Large Current External FET Controller Type Switching Regulator
Dual-output, high voltage,
high-efficiency step-down
Switching Regulator
(Controller type)
BD9011EKN , BD9011KV , BD9775FV
●Overview
The BD9011EKN/KV is a 2-ch synchronous controller with rectification switching for enhanced power management efficiency.
It supports a wide input range, enabling low power consumption ecodesign for an array of electronics.
●Features
1) Wide input voltage range: 3.9V to 30V
2) Precision voltage references: 0.8V±1%
3) FET direct drive
4) Rectification switching for increased efficiency
5) Variable frequency: 250k to 550kHz (external synchronization to 550kHz)
6) Built-in selected OFF latch and auto remove over current protection
7) Built-in independent power up/power down sequencing control
8) Make various application , step-down , step-up and step-up-down
9) Small footprint packages: HQFN36V, VQFP48C
●Applications
Car audio and navigation systems, CRTTV,LCDTV,PDPTV,STB,DVD,and PC systems,portable CD and DVD players,
etc.
●Absolute Maximum Ratings (Ta=25℃)
TECHNICAL NOTE
Parameter Symbol
EXTVCC Voltage EXTVCC 34 *1 V COMP1,2 Voltage COMP1,2
VCCCL1,2 Voltage VCCCL1,2 34 *1 V DET1,2 Voltage DET1,2
CL1,2 Voltage CL1,2 34 V RT、SYNC Voltage RT、SYNC
SW1,2 Voltage SW1,2 34 *1 V
BOOT1,2 Voltage BOOT1,2 40 *1 V
BOOT1,2-SW1,2
Voltage
STB, EN1,2 Voltage STB, EN1,2 VCC V
VREG5,5A
VREG33 VREG33 VREG5V Storage temperatureTstg -55 to +150 ℃
SS1,2、FB1,2
*1 Regardless of the listed rating, do not exceed Pd in any circumstances.
*2 Mounted on a 70mm x 70mm x 0.8mm glass-epoxy board. De-rated at 7.44mW/℃(
above 25℃.
BOOT1,2-SW1,2 7
VREG5,5A 7 V
SS1,2、FB1,2
RatingUnit
*1
V
VREG5
V
Parameter Symbol
Power Dissipation
Operating
temperature
Junction temperatureTj +150 ℃
HQFN36V) or 8.8mW/℃(VQFP48C)
Pd
Topr
Rating Unit
VREG5 V
*2
0.875
(HQFN36V)
*2
1.1
(VQFP48C)
-40 to +105
W
W
℃
Apr.2008
●Operating conditions (Ta=25℃)
Parameter Symbol Min. Typ. Max. Unit
Input voltage 1 EXTVCC 3.9 *1 *2 12 30 V
Input voltage 2 VCC 3.9 *1 *2 12 30 V
BOOT-SW voltage BOOT-SW 4.5 5 VREG5 V
Carrier frequency OSC 250 300 550 kHz
Synchronous frequency SYNC OSC - 550 kHz
Synchronous pulse duty Duty 40 50 60 %
Min OFF pulse TMIN - 100 - nsec
★This product is not designed to provide resistance against radiation.
*1 After more than 4.5V, voltage range.
*2 In case of using less than 6V, Short to VCC, EXTVCC and VREG5.
function ON/OFF pin
15 RT Switching frequency setting pin
16 SYNC External synchronous pulse input pin
17 LLM Built-in pull-down resistor pin
18 DET2 FB detector output 2
19 SS2 Soft start setting pin 2
20 COMP2 Error amp output 2
21 FB2 Error amp input 2
22 EXTVCC External power input pin
23 - N.C.
24 VREG5 FET drive REG output
25 OUTL2 Low side FET gate drive pin 2
26 DGND2 Low side FET source pin 2
27 SW2 High side FET source pin 2
28 OUTH2 Hi side FET gate drive pin 2
29 BOOT2 OUTH2 driver power pin
30 CL2 Over current detector setting pin 2
31 VCCCL2 Over current detection VCC2
32 VCC Input power pin
33 VCCCL1 Over current detection VCC1
34 CL1 Over current detector setting pin 1
35 BOOT1 OUTH1 driver power pin
36 OUTH1 High side FET gate drive pin 1
4/28
●Pin configuration ●Pin function table
BD9011KV(VQFP48C)
DET2
36 35
LLM
34 33
SYNC
RT
32
LOFF
GNDS
GND
N.C
EN2
EN1
N.C
31
30 29
27 26 25
28
STB
BOOT1
24
DET1
23
SS1
22
COMP1
21
FB1
20
N.C
19
VREG33
18
N.C
17
VREG5A
16
N.C
15
OUTL1
14
DGND1
13
SW1
OUTH1
SS2
COMP2
FB2
N.C
EXTVCC
N.C
N.C
VREG5
N.C
OUTL2
DGND2
SW2
37
38
39
40
41
42
43
44
45
46
47
48
1 2
OUTH2
BOOT2
3 4
CL2
N.C
6
5
VCCCL2
8 9 10 11 12
7
N.C
VCC
VCCCL1
N.C
CL1
Fig-15
●Block functional descriptions
・Error amp
The error amp compares output feedback voltage to the 0.8V reference voltage and provides the comparison result as COMP voltage, which is
used to determine the switching Duty. COMP voltage is limited to the SS voltage, since soft start at power up is based on SS pin voltage.
