℃
-40℃
[V]
IN
Fig.3 Circuit current
330
RT=100kΩ
320
[kHz]
OSC
310
300
290
280
OSILATING FREQUENCY : F
270
-40 -15 10 35 60 85 110
AMBIENT TEMPERATURE : Ta[℃]
Fig.4 Reference voltage vs.
temperature characteristics
5.25
5.00
4.75
4.50
4.25
4.00
3.75
3.50
OUTPUT VOLTAGE : Vo [V]
3.25
3.00
-40 -15 10 35 60 85 110
VREG5
VREG33
AMBIENT TEMPERATURE : Ta[℃]
Fig.7 Internal Reg vs.
tem
erature characteristics
6
5
4
3
2
1
OUTPU T VOLTAGE : Vo[V]
0
0246
105℃
25℃
-40℃
INPUT VOLTAGE:V
[V]
EN
Fig.5 Over current detection vs.
temperature characteristics
6
5
3.3V
5.0V
[V]
IN
4
3
2
OUTPUT VOLTAGE : Vo [V]
1
0
0 5 10 15 20 25
INPUT VOLT AGE : V
OUTPUT VOLTAGE : Vo[V
Fig.6 Frequency vs.
tem
erature characteristics
3.0
2.5
RCL=15mΩ
2.0
1.5
1.0
0.5
0.0
LOFF=
0123456
OUTP UT CUR RENT: I o[A]
Fig.8 Line regulation Fig.9 Load regulation
50mV/div
VOUT VOUT
OUT
I
1A/div
I
OUT
LOFF= H
50mV/div
1A/div
Fig.10 EN threshold voltage Fig.11 Load transient response 1 Fig.12 Load transient response 2
3/28
●Block diagram (Parentheses indicate VQFP48C pin numbers)
SYNC
OSC
Slope
(GNDS)
(34)
(30)
16
3.3V Reg
5(19)
17(35)
LLM
33(8)
VCCCL1
34(10)
35(11)
36(12)
1(13)
4(17)
3(15)
2(14)
6(21)
8(23)
7(22)
CL1
BOOT1
OUTH1
SW1
VREG5A
OUTL1
DGND1
FB1
SS1
COMP1
PWM COMP
Set
Reset
Set
Sequence DET
13
(29)
GND
Q
Reset
DRV
TSD
UVLO
Err Amp
Q
Reset
OCP
SW
LOGIC
(24)
DET1
0.8V
Set
0.56V
9
24(44)
VREG5
CL2
BOOT2
OUTH2
SW2
OUTL2
DGND2
FB2
SS2
31(5)
30(3)
29(2)
28(1)
27(48)
25(46)
26(47)
21(39)
19(37)
20(38)
VCCCL2
COMP2
EXTVCC
22
(41) 10(25)
5V Reg
UVLO
2.7V
OCP
SW
VREG5
LOGIC
Err Amp
- + +
0.8V
Set
Reset
Sequence DET
0.56V
18
(36)
DET2 LOFF EN2 EN1
VCC RT
STB
32 (7)
B.G SYNC
TSD
TSD
Set
DRV
Reset
TSD
UVLO
Q
PWM COMP
Reset Set
Q
14
(31)
Slope
UVLO
12
(27)
(26)
15
(33)
11
Pin configuration
●PIN function table
BD9011EKNHQFN36V
SW2
DGND2
OUTL2
27 26 25 24 23 22 21 20 19
CL2
VCC
CL1
28
29
30
31
32
33
34
35
36
1 2 3 4 5 6 7 8 9
OUTH2
BOOT2
VCCCL2
VCCCL1
BOOT1
OUTH1
SW1
OUTL1
DGND1
VREG5
VREG33
VREG5A
Fig-14
EXTVCC
FB2
FB1
COMP1
COMP2
SS1
SS2
DET1
18
17
16
15
14
13
12
11
10
Fig-13
DET2
LMM
SYNC
RT
LOFF
GND
EN2
EN1
STB
Pin
Pin name Function
No.
