ROHM BD6184GUL Technical data

A
System LED Drivers for Mobile Phones
BD6184GUL
Description
BD6184GUL is “Intelligent LED Driver” that is the most suitable for the cellular phone.
~ 8LED driver and output variable LDO4ch for LCD Backlight.
It has 3 It can be developed widely from the High End model to the Low End model. As it has charge pump circuit for LED power supply, it is no need to use coils, and it contributes to small space. VCSP50L3 (3.15mm x 3.10mm 0.5mm pitch) It adopts the very thin CSP package that is the most suitable for the slim phone.
Features
1) Total 3 ~ 8LEDs driver for LCD Backlight ・It has 4LEDs (it can select 4LED or 3LED) for exclusire use of Main and 4LEDs which can chose independent control
or a main allotment by resister setting.
・“Main Group” can be controlled by external PWM signal. ・ON/ Off and a setup of LED current are possible at the time of the independent control by the independence.
2) Charge Pump DC/DC for LED driver ・It has x1/x1.5/ x2 mode that will be selected automatically. ・The most suitable voltage up magnification is controlled automatically by LED port voltage. ・Soft start functions,Over voltage protection (Auto-return type),Over current protection (Auto-return type) loading
3) 4ch Low Drop Out Series Regulator (LDO) ・It has 16 steps selectable output voltage by the register. LDO1, LDO2, LDO3, LDO4: Iomax=150mA
4) Thermal shutdown
2
5) I
Absolute Maximum Ratings (Ta=25℃)
Maximum Voltage VMAX 7 V
Power Dissipation Pd 1430 Operating Temperature Range Topr -30 ~ +85 Storage Temperature Range Tstg -55 ~ +150
Operating Conditions (VBATVIO, Ta=-30 ~ 85 ℃)
VBAT Input Voltage VBAT 2.7 ~ 5.5 V
VIO Pin Voltage VIO 1.65 ~ 3.3 V
C BUS FS mode (max 400 kHz) Compatibility
Parameter Symbol Ratings Unit
note) Power dissipation deleting is 11.44mW/ ℃, when it’s used in over 25 ℃. (It’s deleting is on the board that is ROHM’s standard)
Parameter Symbol Limits Unit
note)
mW
No.10041EAT10
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
1/37
2010.07 - Rev.
A
BD6184GUL
Electrical Characteristics (Unless otherwise specified, Ta=25, VBAT=3.6V, VIO=1.8V)
Parameter Symbol
Min. Typ. Max.
Limits
Unit Conditions
Circuit Current
VBAT Circuit Current 1 IBAT1 - 0.1 3.0 μA RESETB=0V, VIO= 0V
VBAT Circuit Current 2 IBAT2 - 0.5 3.0 μA RESETB=0V, VIO=1.8V
Technical Note
VBAT Circuit Current 3 IBAT3 - 61 65 mA
VBAT Circuit Current 4 IBAT4 - 92 102 mA
VBAT Circuit Current 5 IBAT5 - 123 140 mA
DC/DC x1 mode, Io=60mA VBAT=4.0V
DC/DC x1.5 mode, Io=60mA VBAT=3.6V
DC/DC x2 mode, Io=60mA VBAT=2.7V
VBAT Circuit Current 6 IBAT6 - 90 150 μA LDO1,2=ON, I
VBAT Circuit Current 7 IBAT7 - 90 150 μA LDO3,4=ON, I
LED Driver
LED Current Step (Setup) ILEDSTP1 128 Step LED1 ~ 8
LED Current Step (At slope) ILEDSTP2 256 Step LED1 ~ 8
LED Maximum Setup Current IMAXWLED - 25.6 - mA LED1 ~ 8
LED Current Accuracy IWLED -7% 15 +7% mA I
LED Current Matching ILEDMT - - 4 %
=15mA setting, VLED=1.0V
LED
Between LED1 ~ 8 at VLED=1.0V, ILED=15mA
LED OFF Leak Current ILKLED - - 1.0 μA VLED=4.5V
LDO
LDO
=0mA
=0mA
DC/DC(Charge Pump)
Output Voltage VoCP - Vf+0.2 Vf+0.25 V Vf is forward direction of LED
Drive Ability IOUT - - 200 mA VBAT3.2V, VOUT=3.9V
Switching Frequency fosc 0.8 1.0 1.2 MHz -
Over Voltage Protection Detect Voltage
Over Current Protection Detect Current
OVP - 5.6 - V -
OCP - 250 375 mA VOUT=0V
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
2/37
2010.07 - Rev.
A
BD6184GUL
Electrical Characteristics (Unless otherwise specified, Ta=25, VBAT=3.6V, VIO=1.8V)
Parameter Symbol
Regulator (LDO1)
Output Voltage Vo1
Output Current Io1 - - 150 mA Vo=1.8V
Dropout Voltage Vsat1 - 0.2 0.3 V VBAT=2.5V, Io=150mA, Vo=2.8V
Load Stability ΔVo11 - 10 60 mV Io=1 ~ 150mA, Vo=1.8V
Input Voltage Stability ΔVo12 - 10 60 mV VBAT=3.4 ~ 4.5V, Io=50mA, Vo=1.8V
Ripple Rejection Ratio RR1 - 65 - dB
Short Circuit Current Limit Ilim1 - 200 400 mA Vo=0V
Discharge Resister at OFF ROFF1 - 1.0 1.5 k -
Regulator (LDO2)
Output Voltage Vo2
Output Current Io2 - - 150 mA Vo=2.5V
Dropout Voltage Vsat2 - 0.2 0.3 V VBAT=2.5V, Io=150mA, Vo=2.8V
Load Stability ΔVo21 - 10 60 mV Io=1 ~ 150mA, Vo=2.5V
Input Voltage Stability ΔVo22 - 10 60 mV VBAT=3.4 ~ 4.5V, Io=50mA, Vo=2.5V
Ripple Rejection Ratio RR2 - 65 - dB
Short Circuit Current Limit Ilim2 - 200 400 mA Vo=0V
Discharge Resister at OFF ROFF2 - 1.0 1.5 k -
Min. Typ. Max.
1.164 1.20 1.236 V Io=50mA
1.261 1.30 1.339 V Io=50mA
1.455 1.50 1.545 V Io=50mA
1.552 1.60 1.648 V Io=50mA
1.746 1.80 1.854 V Io=50mA <Initial Voltage>
2.134 2.20 2.266 V Io=50mA
2.328 2.40 2.472 V Io=50mA
2.425 2.50 2.575 V Io=50mA
2.522 2.60 2.678 V Io=50mA
2.619 2.70 2.781 V Io=50mA
2.716 2.80 2.884 V Io=50mA
2.813 2.90 2.987 V Io=50mA
2.910 3.00 3.090 V Io=50mA
3.007 3.10 3.193 V Io=50mA
3.104 3.20 3.296 V Io=50mA
3.201 3.30 3.399 V Io=50mA
1.164 1.20 1.236 V Io=50mA
1.261 1.30 1.339 V Io=50mA
1.455 1.50 1.545 V Io=50mA
1.552 1.60 1.648 V Io=50mA
1.746 1.80 1.854 V Io=50mA
2.134 2.20 2.266 V Io=50mA
2.328 2.40 2.472 V Io=50mA
2.425 2.50 2.575 V Io=50mA <Initial Voltage>
2.522 2.60 2.678 V Io=50mA
2.619 2.70 2.781 V Io=50mA
2.716 2.80 2.884 V Io=50mA
2.813 2.90 2.987 V Io=50mA
2.910 3.00 3.090 V Io=50mA
3.007 3.10 3.193 V Io=50mA
3.104 3.20 3.296 V Io=50mA
3.201 3.30 3.399 V Io=50mA
Limits
Unit Conditions
f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz ~ 20kHz
f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz ~ 20kHz
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
3/37
2010.07 - Rev.
A
BD6184GUL
Electrical Characteristics (Unless otherwise specified, Ta=25, VBAT=3.6V, VIO=1.8V)
Parameter Symbol
Regulator (LDO3)
Output Voltage Vo3
Output Current Io3 - - 150 mA Vo=1.8V
Dropout Voltage Vsat3 - 0.2 0.3 V VBAT=2.5V, Io=150mA, Vo=2.8V
Load Stability ΔVo31 - 10 60 mV Io=1 ~ 150mA, Vo=1.8V
Input Voltage Stability ΔVo32 - 10 60 mV VBAT=3.4 ~ 4.5V, Io=50mA, Vo=1.8V
Ripple Rejection Ratio RR3 - 65 - dB
Short Circuit Current Limit Ilim3 - 200 400 mA Vo=0V
Discharge Resister at OFF ROFF3 - 1.0 1.5 k -
Regulator (LDO4)
Output Voltage Vo4
Output Current Io4 - - 150 mA Vo=2.8V
Dropout Voltage Vsat4 - 0.2 0.3 V VBAT=2.5V, Io=150mA, Vo=2.8V
Load Stability ΔVo41 - 10 60 mV Io=1 ~ 150mA, Vo=2.8V
Input Voltage Stability ΔVo42 - 10 60 mV VBAT=3.4 ~ 4.5V, Io=50mA, Vo=2.8V
Ripple Rejection Ratio RR4 - 65 - dB
Short Circuit Current Limit Ilim4 - 200 400 mA Vo=0V
Discharge Resister at OFF ROFF4 - 1.0 1.5 k -
Min. Typ. Max.
