BD6184GUL is “Intelligent LED Driver” that is the most suitable for the cellular phone.
~ 8LED driver and output variable LDO4ch for LCD Backlight.
It has 3
It can be developed widely from the High End model to the Low End model.
As it has charge pump circuit for LED power supply, it is no need to use coils, and it contributes to small space.
VCSP50L3 (3.15mm x 3.10mm 0.5mm pitch)
It adopts the very thin CSP package that is the most suitable for the slim phone.
●Features
1) Total 3 ~ 8LEDs driver for LCD Backlight
・It has 4LEDs (it can select 4LED or 3LED) for exclusire use of Main and 4LEDs which can chose independent control
or a main allotment by resister setting.
・“Main Group” can be controlled by external PWM signal. ・ON/ Off and a setup of LED current are possible at the time of the independent control by the independence.
2) Charge Pump DC/DC for LED driver
・It has x1/x1.5/ x2 mode that will be selected automatically. ・The most suitable voltage up magnification is controlled automatically by LED port voltage. ・Soft start functions,Over voltage protection (Auto-return type),Over current protection (Auto-return type) loading
3) 4ch Low Drop Out Series Regulator (LDO)
・It has 16 steps selectable output voltage by the register. LDO1, LDO2, LDO3, LDO4: Iomax=150mA
4) Thermal shutdown
2
5) I
●Absolute Maximum Ratings (Ta=25℃)
Maximum Voltage VMAX 7 V
Power Dissipation Pd 1430
Operating Temperature Range Topr -30 ~ +85 ℃
Storage Temperature Range Tstg -55 ~ +150 ℃
●Operating Conditions (VBAT≥VIO, Ta=-30 ~ 85 ℃)
VBAT Input Voltage VBAT 2.7 ~ 5.5 V
VIO Pin Voltage VIO 1.65 ~ 3.3 V
C BUS FS mode (max 400 kHz) Compatibility
Parameter Symbol Ratings Unit
note) Power dissipation deleting is 11.44mW/ ℃, when it’s used in over 25 ℃.
(It’s deleting is on the board that is ROHM’s standard)
SCL transfers 1-bit data during H. SCL cannot change signal of SDA during H at the time of bit transfer. If SDA changes
while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal.
SDA
SCL
SDA a state of stability
Data are effective
SDA
:
It can change
Fig.8
・START and STOP condition
When SDA and SCL are H, data is not transferred on the I
2
C- bus. This condition indicates, if SDA changes from H to L
while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL
has been H, it will become STOP (P) conditions and an access end.
SDA
SCL
S P
START condition
STOP condition
Fig.9
・Acknowledge
It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data,
and a receiver returns the acknowledge signal by setting SDA to L.
A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The 3rd
byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register address is
carried out automatically. However, when a register address turns into the last address, it is set to 00h by the next
transmission. After the transmission end, the increment of the address is carried out.
It reads from the next byte after writing a slave address and R/W bit. The register to read considers as the following
address accessed at the end, and the data of the address that carried out the increment is read after it. If an address turns
into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried
out.
After specifying an internal address, it reads by repeated START condition and changing the data transfer direction. The
data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will
read out 00h. After the transmission end, the increment of the address is carried out.
S
XXXX XX X X X X X X X
X
slave addressregister addres s
0
R/W=0(write)R/W=1(read)
0
slave address
Sr1
P
D7D6D5D4D3D2D1D0D7 D6D5D4D3D2 D1 D0
DATADATA
from master to slave
from slave to master
register address
increment
=acknowledge(SDA LOW
=not acknowledge(SDA HIGH)
S=START condition
P=STOP con diti on
Sr=repeated START condition
P
register address
increment
Fig.13
As for reading protocol and multiple reading protocols, please do A(not acknowledge) after doing the final reading
operation. It stops with read when ending by A(acknowledge), and SDA stops in the state of Low when the reading data of
that time is 0. However, this state returns usually when SCL is moved, data is read, and A (not acknowledge) is done.