1 SW1 High side FET source pin 1 2 DGND1 Low side FET source pin 1 3 OUTL1 Low side FET gate drive pin 1 4 VREG5A FET drive REG input 5 VREG33 Reference input REG output 6 FB1 Error amp input 1 7 COMP1 Error amp output 1 8 SS1 Soft start setting pin 1
9 DET1 FB detector output 1 10 STB Standby ON/OFF pin 11 EN1 Output 1ON/OFF pin 12 EN2 Output 2ON/OFFpin 13 GND Ground
14 LOFF
Over current protection OFF latch
function ON/OFF pin 15 RT Switching frequency setting pin 16 SYNC External synchronous pulse input pin 17 LLM Built-in pull-down resistor pin 18 DET2 FB detector output 2 19 SS2 Soft start setting pin 2 20 COMP2 Error amp output 2 21 FB2 Error amp input 2 22 EXTVCC External power input pin 23 N.C. 24 VREG5 FET drive REG output 25 OUTL2 Low side FET gate drive pin 2 26 DGND2 Low side FET source pin 2 27 SW2 High side FET source pin 2 28 OUTH2 Hi side FET gate drive pin 2 29 BOOT2 OUTH2 driver power pin 30 CL2 Over current detector setting pin 2 31 VCCCL2 Over current detection VCC2 32 VCC Input power pin 33 VCCCL1 Over current detection VCC1 34 CL1 Over current detector setting pin 1 35 BOOT1 OUTH1 driver power pin 36 OUTH1 High side FET gate drive pin 1
4/28
Pin configuration Pin function table
BD9011KVVQFP48C
DET2
36 35
LLM
34 33
SYNC
RT
32
LOFF
GNDS
GND
N.C
EN2
EN1
N.C
31
30 29
27 26 25
28
STB
BOOT1
24
DET1
23
SS1
22
COMP1
21
FB1
20
N.C
19
VREG33
18
N.C
17
VREG5A
16
N.C
15
OUTL1
14
DGND1
13
SW1
OUTH1
SS2
COMP2
FB2
N.C
EXTVCC
N.C
N.C
VREG5
N.C
OUTL2
DGND2
SW2
37
38
39
40
41
42
43
44
45
46
47
48
1 2
OUTH2
BOOT2
3 4
CL2
N.C
6
5
VCCCL2
8 9 10 11 12
7
N.C
VCC
VCCCL1
N.C
CL1
Fig-15
Block functional descriptions
Error amp
The error amp compares output feedback voltage to the 0.8V reference voltage and provides the comparison result as COMP voltage, which is
used to determine the switching Duty. COMP voltage is limited to the SS voltage, since soft start at power up is based on SS pin voltage.
Oscillator (OSC)
Oscillation frequency is determined by the switching frequency pin (RT) in this block. The frequency can be set between 250kHz and 550kHz.
SLOPE
The SLOPE block uses the clock produced by the oscillator to generate a triangular wave, and sends the wave to the PWM comparator.
PWM COMP
The PWM comparator determines switching Duty by comparing the COMP voltage, output from the error amp, with the triangular wave from the SLOPE block. Switching duty is limited to a percentage of the internal maximum duty, and thus cannot be 100% of the maximum.
Reference voltage (5Vreg33Vreg)
This block generates the internal reference voltages: 5V and 3.3V.
External synchronization (SYNC)
Determines the switching frequency, based on the external pulse applied.
Over current protection (OCP)
Over current protection is activated when the VCCCL-CL voltage reaches or exceeds 90mV. When over current protection is active, Duty is low, and output voltage also decreases. When LOFF=L, the output voltage has fallen to 70% or below and output is latched OFF. The OFF latch mode ends when the latch is set to STB, EN.
Sequence control (Sequence DET)
Compares FB voltage with reference voltage (0.56V) and outputs the result as DET.
Protection circuits (UVLO/TSD)
The UVLO lock out function is activated when VREG falls to about 2.8V, while TSD turns outputs OFF when the chip temperature reaches or exceeds 150. Output is restored when temperature falls back below the threshold value.
Pin
Pin name Function
No.