1.164 1.20 1.236 V Io=50mA
1.261 1.30 1.339 V Io=50mA
1.455 1.50 1.545 V Io=50mA
1.552 1.60 1.648 V Io=50mA
1.746 1.80 1.854 V Io=50mA <Initial Voltage>
2.134 2.20 2.266 V Io=50mA
2.328 2.40 2.472 V Io=50mA
2.425 2.50 2.575 V Io=50mA
2.522 2.60 2.678 V Io=50mA
2.619 2.70 2.781 V Io=50mA
2.716 2.80 2.884 V Io=50mA
2.813 2.90 2.987 V Io=50mA
2.910 3.00 3.090 V Io=50mA
3.007 3.10 3.193 V Io=50mA
3.104 3.20 3.296 V Io=50mA
3.201 3.30 3.399 V Io=50mA
1.164 1.20 1.236 V Io=50mA
1.261 1.30 1.339 V Io=50mA
1.455 1.50 1.545 V Io=50mA
1.552 1.60 1.648 V Io=50mA
1.746 1.80 1.854 V Io=50mA
2.134 2.20 2.266 V Io=50mA
2.328 2.40 2.472 V Io=50mA
2.425 2.50 2.575 V Io=50mA
2.522 2.60 2.678 V Io=50mA
2.619 2.70 2.781 V Io=50mA
2.716 2.80 2.884 V Io=50mA <Initial Voltage>
2.813 2.90 2.987 V Io=50mA
2.910 3.00 3.090 V Io=50mA
3.007 3.10 3.193 V Io=50mA
3.104 3.20 3.296 V Io=50mA
3.201 3.30 3.399 V Io=50mA
Limits
Unit Conditions
f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz ~ 20kHz
f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz ~ 20kHz
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
4/37
2010.07 - Rev.
A
BD6184GUL
Electrical Characteristics (Unless otherwise specified, Ta=25, VBAT=3.6V, VIO=1.8V)
Parameter Symbol
Min. Typ. Max.
Limits
Unit Condition
SDA, SCL(I2C Interface)
L level Input Voltage VILI -0.3 - 0.25×VIO V -
H level Input Voltage VIHI 0.75×VIO - VBAT+0.3 V -
Technical Note
Hysteresis of Schmitt trigger Input
VhysI 0.05×VIO - - V -
L Level Output Voltage VOLI 0 - 0.3 V SDA Pin, IOL=3 mA
Input Current linI - - 1 μA Input Voltage= 0.1×VIO ~ 0.9×VIO
RESETB(CMOS Input Pin)
L Level Input Voltage VILR -0.3 - 0.25×VIO V
H Level Input Voltage VIHR 0.75×VIO - VBAT+0.3 V
Input Current IinR - - 1 μA Input Voltage = 0.1×VIO ~ 0.9×VIO
WPWMIN(NMOS Input Pin)
L Level Input Voltage VILA -0.3 - 0.3 V -
H level Input Voltage VIHA 1.4 - VBAT+0.3 V -
Input Current IinA - 3.6 10
PWM Input Minimum High Pulse Width
PWmin 250 - -
Input Voltage = 1.8V
μA
WPWMIN Pin
μs
Power Dissipation (On the ROHM’s standard board)
1.6
1.4 1430mW
1.2
W)
1.0
0.8
0.6
Power Dissipation Pd
0.4
0.2
0.0
0 25 50 75 100 125 150
Information of the ROHM’s standard board Material : glass-epoxy Size : 50mm×58mm×1.75mm(8 Wiring pattern figure Refer to after page.
Ta(℃)
Fig.1 Power Dissipation
th
layer)
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
5/37
2010.07 - Rev.
A
BD6184GUL
A
( )
( )
Block Diagram / Application Circuit Example 1
1μF/10V
1μF/10V
C1P
C1N
C2P
C2N
CPGND
VBAT
VBATCP
VBAT1
Charge Pump
x1 / x1.5 / x2
2.2µF/10V
Charge Pump
Mode Control
VIO
RESETB
SCL
I2C interface
SD
WPWMIN
I/O
Level
Shift
Digital Control
OVP
LED terminal voltage feedback
TSD
IREF
GND1
GND2
VREF
LDO1
Vo selectable
Io=150mA
LDO2
Vo sele ctable
Io=150mA
LDO3
Vo selectable
Io=150mA
LDO4
Vo selectable
Io=150mA
NC1
NC2
NC3
T2
T4
T3
T1
(Open)
(Open)
Fig.2 Block Diagram / Application Circuit Example 1
VOUT
LED1
LED2
LED3
LED4
LED5
LED6
LED7
LED8
LEDGND
LDO1O
LDO2O
LDO3O
LDO4O
1μF/6.3V
1μF/6.3V
1μF/6.3V
1μF/6.3V
Technical Note
1μF/10V
8LED Main Back Light
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
6/37
2010.07 - Rev.
A
BD6184GUL
A
( ) ( )
Block Diagram / Application Circuit Example 2
VBAT
VBATCP
VBAT1
2.2µF/10V
Charge Pump
Mode Control
VIO
RESETB
SCL
SD
WPWMIN
I/O
Level
Shift
I2C interface
Digital Control
GND1
GND2
NC1
NC2
NC3
Fig.3 Block Diagram / Application Circuit Example 2
1μF/10V
C1N
1μF/10V
C1P
C2P
C2N
Charge Pump
x1 / x1.5 / x2
OVP
LED terminal voltage feedback
TSD
IREF
VREF
T4
T3
T1
T2
(Open)
(Open)
Technical Note
CPGND
VOUT
1μF/10V
LED1
LED2
LED3
LDO1
Vo selectable
Io=150mA
LDO2
Vo selectable
Io=150mA
LDO3
Vo selectable
Io=150mA
LDO4
Vo selectable
Io=150mA
LED4
LED5
LED6
LED7
LED8
LEDGND
LDO1O
LDO2O
LDO3O
LDO4O
1μF/6.3V
1μF/6.3V
1μF/6.3V
1μF/6.3V
7LED Main Back Light
1LED Sub Back Light
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
7/37
2010.07 - Rev.
A
BD6184GUL
A
( ) ( )
Block Diagram / Application Circuit Example 3
VBAT
VBATCP
VBAT1
2.2µF/10V
Charge Pump
Mode Control
VIO
RESETB
SCL
SD
WPWMIN
I/O
Level
Shift
I2C interface
Digital Control
GND1
GND2
NC1
NC2
NC3
Fig.4 Block Diagram / Application Circuit Example 3
1µF/10V
C1N
1µF/10V
C1P
C2P
C2N
Charge Pump
x1 / x1.5 / x2
OVP
LED terminal voltage feedback
TSD
IREF
VREF
T4
T3
T1
T2
(Open)
(Open)
Technical Note
CPGND
VOUT
1µF/10V
LED1
LED2
4LED Main Back Light
1LED Sub Back Light
3LED RGB Illumination
LDO1
Vo selectable
Io=150mA
LDO2
Vo selectable
Io=150mA
LDO3
Vo selectable
Io=150mA
LDO4
Vo selectable
Io=150mA
LED3
LED4
LED5
LED6
LED7
LED8
LEDGND
LDO1O
LDO2O
LDO3O
LDO4O
1μF/6.3V
1μF/6.3V
1μF/6.3V
1μF/6.3V
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
8/37
2010.07 - Rev.
A
BD6184GUL
Pin Arrangement Bottom View
Technical Note
F
E
D
C
B
A
T4 LDO4O LDO3O LDO2O LDO1O T3
LED7 LED8 GND2 VBAT1 VIO SCL
LED6 LEDGND NC2 NC3 SDA VOUT
Index
LED5 LED4
LED3 LED GND1 RESETB C2N VBATCP
T1 LED1 WPWMIN C1N CPGND T2
NC1 C1P C2P
1 2 3 4 5 6
Total 35 Ball
Fig.5 Pin Arrangement
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
9/37
2010.07 - Rev.
A
BD6184GUL
Package Outline
VCSP50L3 CSP small package SIZE : 3.15mm x 3.10mm(A difference in public:X,Y Both ±0.05mm) Height : 0.55mm max A ball pitch : 0.5 mm
(φ0.15)INDEX POST
1PIN MARK
35-φ0.25±0.05
A0.05 B
0.325±0.05
BD6184
3.15±0.05
S0.06
A
F E D C B A
1234
Fig.6 Package Outline
P=0.5×5
5
6
Lot No.
0.1±0.05
B
3.1±0.05
0.55MAX
0.3±0.05
P=0.5×5
Technical Note
S
(Unit: mm)
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
10/37
2010.07 - Rev.
