BD71837MWV is a Power Management Integrated Circuit (PMIC) available in 68-QFN package and dedicated to the application
powered by 5V input. PMIC includes eight Buck convertors, seven LDOs, one internal load switch and crystal oscillator driver for RTC
clock. These functions are designed to support the specific power requirements from NXP i.MX 8M platform to achieve the required
performance for cost-sensitive applications.
The below figure is the outline of the power map between PMIC and i.MX 8M SoC, showing that all voltage rails required by SoC are
satisfied.
“BD71837MWV Platform Design Guide” provides the guideline for designing PCB including recommendatio n for the PCB layer stack
up, the components placement and the PCB routings.
To reduce the risk that comes from PCB layout or parts placement, the guideline is strongly recommended to be applied to the PCB
design.
2.Revision History ......................................................................................................................................................................... 4
4.6.Placement of PTHs underneath the exposed pad.............................................................................................................. 11
4.7.Outline for PCB layout ...................................................................................................................................................... 12
5.Platform Power Delivery Guidelines ......................................................................................................................................... 18
5.1.Platform Power Delivery ................................................................................................................................................... 18
5.2.2.Large Current Loop .................................................................................................................................................... 21
5.2.4.VSYS (Power supply for BD71837MWV analog circuit) ............................................................................................ 22
5.2.5.Other Signal Pattern Precautions .............................................................................................................................. 22
5.2.6.Feedback Sense Lines .............................................................................................................................................. 22
5.3.1.1.Schematic Example ............................................................................................................................................... 24
5.3.1.3.Parts placement for each decoupling capacitor ...................................................................................................... 25
5.3.2.1.Schematic Example ............................................................................................................................................... 25
5.3.2.3.Layout Example ..................................................................................................................................................... 26
5.3.3.1.Schematic Example ............................................................................................................................................... 27
5.3.3.3.Layout Example ..................................................................................................................................................... 28
5.3.4.1.Schematic Example ............................................................................................................................................... 29
5.3.4.3.Layout Example ..................................................................................................................................................... 30
5.3.5.1.Schematic Example ............................................................................................................................................... 30
5.3.5.3.Layout Example ..................................................................................................................................................... 32
5.3.6.1.Schematic Example ............................................................................................................................................... 32
5.3.6.3.Layout Example ..................................................................................................................................................... 33
5.3.7.1.Schematic Example ............................................................................................................................................... 34
5.3.7.3.Layout Example ..................................................................................................................................................... 35
5.3.8.1.Schematic Example ............................................................................................................................................... 36
5.3.8.3.Layout Example ..................................................................................................................................................... 37
5.6.1.3.Layout Example ..................................................................................................................................................... 43
5.7.2.System Control – Reset, Power, and Control Signals ................................................................................................ 45
BD71837MWV supply the power required by SoC and peripheral devices for NXP i.MX 8M platform.
Once PMIC powered up, it can be controlled by I2C interface to determine the internal register settings.
The followings explain the features incorporated in the IC.
Voltage Rails
■ 8ch low power consumption Buck Convertors with Integrated BUCK FETs
Buck1: 0.7V – 1.3V / 10mV step (DVS), I
Buck2: 0.7V – 1.3V / 10mV step (DVS), I
Buck3: 0.7V – 1.3V / 10mV step (DVS), I
Buck4: 0.7V – 1.3V / 10mV step (DVS), I
Buck5: 0.7V – 1.35V / 8 steps, I
Buck6: 3.0V – 3.3V / 100mV step, I
Buck7: 1.6V – 2.0V / 8 steps, I
Buck8: 0.8V – 1.4V / 10mV step, I
OMAX
OMAX
= 2.5A
OMAX
= 1.5A
OMAX
OMAX
OMAX
OMAX
OMAX
= 3.0A
= 3.0A
= 3.6A
= 4.0A
= 2.1A
= 1.0A
■ 7ch LDO Regulator
LDO1: 3.0V – 3.3V / 1.6V – 1.9V, I
LDO2: 0.9V / 0.8V, I
LDO3: 1.8V – 3.3V, I
LDO4: 0.9V – 1.8V, I
LDO5: 1.8V – 3.3V, I
LDO6: 0.9V – 1.8V, I
LDO7: 1.8V – 3.3V, I
OMAX
OMAX
OMAX
OMAX
OMAX
OMAX
= 10mA
= 300mA
= 250mA
= 300mA
= 300mA
= 150mA
OMAX
= 10mA
■ 1ch Internal General Switch
Mux Switch: 1.8V/3.3V, I
OMAX
= 150mA
Serial Interface
I2C interface provides access to configuration registers.
Type-3 and 6 layers PCB technology are used for BD71837MWV ROHM’s EVM.
The following general stack-up is strongly recommended to be applied to all the routings on the PCB.
Surface plane layers are recommended to apply 1.9 Mils thick copper.
Internal plane layers are recommended to apply 1.2 Mils thick copper.
It is recommended I2C signals to have the reference versus solid planes over the length of their routing and not to
cross plane splits. Ground should be the ideal reference.
The extra area in each layers should be filled with as much ground or other power rails as possible.
There should not be any large free areas with no metal for each layer because of the improvement for heat
dissipation. Large metal area also reduces stray resistance and inductance.
4.4. 6-layer Board Stack-up
BD71837MWV ROHM’s EVM uses Type 3 PCB technology and Figure 4.3 shows the 6-layer PCB stack-up.
This section explains proper via-drill, pad, and anti-pad size.
Note:
Improper drill, pad, and anti-pad size may cause some troubles on the PCB cost, reliability, manufacturability, and electrical
characteristics.
Type-3 PCB technology employs plated through-hole (PTH) vias for breakout routing. The dimension of PTH vias may vary as
necessary. Table 2.1 shows the recommended via dimension used for the breakout areas of BD71837MWV. Figure 4.4 shows the
image of PTH vias.
Figure 4.5 The clearance between PTH and the exposed pad
4.6. Placement of PTHs underneath the exposed pad
When the distance between the edge of metal mask of the exposed pad and PTH is close, the solder may get on the resist then the
PTH and exposed pad of BD71837MWV will be shorted. To avoid the soldering issue, it is highly recommended to keep the positons
of PTHs away from the edge of the exposed pad by 500μm or more, and PTHs should be placed not to disrupt the current flows
between each GND of the output capacitors and the exposed pad.
Note
The spaces for the current flows between GNDs of each output capacitor and exposed pad for PMIC PGND should be ensured. So it
is recommended that the numbers of PTHs disturbing the current flows should be secured.
For understanding the outline of ROHM’s reference layout, the layout data for Layer 1(Top Layer) to 6 (Bottom layer) are shown in
Figure 4.6 to Figure 4.11.
The layout is designed, supposing the position of the SoC as Figure 4.6.
(1st pin of SoC is positioned at lower right.)
Layer 2 is used as power GND.
It’s better to secure the wide plane for large switching currents.
The parasitic impedance between PGND and each capacitor should be as low as possible.