1 OUTH2 High side FET gate drive pin 2 2 BOOT2 OUTH2 driver power pin 3 CL2 Over current detection pin 2 4 N.C Non-connect (unused) pin 5 VCCCL2 Over current detection VCC2 6 N.C Non-connect (unused) pin 7 VCC Input power pin 8 VCCCL1 Over current detection CC1
9 N.C Non-connect (unused) pin 10 CL1 Over current detection setting pin 1 11 BOOT1 OUTH1 driver power pin 12 OUTH1 High side FET gate drive pin 1 13 SW1 High side FET source pin 1 14 DGND1 Low side FET source pin 1 15 OUTL1 Low side FET gate drive pin 1 16 N.C Non-connect (unused) pin 17 VREG5A FET drive REG input 18 N.C Non-connect (unused) pin 19 VREG33 Reference input REG output 20 N.C Non-connect (unused) pin 21 FB1 Error amp input 1 22 COMP1 Error amp output 1 23 SS1 Soft start setting pin 1 24 DET1 FB detector output 1 25 STB Standby ON/OFF pin 26 EN1 Output 1 ON/OFF pin 27 EN2 Output 2 ON/OFF pin 28 N.C Non-connect (unused) pin 29 GND Ground 30 GNDS Sense ground
31 LOFF
32 N.C Non-connect (unused) pin 33 RT Switching frequency setting pin 34 SYNC External synchronous pulse input pin 35 LLM Built-in pull-down resistor pin 36 DET2 FB detector output 2 37 SS2 Soft start setting pin 2 38 COMP2 Error amp output 2 39 FB2 Error amp input 2 40 N.C Non-connect (unused) pin 41 EXTVCC External power input pin 42 N.C Non-connect (unused) pin 43 N.C Non-connect (unused) pin 44 VREG5 FET drive REG output 45 N.C Non-connect (unused) pin 46 OUTL2 Low side FET gate drive pin 2 47 DGND2 Low side FET source pin 2 48 SW2 High side FET source pin 2
Over current protection OFF latch
function ON/OFF pin
5/28
(
)
Application circuit example (Parentheses indicate VQFP48C pin numbers)
Ω
BOOT1
EN1
15m
CL1
EN2
VIN(12V)
Ω
0.33
uF
33
(8)34(10)
VCCCL1
GND
15m
10
Ω
1nF1nF
31
32
(5)
(7)30(3)
VCC
VCCCL2
LOFF
RT
Ω
100
CL2
SYNC
Ω
29
(2)28(1)
BOOT2
DGND2
OUTL2
VREG5
EXTVCC
COMP2
DET2
LLM
SP8K2 SP8K2
100uF
100
1uF
1uF
39kΩ 15000pF
0.1uF
RB160 VA- 40
0.1 uF
(SLF12565:TDK)
68kΩ
10uH Vo(5V/3A)
RB051
L-40
220uF
(OSコン)
13kΩ
1(13)
2(14)
3(15)
4
5(19)
6(21)
7(22)
8(23)
9(24)
(17)
36
(12)35(11)
OUTH1
SW1
DGND1
OUTL1
VREG5A
VREG33
FB1
COMP1
SS1
DET1
STB
100kΩ
Fig-16AStep-DownCout=OS Capacitor
OUTH2
SW2
FB2
SS2
18
(36)17(35)16(34)15(33)14(31)13(29)12(27)11(26)10(25)
27(48)
26(47)
25(46)
24(44)
22(41)
21(39)
20(38)
19(37)
23
RB160 VA- 40
0.1 uF
1uF
0.33uF
39kΩ 15000pF
0.1uF
(SLF12565:TDK)
10uH Vo(3.3V/3A)
RB051 L-40
220uF
OS
47k
Ω
コン
15k
Ω
There are many factors(The PCB board layout, Output Current, etc.)that can affect the DCDC characteristics. Please verify and confirm using practical applications.
VIN(12V)
3(15)
4(17)
5(19)
6(21)
7(22)
8(23)
9
1
2(14)
(24)
(13)
100uF
OUTH1
SW1
DGND1
OUTL1
VREG5A
VREG33
FB1
COMP1
SS1
DET1
3300pF
150
Ω
Vo(1 .8V/2 A)
15kΩ
12kΩ
(SLF10145:TDK)
10uH
RB051
L-40
30uF
(C2012JB
0J106K
TDK)
SP8K2 SP8K2
RB160
VA- 40
0.1 uF
1uF
1uF
330pF
1kΩ 10000pF
0.1uF
36
(12)35(11
STB
100
Ω
)
BOOT1
EN1
23m
34
(10)
CL1
EN2
12
(27)11(26)10(25)
23m
Ω
10
0.33
Ω
uF
1nF1nF
31
33
(5)
(8)32(7)30(3)
VCC
VCCCL1
VCCCL2
GND
LOFF
15
(33)14(31)13(29)
Ω
100
Ω
OUTH2
SW2
FB2
SS2
18
(36)17(35)
27
26(47)
25(46)
24
22(41)
21(39)
20(38)
19(37)
(48)
(44)
23
RB160
VA- 40
0.1 uF
1uF
0.33uF
330pF
0.1uF
(SLF10145:TDK)
10uH Vo(2.5V/2A)
RB051 L-40
30uF
(C2012JB
0J106K
TDK)
3.3kΩ 3300pF
43
1000pF
k
Ω
20k
510Ω
Ω
29
(2)28(1)
CL2
BOOT2
DGND2
OUTL2
VREG5
EXTVCC
COMP2
DET2
RT
SYNC
LLM
16
(34)
100kΩ
Fig-16BStep-DownCout=Ceramic Capacitor
There are many factors(The PCB board layout, Output Current, etc.)that can affect the DCDC characteristics. Please verify and confirm using practical applications.