A
BD6184GUL
Pin Functions
No Ball No. Pin Name I/O
1 B6 VBATCP - - GND Battery is connected A
2 E4 VBAT1 - - GND Battery is connected A
3 A1 T1 O VBAT GND Test Output Pin (Open) N
4 A6 T2 I VBAT GND Test Input Pin (short to Ground) S
5 F6 T3 O VBAT GND Test Output Pin(Open) M
6 F1 T4 I VBAT GND Test Input Pin (short to Ground) S
7 E5 VIO - VBAT GND I/O Power supply is connected C
8 D5 SDA I/O VBAT GND I2C data input / output I
9 E6 SCL I VBAT GND I2C clock input H
10 A5 CPGND - VBAT - Ground B
11 B4 RESETB I VBAT GND Reset Input (L:Reset, H:Reset Cancel) H
12 D2 LEDGND - VBAT - Ground B
13 A4 C1N I/O VBAT GND Charge Pump capacitor is connected F
14 C5 C1P I/O - GND Charge Pump capacitor is connected G
15 B5 C2N I/O VBAT GND Charge Pump capacitor is connected F
16 C6 C2P I/O - GND Charge Pump capacitor is connected G
17 D6 VOUT O - GND Charge Pump output pin A
18 A2 LED1 I - GND LED is connected 1 for LCD Back Light E
19 B2 LED2 I - GND LED is connected 2 for LCD Back Light E
20 B1 LED3 I - GND LED is connected 3 for LCD Back Light E
21 C2 LED4 I - GND LED is connected 4 for LCD Back Light E
22 C1 LED5 I - GND LED is connected 5 for LCD Back Light E
23 D1 LED6 I - GND LED is connected 6 for LCD Back Light E
24 E1 LED7 I - GND LED is connected 7 for LCD Back Light E
25 E2 LED8 I - GND LED is connected 8 for LCD Back Light E
26 C4 NC1 - - - (Non connect) -
27 D3 NC2 - - - (Non connect) -
28 D4 NC3 - - - (Non connect) -
29 B3 GND1 - VBAT - Ground B
30 E3 GND2 - VBAT - Ground B
31 A3 WPWMIN I VBAT GND External PWM input for Back Light * L
32 F5 LDO1O O VBAT GND LDO1 output pin Q
33 F4 LDO2O O VBAT GND LDO2 output pin Q
34 F3 LDO3O O VBAT GND LDO3 output pin Q
35 F2 LDO4O O VBAT GND LDO4 output pin Q
* A setup of a register is separately necessary to make it effective.
ESD Diode
For Power For Ground
Functions
Technical Note
Equivalent
Circuit
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
11/37
2010.07 - Rev.
A
BD6184GUL
Equivalent Circuit
A
B E
VBAT
C
VBAT
Technical Note
F
VBAT
J
Q
VBAT VBAT
G
VIO VBAT
R
VBATVBAT L
VBATVBAT
H
M
VBAT VBAT
S
VIOVBAT
VBATVBAT
I
N
U
VIOVBAT
VBAT
VBAT VBAT V
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
VBAT W
VIO
Fig.7 Equivalent Circuit
X
VoS VBAT
12/37
Y
VIO VBAT
2010.07 - Rev.
A
BD6184GUL
Technical Note
I2C BUS Format
The writing/reading operation is based on the I
2
C slave standard.
Slave address
A7 A6 A5 A4 A3 A2 A1 R/W
1 1 1 0 1 1 0 1/0
Bit Transfer
SCL transfers 1-bit data during H. SCL cannot change signal of SDA during H at the time of bit transfer. If SDA changes while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal.
SDA
SCL
SDA a state of stability
Data are effective
SDA
It can change
Fig.8
START and STOP condition
When SDA and SCL are H, data is not transferred on the I
2
C- bus. This condition indicates, if SDA changes from H to L while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL has been H, it will become STOP (P) conditions and an access end.
SDA
SCL
S P
START condition
STOP condition
Fig.9
Acknowledge
It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data, and a receiver returns the acknowledge signal by setting SDA to L.
DATA OUTPUT BY TRANSMITTER
DATA OUTPUT BY RECEIVER
SCL
START condition
S
12 89
not acknowledge
acknowledge
clock pulse for acknowledgement
Fig.10
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
13/37
2010.07 - Rev.
A
BD6184GUL
AAA
A
A
A
A
A
A
A2A1A
A
A
A
A
A
A
A
A A
A
A7 A6A5A4A3A2A1A
A
)
A
A
A
Technical Note
Writing protocol
A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The 3rd byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register address is carried out automatically. However, when a register address turns into the last address, it is set to 00h by the next transmission. After the transmission end, the increment of the address is carried out.
*1 *1
X X X X X X X
S
7
6
R/W=0(write)
from master to slave
from slave to master
register addressslave address
5
4
3
D7D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
00
DATA
register address
increment
=acknowledge(SDA LOW)
=not acknowledge(SDA HIGH) S=START condition P=STOP condition *1: Write Timing
DATA
register address
increment
Fig.11
Reading protocol
It reads from the next byte after writing a slave address and R/W bit. The register to read considers as the following address accessed at the end, and the data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out.
X X X X X X X
R/W=1(read)
from master to slave
from slave to master
P
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
DATA
register address
increment
=acknowledge(SDA LOW)
=not acknowledge(SDA HIGH) S=START condition P=STOP condition
DATA slave address
register address
increment
1 S
Fig.12
Multiple reading protocols
After specifying an internal address, it reads by repeated START condition and changing the data transfer direction. The data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out.
S
X X X X X X X X X X X X X
X
slave address register addres s
0
R/W=0(write) R/W=1(read)
0
slave address
Sr 1
P
D7 D6 D5 D4 D3D2D1D0 D7 D6D5D4D3D2 D1 D0
DATA DATA
from master to slave
from slave to master
register address
increment
=acknowledge(SDA LOW =not acknowledge(SDA HIGH)
S=START condition P=STOP con diti on Sr=repeated START condition
P
register address
increment
Fig.13
As for reading protocol and multiple reading protocols, please do A(not acknowledge) after doing the final reading operation. It stops with read when ending by A(acknowledge), and SDA stops in the state of Low when the reading data of that time is 0. However, this state returns usually when SCL is moved, data is read, and A (not acknowledge) is done.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
14/37
2010.07 - Rev.
A
BD6184GUL
S
Timing Diagram
SDA
CL
LOW
t
t
SU;DAT
t
HD;STA
Technical Note
t BUF
t HD;STA
S Sr P
t
HD;DAT
t HIGH
t SU;STA
Fig.14
Electrical Characteristics(Unless otherwise specified, Ta=25, VBAT=3.6V, VIO=1.8V)
Parameter Symbol
2
I
C BUS format
SCL clock frequency f
LOW period of the SCL clock t
HIGH period of the SCL clock t
Hold time (repeated) START condition After this period, the first clock is generated
Set-up time for a repeated START condition t
Data hold time t
Data set-up time t
0 - 100 0 - 400 kHz
SCL
4.7 - - 1.3 - - μs
LOW
4.0 - - 0.6 - - μs
HIGH
t
4.0 - - 0.6 - - μs
HD;STA
4.7 - - 0.6 - - μs
SU;STA
0 - 3.45 0 - 0.9 μs
HD;DAT
250 - - 100 - - ns
SU;DAT
Standard-mode Fast-mode
Min. Typ. Max. Min. Typ. Max.
t SU;STO
S
Unit
Set-up time for STOP condition t
Bus free time between a STOP and START condition
4.0 - - 0.6 - - μs
SU;STO
t
4.7 - - 1.3 - - μs
BUF
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
15/37
2010.07 - Rev.
A
BD6184GUL
Technical Note
Register List
Address W/R
00h W - - - - - - - SFTRST Software Reset
01h W - - W8MD W7MD W6MD W5MD W4MD - LED Pin function setting
02h W WPWMEN - W8EN W7EN W6EN W5EN - MLEDEN LED Power Control
03h W - IMLED(6) IMLED(5) IMLED(4) IMLED(3) IMLED(2) IMLED(1) IMLED(0) Main group current setting
04h - - - - - - - - - -
05h W - IW5(6) IW5(5) IW5(4) IW5(3) IW5(2) IW5(1) IW5(0) LED5 current setting
06h W - IW6(6) IW6(5) IW6(4) IW6(3) IW6(2) IW6(1) IW6(0) LED6 current setting
07h W - IW7(6) IW7(6) IW7(6) IW7(6) IW7(6) IW7(6) IW7(6) LED7 current setting
08h W - IW8(6) IW8(6) IW8(6) IW8(6) IW8(6) IW8(6) IW8(6) LED8 current setting
09h W THL (3) THL (2) THL (1) THL (0) TLH (3) TLH (2) TLH (1) TLH (0) Main Current transition
D7 D6 D5 D4 D3 D2 D1 D0
Register data
Function
0Ah - - - - - - - - - -
0Bh - - - - - - - - - -
0Ch - - - - - - - - - -
0Dh - - - - - - - - - -
0Eh - - - - - - - - - -
0Fh - - - - - - - - - -
10h - - - - - - - - - -
11h - - - - - - - - - -
12h - - - - - - - - - -
13h W - - - - LDO4EN LDO3EN LDO2EN LDO1EN LDO Power Control
14h W LDO2VSEL3 LDO2VSEL2 LDO2VSEL1 LDO2VSEL0 LDO1VSEL3 LDO1VSEL2 LDO1VSEL1 LDO1VSEL0
15h W LDO4VSEL3 LDO4VSEL2 LDO4VSEL1 LDO4VSEL0 LDO3VSEL3 LDO3VSEL2 LDO3VSEL1 LDO3VSEL0
Input "0” for "-". A free address has the possibility to assign it to the register for the test. Access to the register for the test and the undefined register is prohibited.
LDO1 Vout Control LDO2 Vout Control
LDO3 Vout Control LDO4 Vout Control
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
16/37
2010.07 - Rev.
A
BD6184GUL
Register Map
Address 00h < Software Reset >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
00h W - - - - - - - SFTRST
Initial Value 00h - - - - - - - 0
Bit[7:1] : (Not used)
Bit0 : SFTRST Software Reset
“0” : Reset cancel “1” : Reset(All register initializing) Refer to “Reset” for detail.