・Oscillator (OSC)
Oscillation frequency is determined by the switching frequency pin (RT) in this block. The frequency can be set between 250kHz and 550kHz.
・ SLOPE
The SLOPE block uses the clock produced by the oscillator to generate a triangular wave, and sends the wave to the PWM comparator.
・PWM COMP
The PWM comparator determines switching Duty by comparing the COMP voltage, output from the error amp, with the triangular wave from the
SLOPE block. Switching duty is limited to a percentage of the internal maximum duty, and thus cannot be 100% of the maximum.
・Reference voltage (5Vreg,33Vreg)
This block generates the internal reference voltages: 5V and 3.3V.
・External synchronization (SYNC)
Determines the switching frequency, based on the external pulse applied.
・Over current protection (OCP)
Over current protection is activated when the VCCCL-CL voltage reaches or exceeds 90mV. When over current protection is active, Duty is low,
and output voltage also decreases. When LOFF=L, the output voltage has fallen to 70% or below and output is latched OFF. The OFF latch
mode ends when the latch is set to STB, EN.
・Sequence control (Sequence DET)
Compares FB voltage with reference voltage (0.56V) and outputs the result as DET.
・Protection circuits (UVLO/TSD)
The UVLO lock out function is activated when VREG falls to about 2.8V, while TSD turns outputs OFF when the chip temperature reaches or
exceeds 150℃. Output is restored when temperature falls back below the threshold value.
Pin
Pin name Function
No.
1 OUTH2 High side FET gate drive pin 2
2 BOOT2 OUTH2 driver power pin
3 CL2 Over current detection pin 2
4 N.C Non-connect (unused) pin
5 VCCCL2 Over current detection VCC2
6 N.C Non-connect (unused) pin
7 VCC Input power pin
8 VCCCL1 Over current detection CC1
9 N.C Non-connect (unused) pin
10 CL1 Over current detection setting pin 1
11 BOOT1 OUTH1 driver power pin
12 OUTH1 High side FET gate drive pin 1
13 SW1 High side FET source pin 1
14 DGND1 Low side FET source pin 1
15 OUTL1 Low side FET gate drive pin 1
16 N.C Non-connect (unused) pin
17 VREG5A FET drive REG input
18 N.C Non-connect (unused) pin
19 VREG33 Reference input REG output
20 N.C Non-connect (unused) pin
21 FB1 Error amp input 1
22 COMP1 Error amp output 1
23 SS1 Soft start setting pin 1
24 DET1 FB detector output 1
25 STB Standby ON/OFF pin
26 EN1 Output 1 ON/OFF pin
27 EN2 Output 2 ON/OFF pin
28 N.C Non-connect (unused) pin
29 GND Ground
30 GNDS Sense ground
There are many factors(The PCB board layout, Output Current, etc.)that can affect the DCDC characteristics.
Please verify and confirm using practical applications.
VIN(12V)
3(15)
4(17)
5(19)
6(21)
7(22)
8(23)
9
1
2(14)
(24)
(13)
100uF
OUTH1
SW1
DGND1
OUTL1
VREG5A
VREG33
FB1
COMP1
SS1
DET1
3300pF
150
Ω
Vo(1 .8V/2 A)
15kΩ
12kΩ
(SLF10145:TDK)
10uH
RB051
L-40
30uF
(C2012JB
0J106K
TDK)
:
SP8K2 SP8K2
RB160
VA- 40
0.1
uF
1uF
1uF
330pF
1kΩ 10000pF
0.1uF
36
(12)35(11
STB
100
Ω
)
BOOT1
EN1
23m
34
(10)
CL1
EN2
12
(27)11(26)10(25)
23m
Ω
10
0.33
Ω
uF
1nF1nF
31
33
(5)
(8)32(7)30(3)
VCC
VCCCL1
VCCCL2
GND
LOFF
15
(33)14(31)13(29)
Ω
100
Ω
OUTH2
SW2
FB2
SS2
18
(36)17(35)
27
26(47)
25(46)
24
22(41)
21(39)
20(38)
19(37)
(48)
(44)
23
RB160
VA- 40
0.1
uF
1uF
0.33uF
330pF
0.1uF
(SLF10145:TDK)
10uH Vo(2.5V/2A)
RB051
L-40
30uF
(C2012JB
0J106K
TDK)
:
3.3kΩ 3300pF
43
1000pF
k
Ω
20k
510Ω
Ω
29
(2)28(1)
CL2
BOOT2
DGND2
OUTL2
VREG5
EXTVCC
COMP2
DET2
RT
SYNC
LLM
16
(34)
100kΩ
Fig-16B(Step-Down:Cout=Ceramic Capacitor)
There are many factors(The PCB board layout, Output Current, etc.)that can affect the DCDC characteristics.