6/28
A
100
(11
35
Ω
(10)33(8)
)
BOOT1
EN1
12
(27)11(26)
10m
34
CL1
EN2
VIN(12V)
Ω
0.33
uF
VCCCL1
GND
100kΩ
10m
Ω
10
Ω
100
Ω
1nF1nF
OUTH2
SW2
OUTL2
FB2
SS2
18
(36)17(35)
27
26
25
24
22
21
20
19
RB160 VA- 40
(48)
(47)
(46)
(44)
23
(41)
(39)
(38)
(37)
0.1 uF
1000pF
1uF
0.33uF
0.1uF
32
(7)
VCC
29
30
(2)28(1)
(3)31(5)
CL2
BOOT2
VCCCL2
DGND2
VREG5
EXTVCC
COMP2
LOFF
15
(33)14(31)13(29)
DET2
RT
SYNC
LLM
16
(34)
SP8K2
(SLF12565:TDK)
4.7kΩ22000pF
REGSPIC
L2
27uH
RB051 L-40
Do3
Co2
220 uF
TM
Vo(12 V/1A)
91 kΩ
6.2kΩ
3300pF
10kΩ
REGSPICTM is
Trade Mark of RHOM
Vo(2 4V/1A )
RB051L-40
L1 27uH
(SLF12565:TDK)
100uF
1
2
(15)
3
(17)
4
(19)
5
(21)
6
(22)
7
(23)
8
(24)
9
(13)
(14)
36
(12)
OUTH1
SW1
DGND1
OUTL1
VREG5A
VREG33
FB1
COMP1
SS1
DET1
STB
10
(25)
1000pF
5.1k
680 kΩ
Ω
23.5k
RSS
Co1
065N03
220uF
1uF
1uF
1uF
Ω
1000pF
10kΩ 22000pF
0.1uF
Fig-16CStep-DownLow Input Voltage
There are many factors(The PCB board layout, Output Current, etc.)that can affect the DCDC characteristics. Please verify and confirm using practical applications.
Vo(1.8V/2A)
3300pF
100
Ω
(SLF10145:TDK)
15kΩ
12kΩ
6.8uH
RB051
30uF
(
セラコン
L-40
VIN(5V)
100uF
SP8K2
RB160
-40
V
0.1uF
)
1uF
1uF
100pF
3.3kΩ 4700pF
0.1uF
1
2
3
4
5
6
7
8
9
(13)
(14)
(15)
(17)
(19)
(21)
(22)
(23)
(24)
OUTH1
SW1
DGND1
OUTL1
VREG5A
VREG33
FB1
COMP1
SS1
DET1
36
(12)35(11
STB
100
Ω
)
BOOT1
EN1
23m
34
(10)
CL1
EN2
12
(27)11(26)10(25)
23m
Ω
10
0.33
Ω
uF
1nF1nF
31
33
(5)
(8)32(7)30(3)
VCC
VCCCL1
VCCCL2
GND
LOFF
RT
15
(33)14(31)13(29)
Ω
16
(34)
100
CL2
SYNC
Ω
29
(2)28(1)
OUTH2
SW2
BOOT2
DGND2
OUTL2
VREG5
EXTVCC
COMP2
DET2
LLM
18
(36)17(35)
FB2
SS2
27
26
25
24
22
21
20
19
(48)
(47)
(46)
(44)
23
(41)
(39)
(38)
(37)
RB160
VA- 40
1uF
0.33uF
33pF
0.1uF
0.1uF
10kΩ 2200pF
SP8K2
(SLF10145:TDK)
6.8uH Vo(2.5V/2A)
RB051 L-40
30uF
(
)
セラコン
43 k
20k
1000pF
Ω
300Ω
Ω
100kΩ
Fig-16DStep-Upand Step-Up-Down
There are many factors(The PCB board layout, Output Current, etc.)that can affect the DCDC characteristics. Please verify and confirm using practical applications.
7/28
Application component selection
(1) Setting the output L value
ΔIL
The coil value significantly influences the output ripple current. Thus, as seen in equation (5), the larger the coil, and the higher the switching frequency, the lower the drop in ripple current.