01h W - - W8MD W7MD W6MD W5MD W4MD - LED Pin function setting
02h W WPWMEN - W8EN W7EN W6EN W5EN - MLEDEN LED Power Control
03h W - IMLED(6) IMLED(5) IMLED(4)IMLED(3)IMLED(2)IMLED(1)IMLED(0) Main group current setting
04h - - - - - - - - - -
05h W - IW5(6) IW5(5) IW5(4) IW5(3) IW5(2) IW5(1) IW5(0) LED5 current setting
06h W - IW6(6) IW6(5) IW6(4) IW6(3) IW6(2) IW6(1) IW6(0) LED6 current setting
07h W - IW7(6) IW7(6) IW7(6) IW7(6) IW7(6) IW7(6) IW7(6) LED7 current setting
08h W - IW8(6) IW8(6) IW8(6) IW8(6) IW8(6) IW8(6) IW8(6) LED8 current setting
09h W THL (3) THL (2) THL (1) THL (0) TLH (3) TLH (2) TLH (1) TLH (0) Main Current transition
D7 D6 D5 D4 D3 D2 D1 D0
Register data
Function
0Ah - - - - - - - - - -
0Bh - - - - - - - - - -
0Ch - - - - - - - - - -
0Dh - - - - - - - - - -
0Eh - - - - - - - - - -
0Fh - - - - - - - - - -
10h - - - - - - - - - -
11h - - - - - - - - - -
12h - - - - - - - - - -
13h W - - - - LDO4ENLDO3ENLDO2ENLDO1EN LDO Power Control
14h W LDO2VSEL3 LDO2VSEL2 LDO2VSEL1 LDO2VSEL0 LDO1VSEL3 LDO1VSEL2 LDO1VSEL1 LDO1VSEL0
15h W LDO4VSEL3 LDO4VSEL2 LDO4VSEL1 LDO4VSEL0 LDO3VSEL3 LDO3VSEL2 LDO3VSEL1 LDO3VSEL0
Input "0” for "-".
A free address has the possibility to assign it to the register for the test.
Access to the register for the test and the undefined register is prohibited.
03h W - IMLED(6) IMLED(5)IMLED(4)IMLED(3) IMLED(2) IMLED(1) IMLED(0)
Initial Value 00h - 0 0 0 0 0 0 0
Bit7 : (Not used)
Bit[6:0] : IMLED (6:0) Main Group LED Current Setting
“0000000” : 0.2 mA (Initial Value) “1000000” : 13.0 mA
“0000001” : 0.4 mA “1000001” : 13.2 mA
“0000010” : 0.6 mA “1000010” : 13.4 mA
“0000011” : 0.8 mA “1000011” : 13.6 mA
“0000100” : 1.0 mA “1000100” : 13.8 mA
“0000101” : 1.2 mA “1000101” : 14.0 mA
“0000110” : 1.4 mA “1000110” : 14.2 mA
“0000111” : 1.6 mA “1000111” : 14.4 mA
“0001000” : 1.8 mA “1001000” : 14.6 mA
“0001001” : 2.0 mA “1001001” : 14.8 mA
“0001010” : 2.2 mA “1001010” : 15.0 mA
“0001011” : 2.4 mA “1001011” : 15.2 mA
“0001100” : 2.6 mA “1001100” : 15.4 mA
“0001101” : 2.8 mA “1001101” : 15.6 mA
“0001110” : 3.0 mA “1001110” : 15.8 mA
“0001111” : 3.2 mA “1001111” : 16.0 mA
“0010000” : 3.4 mA “1010000” : 16.2 mA
“0010001” : 3.6 mA “1010001” : 16.4 mA
“0010010” : 3.8 mA “1010010” : 16.6 mA
“0010011” : 4.0 mA “1010011” : 16.8 mA
“0010100” : 4.2 mA “1010100” : 17.0 mA
“0010101” : 4.4 mA “1010101” : 17.2 mA
“0010110” : 4.6 mA “1010110” : 17.4 mA
“0010111” : 4.8 mA “1010111” : 17.6 mA
“0011000” : 5.0 mA “1011000” : 17.8 mA
“0011001” : 5.2 mA “1011001” : 18.0 mA
“0011010” : 5.4 mA “1011010” : 18.2 mA
“0011011” : 5.6 mA “1011011” : 18.4 mA
“0011100” : 5.8 mA “1011100” : 18.6 mA
“0011101” : 6.0 mA “1011101” : 18.8 mA
“0011110” : 6.2 mA “1011110” : 19.0 mA
“0011111” : 6.4 mA “1011111” : 19.2 mA
“0100000” : 6.6 mA “1100000” : 19.4 mA
“0100001” : 6.8 mA “1100001” : 19.6 mA
“0100010” : 7.0 mA “1100010” : 19.8 mA
“0100011” : 7.2 mA “1100011” : 20.0 mA