Please verify and confirm using practical applications.
6/28
A
100
(11
35
Ω
(10)33(8)
)
BOOT1
EN1
12
(27)11(26)
10m
34
CL1
EN2
VIN(12V)
Ω
0.33
uF
VCCCL1
GND
100kΩ
10m
Ω
10
Ω
100
Ω
1nF1nF
OUTH2
SW2
OUTL2
FB2
SS2
18
(36)17(35)
27
26
25
24
22
21
20
19
RB160
VA- 40
(48)
(47)
(46)
(44)
23
(41)
(39)
(38)
(37)
0.1
uF
1000pF
1uF
0.33uF
0.1uF
32
(7)
VCC
29
30
(2)28(1)
(3)31(5)
CL2
BOOT2
VCCCL2
DGND2
VREG5
EXTVCC
COMP2
LOFF
15
(33)14(31)13(29)
DET2
RT
SYNC
LLM
16
(34)
*
SP8K2
(SLF12565:TDK)
4.7kΩ22000pF
REGSPIC
L2
27uH
RB051
L-40
Do3
Co2
220
uF
TM
Vo(12 V/1A)
91
kΩ
6.2kΩ
3300pF
10kΩ
* REGSPICTM is
Trade Mark of RHOM
Vo(2 4V/1A )
RB051L-40
L1
27uH
(SLF12565:TDK)
100uF
1
2
(15)
3
(17)
4
(19)
5
(21)
6
(22)
7
(23)
8
(24)
9
(13)
(14)
36
(12)
OUTH1
SW1
DGND1
OUTL1
VREG5A
VREG33
FB1
COMP1
SS1
DET1
STB
10
(25)
1000pF
5.1k
680
kΩ
Ω
23.5k
RSS
Co1
065N03
220uF
1uF
1uF
1uF
Ω
1000pF
10kΩ 22000pF
0.1uF
Fig-16C(Step-Down:Low Input Voltage)
There are many factors(The PCB board layout, Output Current, etc.)that can affect the DCDC characteristics.
Please verify and confirm using practical applications.
Vo(1.8V/2A)
3300pF
100
Ω
(SLF10145:TDK)
15kΩ
12kΩ
6.8uH
RB051
30uF
(
セラコン
L-40
VIN(5V)
100uF
SP8K2
RB160
-40
V
0.1uF
)
1uF
1uF
100pF
3.3kΩ 4700pF
0.1uF
1
2
3
4
5
6
7
8
9
(13)
(14)
(15)
(17)
(19)
(21)
(22)
(23)
(24)
OUTH1
SW1
DGND1
OUTL1
VREG5A
VREG33
FB1
COMP1
SS1
DET1
36
(12)35(11
STB
100
Ω
)
BOOT1
EN1
23m
34
(10)
CL1
EN2
12
(27)11(26)10(25)
23m
Ω
10
0.33
Ω
uF
1nF1nF
31
33
(5)
(8)32(7)30(3)
VCC
VCCCL1
VCCCL2
GND
LOFF
RT
15
(33)14(31)13(29)
Ω
16
(34)
100
CL2
SYNC
Ω
29
(2)28(1)
OUTH2
SW2
BOOT2
DGND2
OUTL2
VREG5
EXTVCC
COMP2
DET2
LLM
18
(36)17(35)
FB2
SS2
27
26
25
24
22
21
20
19
(48)
(47)
(46)
(44)
23
(41)
(39)
(38)
(37)
RB160
VA- 40
1uF
0.33uF
33pF
0.1uF
0.1uF
10kΩ 2200pF
SP8K2
(SLF10145:TDK)
6.8uH Vo(2.5V/2A)
RB051
L-40
30uF
(
)
セラコン
43
k
20k
1000pF
Ω
300Ω
Ω
100kΩ
Fig-16D(Step-Up:and Step-Up-Down)
There are many factors(The PCB board layout, Output Current, etc.)that can affect the DCDC characteristics.