Address 01h < LED Pin function setting>
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
01h W - - W8MD W7MD W6MD W5MD W4MD -
Initial Value 02h - - 0 0 0 0 1 0
Bit[7:6] : (Not used)
Bit5 : W8MD LED8 control setting (individual / Main group)
“0” : LED8 individual control (Initial Value) “1” : LED8 Main group control Refer to “LED Driver” for detail.
Bit4 : W7MD LED7 control setting (individual / Main group)
“0” : LED7 individual control (Initial Value) “1” : LED7 Main group control Refer to “LED Driver” for detail.
Bit3 : W6MD LED6 control setting (individual / Main group)
“0” : LED6 individual control (Initial Value) “1” : LED6 Main group control Refer to “LED Driver” for detail.
Bit2 : W5MD LED5 control setting (individual / Main group)
“0” : LED5 individual control (Initial Value) “1” : LED5 Main group control Refer to “LED Driver” for detail.
Bit1 : W4MD LED4 Control Board setting (unuse / use)
“0” : LED4 unuse “1” : LED4 use (Main group Control) (Initial Value) Refer to “LED Driver” for detail.
Bit0 : (Not used)
Set up a fixation in every design because it isn't presumed W*PW that it is changed dynamically. And, do the setup of W*PW when each LED is Off.
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
17/37
2010.07 - Rev.
A
BD6184GUL
Address 02h < LED Power Control>
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
02h W WPWMEN - W8EN W7EN W6EN W5EN - MLEDEN
Initial Value 00h 0 - 0 0 0 0 - 0
Bit7 : WPWMEN External PWM Input “WPWMIN” terminal Enable Control (Valid/Invalid) “0” : External PWM input invalid (Initial Value) “1” : External PWM input valid
Refer to “
Bit6 : (Not used)
Bit5 : W8EN LED8 Control (ON/OFF)
“0” : LED8 OFF (Initial Value) “1” : LED8 ON(individual control)
Bit4 : W7EN LED7 Control (ON/OFF)
“0” : LED7 OFF (Initial Value)
“1” : LED7 ON(individual control)
Bit3 : W6EN LED6 Control (ON/OFF)
“0” : LED6 OFF (Initial Value) “1” : LED6 ON(individual control)
Bit2 : W5EN LED5 Control (ON/OFF)
“0” : LED5 OFF (Initial Value) “1” : LED5 ON(individual control)
Bit1 : (Not used)
Bit0 : MLEDEN Main group LED Control (ON/OFF)
“0” : Main group OFF (Initial Value) “1” : Main group ON
Current Adjustment” for detail.
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
18/37
2010.07 - Rev.
A
BD6184GUL
Technical Note
Address 03h < Main group LED Current setting(Normal Mode) >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
03h W - IMLED(6) IMLED(5) IMLED(4) IMLED(3) IMLED(2) IMLED(1) IMLED(0)
Initial Value 00h - 0 0 0 0 0 0 0
Bit7 : (Not used)
Bit[6:0] : IMLED (6:0) Main Group LED Current Setting
“0000000” : 0.2 mA (Initial Value) “1000000” : 13.0 mA “0000001” : 0.4 mA “1000001” : 13.2 mA “0000010” : 0.6 mA “1000010” : 13.4 mA “0000011” : 0.8 mA “1000011” : 13.6 mA “0000100” : 1.0 mA “1000100” : 13.8 mA
“0000101” : 1.2 mA “1000101” : 14.0 mA “0000110” : 1.4 mA “1000110” : 14.2 mA “0000111” : 1.6 mA “1000111” : 14.4 mA “0001000” : 1.8 mA “1001000” : 14.6 mA “0001001” : 2.0 mA “1001001” : 14.8 mA “0001010” : 2.2 mA “1001010” : 15.0 mA “0001011” : 2.4 mA “1001011” : 15.2 mA “0001100” : 2.6 mA “1001100” : 15.4 mA “0001101” : 2.8 mA “1001101” : 15.6 mA “0001110” : 3.0 mA “1001110” : 15.8 mA “0001111” : 3.2 mA “1001111” : 16.0 mA “0010000” : 3.4 mA “1010000” : 16.2 mA “0010001” : 3.6 mA “1010001” : 16.4 mA “0010010” : 3.8 mA “1010010” : 16.6 mA “0010011” : 4.0 mA “1010011” : 16.8 mA “0010100” : 4.2 mA “1010100” : 17.0 mA “0010101” : 4.4 mA “1010101” : 17.2 mA
“0010110” : 4.6 mA “1010110” : 17.4 mA “0010111” : 4.8 mA “1010111” : 17.6 mA “0011000” : 5.0 mA “1011000” : 17.8 mA
“0011001” : 5.2 mA “1011001” : 18.0 mA “0011010” : 5.4 mA “1011010” : 18.2 mA “0011011” : 5.6 mA “1011011” : 18.4 mA “0011100” : 5.8 mA “1011100” : 18.6 mA “0011101” : 6.0 mA “1011101” : 18.8 mA “0011110” : 6.2 mA “1011110” : 19.0 mA “0011111” : 6.4 mA “1011111” : 19.2 mA “0100000” : 6.6 mA “1100000” : 19.4 mA “0100001” : 6.8 mA “1100001” : 19.6 mA “0100010” : 7.0 mA “1100010” : 19.8 mA “0100011” : 7.2 mA “1100011” : 20.0 mA “0100100” : 7.4 mA “1100100” : 20.2 mA “0100101” : 7.6 mA “1100101” : 20.4 mA “0100110” : 7.8 mA “1100110” : 20.6 mA “0100111” : 8.0 mA “1100111” : 20.8 mA “0101000” : 8.2 mA “1101000” : 21.0 mA “0101001” : 8.4 mA “1101001” : 21.2 mA “0101010” : 8.6 mA “1101010” : 21.4 mA “0101011” : 8.8 mA “1101011” : 21.6 mA “0101100” : 9.0 mA “1101100” : 21.8 mA “0101101” : 9.2 mA “1101101” : 22.0 mA “0101110” : 9.4 mA “1101110” : 22.2 mA “0101111” : 9.6 mA “1101111” : 22.4 mA “0110000” : 9.8 mA “1110000” : 22.6 mA “0110001” : 10.0 mA “1110001” : 22.8 mA “0110010” : 10.2 mA “1110010” : 23.0 mA “0110011” : 10.4 mA “1110011” : 23.2 mA “0110100” : 10.6 mA “1110100” : 23.4 mA “0110101” : 10.8 mA “1110101” : 23.6 mA “0110110” : 11.0 mA “1110110” : 23.8 mA “0110111” : 11.2 mA “1110111” : 24.0 mA “0 111 0 0 0 ” : 11 . 4 mA “1111000 ” : 2 4 . 2 mA “0 111 0 0 1 ” : 11 . 6 mA “11110 0 1 ” : 2 4 . 4 mA “0 111 0 1 0 ” : 11 . 8 mA “1111010 ” : 2 4 . 6 mA “0 111 0 11 ” : 12 . 0 mA “1111011” : 24.8 mA “0 1111 0 0 ” : 12 .2 mA “ 1111100” : 25.0 mA “0 1111 0 1 ” : 12 . 4 mA “1111101” : 25.2 mA “0 11111 0 ” : 12 . 6 mA “1111110” : 2 5.4 mA “0 111111 ” : 12 . 8 mA “1111111” : 2 5 . 6 mA
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
19/37
2010.07 - Rev.