“0100100” : 7.4 mA “1100100” : 20.2 mA
“0100101” : 7.6 mA “1100101” : 20.4 mA
“0100110” : 7.8 mA “1100110” : 20.6 mA
“0100111” : 8.0 mA “1100111” : 20.8 mA
“0101000” : 8.2 mA “1101000” : 21.0 mA
“0101001” : 8.4 mA “1101001” : 21.2 mA
“0101010” : 8.6 mA “1101010” : 21.4 mA
“0101011” : 8.8 mA “1101011” : 21.6 mA
“0101100” : 9.0 mA “1101100” : 21.8 mA
“0101101” : 9.2 mA “1101101” : 22.0 mA
“0101110” : 9.4 mA “1101110” : 22.2 mA
“0101111” : 9.6 mA “1101111” : 22.4 mA
“0110000” : 9.8 mA “1110000” : 22.6 mA
“0110001” : 10.0 mA “1110001” : 22.8 mA
“0110010” : 10.2 mA “1110010” : 23.0 mA
“0110011” : 10.4 mA “1110011” : 23.2 mA
“0110100” : 10.6 mA “1110100” : 23.4 mA
“0110101” : 10.8 mA “1110101” : 23.6 mA
“0110110” : 11.0 mA “1110110” : 23.8 mA
“0110111” : 11.2 mA “1110111” : 24.0 mA
“0 111 0 0 0 ” : 11 . 4 mA “1111000 ” : 2 4 . 2 mA
“0 111 0 0 1 ” : 11 . 6 mA “11110 0 1 ” : 2 4 . 4 mA
“0 111 0 1 0 ” : 11 . 8 mA “1111010 ” : 2 4 . 6 mA
“0 111 0 11 ” : 12 . 0 mA “1111011” : 24.8 mA
“0 1111 0 0 ” : 12 .2 mA “ 1111100” : 25.0 mA
“0 1111 0 1 ” : 12 . 4 mA “1111101” : 25.2 mA
“0 11111 0 ” : 12 . 6 mA “1111110” : 2 5.4 mA
“0 111111 ” : 12 . 8 mA “1111111” : 2 5 . 6 mA
05h W - IW5(6) IW5(5) IW5(4) IW5(3) IW5(2) IW5(1) IW5(0)
Initial Value 00h - 0 0 0 0 0 0 0
Bit7 : (Not used)
Bit[6:0] : IW5 (6:0) LED5 Current setting
“0000000” : 0.2 mA (Initial Value) “1000000” : 13.0 mA
“0000001” : 0.4 mA “1000001” : 13.2 mA
“0000010” : 0.6 mA “1000010” : 13.4 mA
“0000011” : 0.8 mA “1000011” : 13.6 mA
“0000100” : 1.0 mA “1000100” : 13.8 mA
“0000101” : 1.2 mA “1000101” : 14.0 mA
“0000110” : 1.4 mA “1000110” : 14.2 mA
“0000111” : 1.6 mA “1000111” : 14.4 mA
“0001000” : 1.8 mA “1001000” : 14.6 mA
“0001001” : 2.0 mA “1001001” : 14.8 mA
“0001010” : 2.2 mA “1001010” : 15.0 mA
“0001011” : 2.4 mA “1001011” : 15.2 mA
“0001100” : 2.6 mA “1001100” : 15.4 mA
“0001101” : 2.8 mA “1001101” : 15.6 mA
“0001110” : 3.0 mA “1001110” : 15.8 mA
“0001111” : 3.2 mA “1001111” : 16.0 mA
“0010000” : 3.4 mA “1010000” : 16.2 mA
“0010001” : 3.6 mA “1010001” : 16.4 mA
“0010010” : 3.8 mA “1010010” : 16.6 mA
“0010011” : 4.0 mA “1010011” : 16.8 mA
“0010100” : 4.2 mA “1010100” : 17.0 mA
“0010101” : 4.4 mA “1010101” : 17.2 mA
“0010110” : 4.6 mA “1010110” : 17.4 mA
“0010111” : 4.8 mA “1010111” : 17.6 mA
“0011000” : 5.0 mA “1011000” : 17.8 mA
“0011001” : 5.2 mA “1011001” : 18.0 mA
“0011010” : 5.4 mA “1011010” : 18.2 mA
“0011011” : 5.6 mA “1011011” : 18.4 mA
“0011100” : 5.8 mA “1011100” : 18.6 mA
“0011101” : 6.0 mA “1011101” : 18.8 mA
“0011110” : 6.2 mA “1011110” : 19.0 mA
“0011111” : 6.4 mA “1011111” : 19.2 mA
“0100000” : 6.6 mA “1100000” : 19.4 mA
“0100001” : 6.8 mA “1100001” : 19.6 mA
“0100010” : 7.0 mA “1100010” : 19.8 mA
“0100011” : 7.2 mA “1100011” : 20.0 mA
“0100100” : 7.4 mA “1100100” : 20.2 mA
“0100101” : 7.6 mA “1100101” : 20.4 mA
“0100110” : 7.8 mA “1100110” : 20.6 mA
“0100111” : 8.0 mA “1100111” : 20.8 mA