Please verify and confirm using practical applications.
7/28
●Application component selection
(1) Setting the output L value
ΔIL
The coil value significantly influences the output ripple current.
Thus, as seen in equation (5), the larger the coil, and the higher
the switching frequency, the lower the drop in ripple current.
Fig-17
VCC
(VCC-VOUT)×VOUT
ΔIL = [A]・・・(5)
L×VCC×f
I
L
VOUT
The optimal output ripple current setting is 30% of maximum current.
ΔIL = 0.3×IOUTmax.[A]・・・(6)
L
Co
(VCC-VOUT)×VOUT
L = [H]・・・(7)
ΔIL×VCC×f
Fig-18
Output ripple current
(ΔIL:output ripple current f:switching frequency)
※Outputting a current in excess of the coil current rating will cause magnetic saturation of the coil and decrease
efficiency.
Please establish sufficient margin to ensure that peak current does not exceed the coil current rating.
※Use low resistance (DCR, ACR) coils to minimize coil loss and increase efficiency.
(2) Setting the output capacitor Co value
Select the output capacitor with the highest value for ripple voltage (V
PP) tolerance and maximum drop voltage
(at rapid load change). The following equation is used to determine the output ripple voltage.
Be sure to keep the output Co setting within the allowable ripple voltage range.
※Please allow sufficient output voltage margin in establishing the capacitor rating. Note that low-ESR capacitors enable
lower output ripple voltage.
Also, to meet the requirement for setting the output startup time parameter within the soft start time range, please factor
in the conditions described in the capacitance equation (9) for output capacitors, below.
TSS × (Limit – IOUT) Tss: soft start time
Co ≦ ・・・ (9)
VOUT ILimit:over current detection value(2/16)reference
Note: less than optimal capacitance values may cause problems at startup.
(3) Input capacitor selection
VIN
The input capacitor serves to lower the output impedance of the power
source connected to the input pin (VCC). Increased power supply output
impedance can cause input voltage (VCC) instability, and may negatively
Cin
impact oscillation and ripple rejection characteristics. Therefore, be
certain to establish an input capacitor in close proximity to the VCC and
VOUT
L
Co
GND pins. Select a low-ESR capacitor with the required ripple current
capacity and the capability to withstand temperature changes without
wide tolerance fluctuations. The ripple current IRMSS is determined
using equation (10).
IRMS = IOUT × [A]・・・(10)
VOUT(VCC - VOUT)
Also, be certain to ascertain the operating temperature, load range and
Fig-19
Input capacitor
MOSFET conditions for the application in which the capacitor will be used,
since capacitor performance is heavily dependent on the application’s
input power characteristics, substrate wiring and MOSFET gate drain
capacity.
VCC
8/28
(4) Feedback resistor design
Please refer to the following equation in determining the proper feedback resistance. The recommended setting is in a range
between 10kΩ and 330kΩ. Resistance less than 10kΩ risks decreased power efficiency, while setting the resistance value
higher than 330kΩ will result in an internal error amp input bias current of 0.2uA increasing the offset voltage.
Internal ref. 0.8V
R8 +R9
Vo = × 0.8 [V] ・・・(11 )
R9
Fig-20
(5) Setting switching frequency
The triangular wave switching frequency can be set by connecting a resistor to the RT 15(33) pin. The RT sets the frequency
by adjusting the charge/discharge current in relation to the internal capacitor. Refer to the figure below in determining proper
RT resistance, noting that the recommended resistance setting is between 50kΩ and 130kΩ. Settings outside this range
may render the switching function inoperable, and proper operation of the controller overall cannot be guaranteed when
unsupported resistance values are used.
550
500
450
400
350
周波数 [ kHz ]
300
250
5060708090100110120130
RT [ kΩ]
Fig-21 RT vs. switching frequency
(6) Setting the soft start delay
The soft start function is necessary to prevent an inrush of coil current and output voltage overshoot at startup. The figure
below shows the relation between soft start delay time and capacitance, which can be calculated using equation (12) at right.
0.8V(typ.)×CSS
TSS = [sec]・・・(12)
ISS(10μA Typ.)
10
1
0.1
DELAY TIME[ms]
0.01
0.0010.010.1
SS CAPACITANCE[uF]
Fig-22 SS capacitance vs. delay time
Recommended capacitance values are between 0.01uF and 0.1uF. Capacitance lower than 0.01uF may generate output
overshoots. Please use high accuracy components (such as X5R) when implementing sequential startups involving other
power sources. Be sure to test the actual devices and applications to be used, since the soft start time varies, depending on
input voltage, output voltage and capacitance, coils and other characteristics.
9/28
Loading...
+ 20 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.