Fig-17
VCC
VCC-VOUT)×VOUT
ΔIL = [A]・・・(5)
L×VCC×f
I
L
VOUT
The optimal output ripple current setting is 30% of maximum current. ΔIL = 0.3×IOUTmax.[A]・・・(6
L
Co
VCC-VOUT)×VOUT
L = [H]・・・(7
ΔIL×VCC×f
Fig-18
Output ripple current
(ΔIL:output ripple current f:switching frequency)
Outputting a current in excess of the coil current rating will cause magnetic saturation of the coil and decrease
efficiency.
Please establish sufficient margin to ensure that peak current does not exceed the coil current rating.
Use low resistance (DCR, ACR) coils to minimize coil loss and increase efficiency.
(2) Setting the output capacitor Co value
Select the output capacitor with the highest value for ripple voltage (V
PP) tolerance and maximum drop voltage
(at rapid load change). The following equation is used to determine the output ripple voltage.
ΔIL Vo 1
Step down ΔV
PP = ΔIL × RESR + × × [V] Note: f:switching frequency
Co Vcc
f
Be sure to keep the output Co setting within the allowable ripple voltage range.
Please allow sufficient output voltage margin in establishing the capacitor rating. Note that low-ESR capacitors enable
lower output ripple voltage. Also, to meet the requirement for setting the output startup time parameter within the soft start time range, please factor in the conditions described in the capacitance equation (9) for output capacitors, below.
TSS × (Limit – IOUT) Tss soft start time
Co ・・・ (9)
VOUT ILimitover current detection value(2/16)reference
Note: less than optimal capacitance values may cause problems at startup.
(3) Input capacitor selection
VIN
The input capacitor serves to lower the output impedance of the power source connected to the input pin (VCC). Increased power supply output impedance can cause input voltage (VCC) instability, and may negatively
Cin
impact oscillation and ripple rejection characteristics. Therefore, be certain to establish an input capacitor in close proximity to the VCC and
VOUT
L
Co
GND pins. Select a low-ESR capacitor with the required ripple current capacity and the capability to withstand temperature changes without wide tolerance fluctuations. The ripple current IRMSS is determined using equation (10).
IRMS = IOUT × [A]・・・(10
VOUT(VCC - VOUT
Also, be certain to ascertain the operating temperature, load range and
Fig-19
Input capacitor
MOSFET conditions for the application in which the capacitor will be used, since capacitor performance is heavily dependent on the application’s input power characteristics, substrate wiring and MOSFET gate drain capacity.
VCC
8/28
(4) Feedback resistor design
Please refer to the following equation in determining the proper feedback resistance. The recommended setting is in a range between 10kΩ and 330kΩ. Resistance less than 10kΩ risks decreased power efficiency, while setting the resistance value higher than 330kΩ will result in an internal error amp input bias current of 0.2uA increasing the offset voltage.
Internal ref. 0.8V
R8 +R9 Vo = × 0.8 [V] ・・・(11 )
R9
Fig-20
(5) Setting switching frequency
The triangular wave switching frequency can be set by connecting a resistor to the RT 15(33) pin. The RT sets the frequency by adjusting the charge/discharge current in relation to the internal capacitor. Refer to the figure below in determining proper RT resistance, noting that the recommended resistance setting is between 50kΩ and 130kΩ. Settings outside this range may render the switching function inoperable, and proper operation of the controller overall cannot be guaranteed when unsupported resistance values are used.
550
500
450
400
350
周波数 [ kHz ]
300
250
50 60 70 80 90 100 110 120 130
RT [ kΩ]
Fig-21 RT vs. switching frequency
(6) Setting the soft start delay
The soft start function is necessary to prevent an inrush of coil current and output voltage overshoot at startup. The figure below shows the relation between soft start delay time and capacitance, which can be calculated using equation (12) at right.
0.8V(typ.)×CSS TSS = [sec]・・・(12) ISS(10μA Typ.)
10
1
0.1
DELAY TIME[ms]
0.01
0.001 0.01 0.1
SS CAPACITANCE[uF]
Fig-22 SS capacitance vs. delay time
Recommended capacitance values are between 0.01uF and 0.1uF. Capacitance lower than 0.01uF may generate output overshoots. Please use high accuracy components (such as X5R) when implementing sequential startups involving other power sources. Be sure to test the actual devices and applications to be used, since the soft start time varies, depending on input voltage, output voltage and capacitance, coils and other characteristics.
9/28
Loading...
+ 20 hidden pages