A
BD6184GUL
Technical Note
Address 05h < LED5 Current setting(Independence control) >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
05h W - IW5(6) IW5(5) IW5(4) IW5(3) IW5(2) IW5(1) IW5(0)
Initial Value 00h - 0 0 0 0 0 0 0
Bit7 : (Not used)
Bit[6:0] : IW5 (6:0) LED5 Current setting
“0000000” : 0.2 mA (Initial Value) “1000000” : 13.0 mA “0000001” : 0.4 mA “1000001” : 13.2 mA “0000010” : 0.6 mA “1000010” : 13.4 mA “0000011” : 0.8 mA “1000011” : 13.6 mA “0000100” : 1.0 mA “1000100” : 13.8 mA “0000101” : 1.2 mA “1000101” : 14.0 mA “0000110” : 1.4 mA “1000110” : 14.2 mA “0000111” : 1.6 mA “1000111” : 14.4 mA “0001000” : 1.8 mA “1001000” : 14.6 mA “0001001” : 2.0 mA “1001001” : 14.8 mA “0001010” : 2.2 mA “1001010” : 15.0 mA “0001011” : 2.4 mA “1001011” : 15.2 mA “0001100” : 2.6 mA “1001100” : 15.4 mA “0001101” : 2.8 mA “1001101” : 15.6 mA “0001110” : 3.0 mA “1001110” : 15.8 mA “0001111” : 3.2 mA “1001111” : 16.0 mA “0010000” : 3.4 mA “1010000” : 16.2 mA “0010001” : 3.6 mA “1010001” : 16.4 mA “0010010” : 3.8 mA “1010010” : 16.6 mA “0010011” : 4.0 mA “1010011” : 16.8 mA “0010100” : 4.2 mA “1010100” : 17.0 mA “0010101” : 4.4 mA “1010101” : 17.2 mA
“0010110” : 4.6 mA “1010110” : 17.4 mA “0010111” : 4.8 mA “1010111” : 17.6 mA “0011000” : 5.0 mA “1011000” : 17.8 mA
“0011001” : 5.2 mA “1011001” : 18.0 mA “0011010” : 5.4 mA “1011010” : 18.2 mA “0011011” : 5.6 mA “1011011” : 18.4 mA “0011100” : 5.8 mA “1011100” : 18.6 mA “0011101” : 6.0 mA “1011101” : 18.8 mA “0011110” : 6.2 mA “1011110” : 19.0 mA “0011111” : 6.4 mA “1011111” : 19.2 mA “0100000” : 6.6 mA “1100000” : 19.4 mA “0100001” : 6.8 mA “1100001” : 19.6 mA “0100010” : 7.0 mA “1100010” : 19.8 mA “0100011” : 7.2 mA “1100011” : 20.0 mA “0100100” : 7.4 mA “1100100” : 20.2 mA “0100101” : 7.6 mA “1100101” : 20.4 mA “0100110” : 7.8 mA “1100110” : 20.6 mA “0100111” : 8.0 mA “1100111” : 20.8 mA “0101000” : 8.2 mA “1101000” : 21.0 mA “0101001” : 8.4 mA “1101001” : 21.2 mA “0101010” : 8.6 mA “1101010” : 21.4 mA “0101011” : 8.8 mA “1101011” : 21.6 mA “0101100” : 9.0 mA “1101100” : 21.8 mA “0101101” : 9.2 mA “1101101” : 22.0 mA “0101110” : 9.4 mA “1101110” : 22.2 mA “0101111” : 9.6 mA “1101111” : 22.4 mA “0110000” : 9.8 mA “1110000” : 22.6 mA “0110001” : 10.0 mA “1110001” : 22.8 mA “0110010” : 10.2 mA “1110010” : 23.0 mA “0110011” : 10.4 mA “1110011” : 23.2 mA “0110100” : 10.6 mA “1110100” : 23.4 mA “0110101” : 10.8 mA “1110101” : 23.6 mA “0110110” : 11.0 mA “1110110” : 23.8 mA “0110111” : 11.2 mA “1110111” : 24.0 mA “0 111 0 0 0 ” : 11 . 4 mA “1111000 ” : 2 4 . 2 mA “0 111 0 0 1 ” : 11 . 6 mA “11110 0 1 ” : 2 4 . 4 mA “0 111 0 1 0 ” : 11 . 8 mA “1111010 ” : 2 4 . 6 mA “0 111 0 11 ” : 12 . 0 mA “1111011” : 24.8 mA “0 1111 0 0 ” : 12 .2 mA “ 1111100” : 25.0 mA “0 1111 0 1 ” : 12 . 4 mA “1111101” : 25.2 mA “0 11111 0 ” : 12 . 6 mA “1111110” : 2 5.4 mA “0 111111 ” : 12 . 8 mA “1111111” : 2 5 . 6 mA
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
20/37
2010.07 - Rev.
A
BD6184GUL
Technical Note
Address 06h < LED6 Current setting(Independence control) >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
06h W - IW6(6) IW6(5) IW6(4) IW6(3) IW6(2) IW6(1) IW6(0)
Initial Value 00h - 0 0 0 0 0 0 0
Bit7 : (Not used)
Bit[6:0] : IW6 (6:0) LED6 Current setting
“0000000” : 0.2 mA (Initial Value) “1000000” : 13.0 mA “0000001” : 0.4 mA “1000001” : 13.2 mA “0000010” : 0.6 mA “1000010” : 13.4 mA “0000011” : 0.8 mA “1000011” : 13.6 mA “0000100” : 1.0 mA “1000100” : 13.8 mA “0000101” : 1.2 mA “1000101” : 14.0 mA “0000110” : 1.4 mA “1000110” : 14.2 mA “0000111” : 1.6 mA “1000111” : 14.4 mA “0001000” : 1.8 mA “1001000” : 14.6 mA “0001001” : 2.0 mA “1001001” : 14.8 mA “0001010” : 2.2 mA “1001010” : 15.0 mA “0001011” : 2.4 mA “1001011” : 15.2 mA “0001100” : 2.6 mA “1001100” : 15.4 mA “0001101” : 2.8 mA “1001101” : 15.6 mA “0001110” : 3.0 mA “1001110” : 15.8 mA “0001111” : 3.2 mA “1001111” : 16.0 mA “0010000” : 3.4 mA “1010000” : 16.2 mA “0010001” : 3.6 mA “1010001” : 16.4 mA “0010010” : 3.8 mA “1010010” : 16.6 mA “0010011” : 4.0 mA “1010011” : 16.8 mA “0010100” : 4.2 mA “1010100” : 17.0 mA “0010101” : 4.4 mA “1010101” : 17.2 mA
“0010110” : 4.6 mA “1010110” : 17.4 mA “0010111” : 4.8 mA “1010111” : 17.6 mA “0011000” : 5.0 mA “1011000” : 17.8 mA
“0011001” : 5.2 mA “1011001” : 18.0 mA “0011010” : 5.4 mA “1011010” : 18.2 mA “0011011” : 5.6 mA “1011011” : 18.4 mA “0011100” : 5.8 mA “1011100” : 18.6 mA “0011101” : 6.0 mA “1011101” : 18.8 mA “0011110” : 6.2 mA “1011110” : 19.0 mA “0011111” : 6.4 mA “1011111” : 19.2 mA “0100000” : 6.6 mA “1100000” : 19.4 mA “0100001” : 6.8 mA “1100001” : 19.6 mA “0100010” : 7.0 mA “1100010” : 19.8 mA “0100011” : 7.2 mA “1100011” : 20.0 mA “0100100” : 7.4 mA “1100100” : 20.2 mA “0100101” : 7.6 mA “1100101” : 20.4 mA “0100110” : 7.8 mA “1100110” : 20.6 mA “0100111” : 8.0 mA “1100111” : 20.8 mA “0101000” : 8.2 mA “1101000” : 21.0 mA “0101001” : 8.4 mA “1101001” : 21.2 mA “0101010” : 8.6 mA “1101010” : 21.4 mA “0101011” : 8.8 mA “1101011” : 21.6 mA “0101100” : 9.0 mA “1101100” : 21.8 mA “0101101” : 9.2 mA “1101101” : 22.0 mA “0101110” : 9.4 mA “1101110” : 22.2 mA “0101111” : 9.6 mA “1101111” : 22.4 mA “0110000” : 9.8 mA “1110000” : 22.6 mA “0110001” : 10.0 mA “1110001” : 22.8 mA “0110010” : 10.2 mA “1110010” : 23.0 mA “0110011” : 10.4 mA “1110011” : 23.2 mA “0110100” : 10.6 mA “1110100” : 23.4 mA “0110101” : 10.8 mA “1110101” : 23.6 mA “0110110” : 11.0 mA “1110110” : 23.8 mA “0110111” : 11.2 mA “1110111” : 24.0 mA “0 111 0 0 0 ” : 11 . 4 mA “1111000 ” : 2 4 . 2 mA “0 111 0 0 1 ” : 11 . 6 mA “11110 0 1 ” : 2 4 . 4 mA “0 111 0 1 0 ” : 11 . 8 mA “1111010 ” : 2 4 . 6 mA “0 111 0 11 ” : 12 . 0 mA “1111011” : 24.8 mA “0 1111 0 0 ” : 12 .2 mA “ 1111100” : 25.0 mA “0 1111 0 1 ” : 12 . 4 mA “1111101” : 25.2 mA “0 11111 0 ” : 12 . 6 mA “1111110” : 2 5.4 mA “0 111111 ” : 12 . 8 mA “1111111” : 2 5 . 6 mA
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
21/37
2010.07 - Rev.
A
BD6184GUL
Technical Note
Address 07h < LED7 Current setting(Independence control) >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
07h W - IW7(6) IW7(5) IW7(4) IW7(3) IW7(2) IW7(1) IW7(0)
Initial Value 00h - 0 0 0 0 0 0 0
Bit7 : (Not used)
Bit[6:0] : IW7 (6:0) LED7 Current setting
“0000000” : 0.2 mA (Initial Value) “1000000” : 13.0 mA “0000001” : 0.4 mA “1000001” : 13.2 mA “0000010” : 0.6 mA “1000010” : 13.4 mA “0000011” : 0.8 mA “1000011” : 13.6 mA “0000100” : 1.0 mA “1000100” : 13.8 mA “0000101” : 1.2 mA “1000101” : 14.0 mA “0000110” : 1.4 mA “1000110” : 14.2 mA “0000111” : 1.6 mA “1000111” : 14.4 mA “0001000” : 1.8 mA “1001000” : 14.6 mA “0001001” : 2.0 mA “1001001” : 14.8 mA “0001010” : 2.2 mA “1001010” : 15.0 mA “0001011” : 2.4 mA “1001011” : 15.2 mA “0001100” : 2.6 mA “1001100” : 15.4 mA “0001101” : 2.8 mA “1001101” : 15.6 mA “0001110” : 3.0 mA “1001110” : 15.8 mA “0001111” : 3.2 mA “1001111” : 16.0 mA “0010000” : 3.4 mA “1010000” : 16.2 mA “0010001” : 3.6 mA “1010001” : 16.4 mA “0010010” : 3.8 mA “1010010” : 16.6 mA “0010011” : 4.0 mA “1010011” : 16.8 mA “0010100” : 4.2 mA “1010100” : 17.0 mA “0010101” : 4.4 mA “1010101” : 17.2 mA
“0010110” : 4.6 mA “1010110” : 17.4 mA “0010111” : 4.8 mA “1010111” : 17.6 mA “0011000” : 5.0 mA “1011000” : 17.8 mA
“0011001” : 5.2 mA “1011001” : 18.0 mA “0011010” : 5.4 mA “1011010” : 18.2 mA “0011011” : 5.6 mA “1011011” : 18.4 mA “0011100” : 5.8 mA “1011100” : 18.6 mA “0011101” : 6.0 mA “1011101” : 18.8 mA “0011110” : 6.2 mA “1011110” : 19.0 mA “0011111” : 6.4 mA “1011111” : 19.2 mA “0100000” : 6.6 mA “1100000” : 19.4 mA “0100001” : 6.8 mA “1100001” : 19.6 mA “0100010” : 7.0 mA “1100010” : 19.8 mA “0100011” : 7.2 mA “1100011” : 20.0 mA “0100100” : 7.4 mA “1100100” : 20.2 mA “0100101” : 7.6 mA “1100101” : 20.4 mA “0100110” : 7.8 mA “1100110” : 20.6 mA “0100111” : 8.0 mA “1100111” : 20.8 mA “0101000” : 8.2 mA “1101000” : 21.0 mA “0101001” : 8.4 mA “1101001” : 21.2 mA “0101010” : 8.6 mA “1101010” : 21.4 mA “0101011” : 8.8 mA “1101011” : 21.6 mA “0101100” : 9.0 mA “1101100” : 21.8 mA “0101101” : 9.2 mA “1101101” : 22.0 mA “0101110” : 9.4 mA “1101110” : 22.2 mA “0101111” : 9.6 mA “1101111” : 22.4 mA “0110000” : 9.8 mA “1110000” : 22.6 mA “0110001” : 10.0 mA “1110001” : 22.8 mA “0110010” : 10.2 mA “1110010” : 23.0 mA “0110011” : 10.4 mA “1110011” : 23.2 mA “0110100” : 10.6 mA “1110100” : 23.4 mA “0110101” : 10.8 mA “1110101” : 23.6 mA “0110110” : 11.0 mA “1110110” : 23.8 mA “0110111” : 11.2 mA “1110111” : 24.0 mA “0 111 0 0 0 ” : 11 . 4 mA “1111000 ” : 2 4 . 2 mA “0 111 0 0 1 ” : 11 . 6 mA “11110 0 1 ” : 2 4 . 4 mA “0 111 0 1 0 ” : 11 . 8 mA “1111010 ” : 2 4 . 6 mA “0 111 0 11 ” : 12 . 0 mA “1111011” : 24.8 mA “0 1111 0 0 ” : 12 .2 mA “ 1111100” : 25.0 mA “0 1111 0 1 ” : 12 . 4 mA “1111101” : 25.2 mA “0 11111 0 ” : 12 . 6 mA “1111110” : 2 5.4 mA “0 111111 ” : 12 . 8 mA “1111111” : 2 5 . 6 mA
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
22/37
2010.07 - Rev.
A
BD6184GUL
Technical Note
Address 08h < LED8 Current setting(Independence control) >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
08h W - IW8(6) IW8(5) IW8(4) IW8(3) IW8(2) IW8(1) IW8(0)
Initial Value 00h - 0 0 0 0 0 0 0
Bit7 : (Not used)
Bit[6:0] : IW8 (6:0) LED8 Current setting
“0000000” : 0.2 mA (Initial Value) “1000000” : 13.0 mA “0000001” : 0.4 mA “1000001” : 13.2 mA “0000010” : 0.6 mA “1000010” : 13.4 mA “0000011” : 0.8 mA “1000011” : 13.6 mA “0000100” : 1.0 mA “1000100” : 13.8 mA “0000101” : 1.2 mA “1000101” : 14.0 mA “0000110” : 1.4 mA “1000110” : 14.2 mA “0000111” : 1.6 mA “1000111” : 14.4 mA “0001000” : 1.8 mA “1001000” : 14.6 mA “0001001” : 2.0 mA “1001001” : 14.8 mA “0001010” : 2.2 mA “1001010” : 15.0 mA “0001011” : 2.4 mA “1001011” : 15.2 mA “0001100” : 2.6 mA “1001100” : 15.4 mA “0001101” : 2.8 mA “1001101” : 15.6 mA “0001110” : 3.0 mA “1001110” : 15.8 mA “0001111” : 3.2 mA “1001111” : 16.0 mA “0010000” : 3.4 mA “1010000” : 16.2 mA “0010001” : 3.6 mA “1010001” : 16.4 mA “0010010” : 3.8 mA “1010010” : 16.6 mA “0010011” : 4.0 mA “1010011” : 16.8 mA “0010100” : 4.2 mA “1010100” : 17.0 mA “0010101” : 4.4 mA “1010101” : 17.2 mA
“0010110” : 4.6 mA “1010110” : 17.4 mA “0010111” : 4.8 mA “1010111” : 17.6 mA “0011000” : 5.0 mA “1011000” : 17.8 mA
“0011001” : 5.2 mA “1011001” : 18.0 mA “0011010” : 5.4 mA “1011010” : 18.2 mA “0011011” : 5.6 mA “1011011” : 18.4 mA “0011100” : 5.8 mA “1011100” : 18.6 mA “0011101” : 6.0 mA “1011101” : 18.8 mA “0011110” : 6.2 mA “1011110” : 19.0 mA “0011111” : 6.4 mA “1011111” : 19.2 mA “0100000” : 6.6 mA “1100000” : 19.4 mA “0100001” : 6.8 mA “1100001” : 19.6 mA “0100010” : 7.0 mA “1100010” : 19.8 mA “0100011” : 7.2 mA “1100011” : 20.0 mA “0100100” : 7.4 mA “1100100” : 20.2 mA “0100101” : 7.6 mA “1100101” : 20.4 mA “0100110” : 7.8 mA “1100110” : 20.6 mA “0100111” : 8.0 mA “1100111” : 20.8 mA “0101000” : 8.2 mA “1101000” : 21.0 mA “0101001” : 8.4 mA “1101001” : 21.2 mA “0101010” : 8.6 mA “1101010” : 21.4 mA “0101011” : 8.8 mA “1101011” : 21.6 mA “0101100” : 9.0 mA “1101100” : 21.8 mA “0101101” : 9.2 mA “1101101” : 22.0 mA “0101110” : 9.4 mA “1101110” : 22.2 mA “0101111” : 9.6 mA “1101111” : 22.4 mA “0110000” : 9.8 mA “1110000” : 22.6 mA “0110001” : 10.0 mA “1110001” : 22.8 mA “0110010” : 10.2 mA “1110010” : 23.0 mA “0110011” : 10.4 mA “1110011” : 23.2 mA “0110100” : 10.6 mA “1110100” : 23.4 mA “0110101” : 10.8 mA “1110101” : 23.6 mA “0110110” : 11.0 mA “1110110” : 23.8 mA “0110111” : 11.2 mA “1110111” : 24.0 mA “0 111 0 0 0 ” : 11 . 4 mA “1111000 ” : 2 4 . 2 mA “0 111 0 0 1 ” : 11 . 6 mA “11110 0 1 ” : 2 4 . 4 mA “0 111 0 1 0 ” : 11 . 8 mA “1111010 ” : 2 4 . 6 mA “0 111 0 11 ” : 12 . 0 mA “1111011” : 24.8 mA “0 1111 0 0 ” : 12 .2 mA “ 1111100” : 25.0 mA “0 1111 0 1 ” : 12 . 4 mA “1111101” : 25.2 mA “0 11111 0 ” : 12 . 6 mA “1111110” : 2 5.4 mA “0 111111 ” : 12 . 8 mA “1111111” : 2 5 . 6 mA
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
23/37
2010.07 - Rev.
A
BD6184GUL
Address 09h < Main Current slope time setting >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
09h W THL(3) THL(2) THL(1) THL(0) TLH(3) TLH(2) TLH(1) TLH(0)
Initial Value C7h 1 1 0 0 0 1 1 1
Bit[7:4] : THL (3:0) Main LED current Down transition per 0.2mA step
“0000” : 0.256 ms “0001” : 0.512 ms “0010” : 1.024 ms “0011” : 2.048 ms “0100” : 4.096 ms “0101” : 8.192 ms “0110” : 16.38 ms “0111” : 32.77 ms “1000” : 65.54 ms “1001” : 131.1 ms “1010” : 196.6 ms “1011” : 262.1 ms “1100” : 327.7 ms (Initial Value) “1101” : 393.2 ms “1110” : 458.8 ms
“1111” : 5 2 4 . 3 ms Setting time is counted based on the switching frequency of Charge Pump. The above value becomes the value of the Typ (1MHz) time. Refer to “
Bit[3:0] : TLH (3:0) Main LED current Up transition per 0.2mA step
“0000” : 0.256 ms
“0001” : 0.512 ms
“0010” : 1.024 ms
“0011” : 2.048 ms
“0100” : 4.096 ms
“0101” : 8.192 ms
“0110” : 16.38 ms
“0111” : 32.77 ms (Initial Value)
“1000” : 65.54 ms
“1001” : 131.1 ms
“1010” : 196.6 ms
“1011” : 262.1 ms
“1100” : 327.7 ms
“1101” : 393.2 ms
“1110” : 458.8 ms
“1111” : 5 2 4 . 3 ms Setting time is counted based on the switching frequency of Charge Pump. The above value becomes the value of the Typ (1MHz) time. Refer to “
Slope Process”for detail.
Slope Process”for detail.
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
24/37
2010.07 - Rev.
A
BD6184GUL
Address 13h <LDO Power Control>
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
13h W/R - - - - LDO4EN LDO3EN LDO2EN LDO1EN
Initial Value 00h - - - - 0 0 0 0
Bit[7:4] : (Not used)
Bit3 : LDO4EN LDO4 control (ON/OFF)
“0” : LDO4 OFF (Initial Value) “1” : LDO4 ON
Bit2 : LDO3EN LDO3 control (ON/OFF)
“0” : LDO3 OFF (Initial Value) “1” : LDO3 ON
Bit1 : LDO2EN LDO2 control (ON/OFF)
“0” : LDO2 OFF (Initial Value) “1” : LDO2 ON
Bit0 : LDO1EN LDO1 control (ON/OFF)
“0” : LDO1 OFF (Initial Value) “1” : LDO1 ON
Address 14h < LDO1 Vout Control, LDO2 Vout Control >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
14h R/W LDO2VSEL3 LDO2VSEL2 LDO2VSEL1 LDO2VSEL0 LDO1VSEL3 LDO1VSEL2 LDO1VSEL1 LDO1VSEL0
Initial Value 74h 0 1 1 1 0 1 0 0
Bit[7:4] : LDO2VSEL [3:0]
“0000” : 1.20 V “0001” : 1.30 V “0010” : 1.50 V “0011” : 1.60 V “0100” : 1.80 V “0101” : 2.20 V “0110” : 2.40 V “0111” : 2.50 V (Initial Value) “1000” : 2.60 V “1001” : 2.70 V “1010” : 2.80 V “1011” : 2.90 V “1100” : 3.00 V “1101” : 3.10 V “1110” : 3.20 V “1111” : 3.30 V
Bit[3:0] : LDO1VSEL [3:0]
“0000” : 1.20 V “0001” : 1.30 V “0010” : 1.50 V “0011” : 1.60 V “0100” : 1.80 V (Initial Value) “0101” : 2.20 V “0110” : 2.40 V “0111” : 2.50 V “1000” : 2.60 V “1001” : 2.70 V “1010” : 2.80 V “1011” : 2.90 V “1100” : 3.00 V “1101” : 3.10 V “1110” : 3.20 V “1111” : 3.30 V
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
25/37
2010.07 - Rev.
A
BD6184GUL
Address 15h < LDO3 Vout Control, LDO4 Vout Control >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
15h R/W LDO4VSEL3 LDO4VSEL2 LDO4VSEL1 LDO4VSEL0 LDO3VSEL3 LDO3VSEL2 LDO3VSEL1 LDO3VSEL0
Initial Value A4h 1 0 1 0 0 1 0 0
Bit[7:4] : LDO4VSEL [3:0]
“0000” : 1.20 V “0001” : 1.30 V “0010” : 1.50 V “0011” : 1.60 V “0100” : 1.80 V “0101” : 2.20 V “0110” : 2.40 V “0111” : 2.50 V “1000” : 2.60 V “1001” : 2.70 V “1010” : 2.80 V (Initial Value) “1011” : 2.90 V “1100” : 3.00 V “1101” : 3.10 V “1110” : 3.20 V “1111” : 3.30 V
Bit[3:0] : LDO3VSEL [3:0]
“0000” : 1.20 V “0001” : 1.30 V “0010” : 1.50 V “0011” : 1.60 V “0100” : 1.80 V (Initial Value) “0101” : 2.20 V “0110” : 2.40 V “0111” : 2.50 V “1000” : 2.60 V “1001” : 2.70 V “1010” : 2.80 V “1011” : 2.90 V “1100” : 3.00 V “1101” : 3.10 V “1110” : 3.20 V “1111” : 3.30 V
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
26/37
2010.07 - Rev.
A
BD6184GUL
Technical Note
Reset
There are two kinds of reset, software reset and hardware reset (1) Software reset
All the registers are initialized by SFTRST="1". SFTRST is an automatically returned to "0". (Auto Return 0).
(2) Hardware reset
It shifts to hardware reset by changing RESETB pin “H” “L”. The condition of all the registers under hardware reset pin is returned to the Initial Value, and it stops accepting all address. It’s possible to release from a state of hardware reset by changing RESETB pin “L” “H”. RESETB pin has delay circuit. It doesn’t recognize as hardware reset in “L” period under 5μs.
(3) Reset Sequence
When hardware reset was done during software reset, software reset is canceled when hardware reset is canceled.
(Because the Initial Value of software reset is “0”)
VIODET
The decline of the VIO voltage is detected, and faulty operation inside the IC is prevented by giving resetting to Levelsift block
Image Block Diagram
VIO VBAT
DEToutput
Inside reset
VBAT
2.6V
Reset by
VIODET
(typ)1.0V
VIO
VIODET
RESETB
Digital
pin
I/O
R
LEVEL
SHIFT
RESETB
DET output
Inside reset
Fig.15 Fig.16
When the VIO voltage becomes more than typ1.0V(Vth of NMOS in the IC), VIODET is removed. On the contrary, when VIO is as follows 1.0V, it takes reset. (The VBAT voltage being a prescribed movement range)
Thermal Shut Down
A thermal shutdown function is effective in the following block. DC/DC (Charge Pump) LED Driver LDO1, LDO2, LDO3, LDO4 The thermal shutdown function is detection temperature that it works is about 195 Detection temperature has a hysteresis, and detection release temperature is about 175
℃.
o
C.
(Design reference value)
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
27/37
2010.07 - Rev.
A
BD6184GUL
V
V
V
DC/DC
Start
DC/DC circuit operates when any LED turns ON. (DCDCFON=0) When the start of theDC/DC circuit is done, it has the soft start function to prevent a rush current.
Force of VBAT and VIO is to go as follows.
Technical Note
BAT
IO
RESETB
EN (*)
OUT
LEDcurrent
(*) An EN signal means the following in the upper figure. EN = “MLEDEN” or “W*EN” (= LED The LED lighting control of a setup of connection VOUT) But, as for Ta > T T T
changes by the capacitor connected to VOUT and inside OSC.
SOFT
is Typ 200μs (when the output capacitor of VOUT =1.0μF).
SOFT
TSD
T
VIOON=min 0.1ms
T
RSTB=min 0.1ms
T
SOFT
(typ : 195° C), a protection function functions, and an EN signal doesn't become effective.
Fig.17
Over Voltage protection / Over Current protection
DC/DC circuit output (VOUT) is equipped with the over-voltage protection and the over current protection function. A VOUT over-voltage detection voltage is about 5.6V(typ). (VOUT at the time of rise in a voltage) A detection voltage has a hysteresis, and a detection release voltage is about 5.4V(typ). And, when VOUT output short to ground, input current of the battery terminal is limited by an over current protection function.
T
VIOOFF=min 0.1ms
T
RST=min 0ms
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
28/37
2010.07 - Rev.
A
BD6184GUL
Mode transition
The transition of boosts multiple transits automatically by VBAT Voltage and the VOUT Pin Voltage.
condition
STANDBY
SOFT
ALL of f
MLEDEN=”1” or W*EN=”1”
and
Ta< T
TSD
CP x1.0 mode
After detecting VOUT>1.5V(typ) , 128µs( typ) wait
X1.0
CP x1.0 mode
mode down=” H”
mode up=”H”
X1.5
mode down= ”H”
CP x1.5 mode
mode up=”H”
X2.0 CP x2.0 mode
Fig.18
The mode transition of the charge pump works as follows.
x1.0x1.5x2.0 Mode transition
The transition of the mode is done when VOUT was compared with VBAT and the next condition was satisfied.
x1.0
x1.5 Mode transition
VBAT ≤ VOUT + (Ron10×Iout) (LED Pin feedback:VOUT = Vf+0.2(Typ)) x1.5
x2.0 Mode transition
VBAT×1.5 ≤ VOUT +(Ron15×Iout) (LED Pin feedback:VOUT = Vf+0.2(Typ))
Ron10: x1 Charge pump on resistance 1.2Ω(Typ) Ron15: x1.5 Charge pump on resistance 7.1Ω(Typ)
x2.0x1.5x1.0 Mode transition
The transition of the mode is done when the ratio of VOUT and VBAT is detected and it exceeds a fixed voltage ratio.
x1.5
x1.0 Mode transition
VBAT / VOUT =1.16(Design value) x2.0
x1.5 Mode transition
VBAT / VOUT =1.12(Design value)
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
29/37
2010.07 - Rev.
A
BD6184GUL
Technical Note
LED Driver
The LED driver of 8ch is constructed as the ground plan. Equivalence control is possible with LED1 ~ 4(LED4 can choose use/un-use with a register W4MD.). LED5, LED6, LED7, LED8 is controllable individually. As for LED5 ~ 8, grouping setting to the main control is possible, and main control becomes effective for the main group in the allotment. LED5 ~ 8 are setups of grouping to the main control. When LED5 ~ 8 are used by the individual control, a slope time setup (register THL and TLH) doesn't become effective.
LED1
IMLED[6:0]
MLEDEN
MLEDMD
WPWMIN
W4MD
IW5[6:0 ]
W5EN
IW6[6:0 ]
W6EN
IW7[6:0]
W7EN
1
0
W5MD
1
0
W6MD
1
0
W7MD
LED2
LED3
LED4
LED5
LED6
LED7
IW8[6:0]
W8EN
1
0
W8MD
LED8
Fig.19
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
30/37
2010.07 - Rev.
A
BD6184GUL
LED Composition which can be set up is the following. The main, other1 and other2 are controllable to each.(Enable and current setting)
Main
(PWM)
8LEDs - - - -
7LEDs - - - -
7LEDs 1LED - - -
6LEDs - - - -
6LEDs 1 LED - - -
6LEDs 2 LEDs - - -
6LEDs 1 LED 1LED - -
5LEDs - - - -
5LEDs 1 LED - - -
5LEDs 2 LEDs - - -
5LEDs 1 LED 1LED - -
5LEDs 3 LEDs - - -
5LEDs 2 LEDs 1LED - -
5LEDs 1 LED 1LED 1LED -
4LEDs - - - -
4LEDs 1 LED - - -
4LEDs 2 LEDs - - -
4LEDs 1 LED 1LED - -
4LEDs 3 LEDs - - -
4LEDs 2 LEDs 1LED - -
4LEDs 1 LED 1LED 1LED -
4LEDs 4LEDs - - -
4LEDs 3 LEDs 1LED - -
4LEDs 2 LEDs 1LED 1LED -
4LEDs 1 LED 1LED 1LED 1LED
3LEDs - - - -
3LEDs 1 LED - - -
3LEDs 2 LEDs - - -
3LEDs 1 LED 1LED - -
3LEDs 3 LEDs - - -
3LEDs 2 LEDs 1LED - -
3LEDs 1 LED 1LED 1LED -
3LEDs 4LEDs - - -
3LEDs 3 LEDs 1LED - -
3LEDs 2 LEDs 1LED 1LED -
3LEDs 1 LED 1LED 1LED 1LED
Other1 Other2 Other3 Other4
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
31/37
2010.07 - Rev.
A
BD6184GUL
A
f
Technical Note
Current Adjustment When the register setting permits it, PWM drive by the external terminal (WPWMIN) is possible.
Register: WPWMEN
It is suitable for the intensity correction by external control, because PWM based on Main LED current of register.
WPWMEN (Register) WPWMIN(External Pin) Main group LED current
0
1
" Normal operation " depends on the setup of each register.
EN(*)
DC/DC Output
WPWMIN input
L Normal operation
H Normal operation
L Forced OFF
H Normal operation
Internal Soft-Start Time
WPWMEN
LED Current
EN(*) : it means “MLEDEN” or “W*EN”.
It is possible to make it a WPWMIN input and W PWMEN=1 in front of EN(*).
PWM drive becomes effective after the time of an LED current standup.
When rising during PWM operation, as for the standup time of a DC/DC output, only the rate o PWM Duty becomes late. Appearance may be influenced when extremely late frequency and extremely low Duty are inputted.
Please secure 250 μs or more of H sections at the time of PWM pulse Force.
Fig.20
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
32/37
2010.07 - Rev.
A
BD6184GUL
Slope Process Slope process is given to LED current to dim naturally. LED current changes in the 256Step gradation in sloping.
Current Data which is set
Up(darkbright),Down(brightdark)
LED current transition speed are set individually.
Register : THL(3:0) Register : TLH(3:0)
Main LED current changes as follows at the time as the slope.
TLH (THL) is setup of time of the current step 2/256.
TLH(3:0)
TLH
Main LED current
Up/Down transition Speed
25.6mA 256
=0.1mA
THL
Zoom
Fig.21
Main LED current
I/O
When the RESETB pin is Low, the input buffers (SDA and SCL) are disabling for the Low consumption power.
When RESETB=L, output is fixed at “H.”
Technical Note
LED Current
THL (3:0)
is set individually
time
TLH(3:0)
time
SCL
(SDA)
EN
Level shifter
Logic
RESETB
Fig.22
Special care should be taken because a current path may be formed via a terminal protection diode, depending on an I/O power-on sequence or an input level.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
33/37
2010.07 - Rev.
A
BD6184GUL
V
V
About the Start of LDO1 ~ LDO4
It must start as follows.
BAT
T
VBATON= min 0.1ms
T
VBATOFF= min 0.1ms
IO
T
LDO1EN or LDO2EN or LDO3EN or LDO4EN
LDO1O or LDO2O or LDO3O or LDO4O
(LDO output)
VIOON= min 0.1ms
T
RISE = max 1ms
Fig.23
<Start Sequence>
VBAT ON (Enough rise up)
VIO ON (Enough rise up) Reset release → LDO ON (Register access acceptable)
<End Sequence>
LDO OFF
Reset VIO OFF (Enough fall down) VBAT OFF
About the pin management of the function that isn't used and test pins
Setting it as follows is recommended with the test pin and the pin which isn't used. Set up pin referring to the “Equivalent circuit diagram” so that there may not be a problem under the actual use.
T2, T4 Short to GND because pin for test input
Technical Note
T1, T3 OPEN because pin for test output
Non-used LED Pin
WPWMIN
Short to GND (Must) But, the setup of a register concerned with LED that isn’t used is prohibited.
Short to ground (A Pull-Down resistance built-in terminal is contained, too.)
Operation Settings (Flow Example)
Backlight: Fade-in/Fade-out
Apply supply voltage.
Backlight: Various settings
Backlight setting. Slow time setting.
MLEDEN=1
The backlight turns on. (Rise at designated slope time)
Set the minimum current.
(Rise at designated slope time)
MLEDEN=0
The backlight turns off.
Fig.24
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
34/37
2010.07 - Rev.
A
BD6184GUL
PCB pattern of the Power Dissipation Measuring Board
1st layer(component) 2nd layer
Technical Note
3rd layer 4th layer
5th layer 6th layer
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
7th layer 8th layer(solder)
Fig.25 PCB Pattern
35/37
2010.07 - Rev.
A
BD6184GUL
Notes for Use
(1) Absolute Maximum Ratings
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc.
(2) Power supply and ground line
Design PCB pattern to provide low impedance for the wiring between the power supply and the ground lines. Pay attention to the interference by common impedance of layout pattern when there are plural power supplies and ground lines. Especially, when there are ground pattern for small signal and ground pattern for large current included the external circuits, please separate each ground pattern. Furthermore, for all power supply pins to ICs, mount a capacitor between the power supply and the ground pin. At the same time, in order to use a capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant.
(3) Ground voltage
Make setting of the potential of the ground pin so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no pins are at a potential lower than the ground voltage including an actual electric transient.
(4) Short circuit between pins and erroneous mounting
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between pins or between the pin and the power supply or the ground pin, the ICs can break down.
(5) Operation in strong electromagnetic field
Be noted that using ICs in the strong electromagnetic field can malfunction them.
(6) Input pins
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input pin. Therefore, pay thorough attention not to handle the input pins, such as to apply to the input pins a voltage lower than the ground respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input pins when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to the input pins a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.
(7) External capacitor
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.
(8) Thermal Shut Down Circuit (TSD)
This IC builds in a thermal shutdown (TSD) circuit. When junction temperatures become detection temperature or higher, the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at isolating the IC from thermal runaway as much as possible, is not aimed at the protection or guarantee of the IC. Therefore, do not continuously use the IC with this circuit operating or use the IC assuming its operation.
(9) Thermal design
Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in actual states of use.
(10) LDO
Use each output of LDO by the independence. Don’t use under the condition that each output is short-circuited because it has the possibility that an operation becomes unstable.
(11) About the pin for the test, the un-use pin
Prevent a problem from being in the pin for the test and the un-use pin under the state of actual use. Please refer to a function manual and an application notebook. And, as for the pin that doesn't specially have an explanation, ask our company person in charge.
(12) About the rush current
For ICs with more than one power supply, it is possible that rush current may flow instantaneously due to the internal powering sequence and delays. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of wiring.
(13) About the function description or application note or more.
The function description and the application notebook are the design materials to design a set. So, the contents of the materials aren't always guaranteed. Please design application by having fully examination and evaluation include the external elements.
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
36/37
2010.07 - Rev.
A
BD6184GUL
Ordering Part Number
B D 6 1 8 4 G U L - E 2
Part No. Part No. Package
GUL: VCSP50L3
VCSP50L3
(BD6184GUL)
1PIN MARK
35-φ0.25±0.05
0.05
(φ0.15)INDEX POST
0.325±0.05
BA
F E D C B A
1 2345 6
3.15±0.05
0.06 S
P=0.5× 5
<Tape and Reel information>
Embossed carrier tapeTape
3.1±0.05
0.55MAX
0.1±0.05
S
A
0.3±0.05
B
P=0.5× 5
(Unit : mm)
Quantity
Direction of feed
2500pcs E2
The direction is the 1pin of product is at the upper left when you hold
()
reel on the left hand and you pull out the tape on the right hand
Reel
1pin
Packaging and forming specification E2: Embossed tape and reel
Direction of feed
Order quantity needs to be multiple of the minimum quantity.
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
37/37
2010.07 - Rev.
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.
The content specied herein is subject to change for improvement without notice.
The content specied herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specications, which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specied in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.
The technical information specied herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.
Notice
The Products specied in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, ofce-automation equipment, commu­nication devices, electronic appliances and amusement devices).
The Products specied in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, re or any other damage caused in the event of the failure of any Product, such as derating, redundancy, re control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel­controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specied herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved.
http://www.rohm.com/contact/
R1010
A
Loading...