“0101000” : 8.2 mA “1101000” : 21.0 mA
“0101001” : 8.4 mA “1101001” : 21.2 mA
“0101010” : 8.6 mA “1101010” : 21.4 mA
“0101011” : 8.8 mA “1101011” : 21.6 mA
“0101100” : 9.0 mA “1101100” : 21.8 mA
“0101101” : 9.2 mA “1101101” : 22.0 mA
“0101110” : 9.4 mA “1101110” : 22.2 mA
“0101111” : 9.6 mA “1101111” : 22.4 mA
“0110000” : 9.8 mA “1110000” : 22.6 mA
“0110001” : 10.0 mA “1110001” : 22.8 mA
“0110010” : 10.2 mA “1110010” : 23.0 mA
“0110011” : 10.4 mA “1110011” : 23.2 mA
“0110100” : 10.6 mA “1110100” : 23.4 mA
“0110101” : 10.8 mA “1110101” : 23.6 mA
“0110110” : 11.0 mA “1110110” : 23.8 mA
“0110111” : 11.2 mA “1110111” : 24.0 mA
“0 111 0 0 0 ” : 11 . 4 mA “1111000 ” : 2 4 . 2 mA
“0 111 0 0 1 ” : 11 . 6 mA “11110 0 1 ” : 2 4 . 4 mA
“0 111 0 1 0 ” : 11 . 8 mA “1111010 ” : 2 4 . 6 mA
“0 111 0 11 ” : 12 . 0 mA “1111011” : 24.8 mA
“0 1111 0 0 ” : 12 .2 mA “ 1111100” : 25.0 mA
“0 1111 0 1 ” : 12 . 4 mA “1111101” : 25.2 mA
“0 11111 0 ” : 12 . 6 mA “1111110” : 2 5.4 mA
“0 111111 ” : 12 . 8 mA “1111111” : 2 5 . 6 mA
06h W - IW6(6) IW6(5) IW6(4) IW6(3) IW6(2) IW6(1) IW6(0)
Initial Value 00h - 0 0 0 0 0 0 0
Bit7 : (Not used)
Bit[6:0] : IW6 (6:0) LED6 Current setting
“0000000” : 0.2 mA (Initial Value) “1000000” : 13.0 mA
“0000001” : 0.4 mA “1000001” : 13.2 mA
“0000010” : 0.6 mA “1000010” : 13.4 mA
“0000011” : 0.8 mA “1000011” : 13.6 mA
“0000100” : 1.0 mA “1000100” : 13.8 mA
“0000101” : 1.2 mA “1000101” : 14.0 mA
“0000110” : 1.4 mA “1000110” : 14.2 mA
“0000111” : 1.6 mA “1000111” : 14.4 mA
“0001000” : 1.8 mA “1001000” : 14.6 mA
“0001001” : 2.0 mA “1001001” : 14.8 mA
“0001010” : 2.2 mA “1001010” : 15.0 mA
“0001011” : 2.4 mA “1001011” : 15.2 mA
“0001100” : 2.6 mA “1001100” : 15.4 mA
“0001101” : 2.8 mA “1001101” : 15.6 mA
“0001110” : 3.0 mA “1001110” : 15.8 mA
“0001111” : 3.2 mA “1001111” : 16.0 mA
“0010000” : 3.4 mA “1010000” : 16.2 mA
“0010001” : 3.6 mA “1010001” : 16.4 mA
“0010010” : 3.8 mA “1010010” : 16.6 mA
“0010011” : 4.0 mA “1010011” : 16.8 mA
“0010100” : 4.2 mA “1010100” : 17.0 mA
“0010101” : 4.4 mA “1010101” : 17.2 mA
“0010110” : 4.6 mA “1010110” : 17.4 mA
“0010111” : 4.8 mA “1010111” : 17.6 mA
“0011000” : 5.0 mA “1011000” : 17.8 mA
“0011001” : 5.2 mA “1011001” : 18.0 mA
“0011010” : 5.4 mA “1011010” : 18.2 mA
“0011011” : 5.6 mA “1011011” : 18.4 mA
“0011100” : 5.8 mA “1011100” : 18.6 mA
“0011101” : 6.0 mA “1011101” : 18.8 mA
“0011110” : 6.2 mA “1011110” : 19.0 mA
“0011111” : 6.4 mA “1011111” : 19.2 mA
“0100000” : 6.6 mA “1100000” : 19.4 mA
“0100001” : 6.8 mA “1100001” : 19.6 mA
“0100010” : 7.0 mA “1100010” : 19.8 mA
“0100011” : 7.2 mA “1100011” : 20.0 mA
“0100100” : 7.4 mA “1100100” : 20.2 mA
“0100101” : 7.6 mA “1100101” : 20.4 mA
“0100110” : 7.8 mA “1100110” : 20.6 mA
“0100111” : 8.0 mA “1100111” : 20.8 mA
“0101000” : 8.2 mA “1101000” : 21.0 mA
“0101001” : 8.4 mA “1101001” : 21.2 mA
“0101010” : 8.6 mA “1101010” : 21.4 mA
“0101011” : 8.8 mA “1101011” : 21.6 mA
“0101100” : 9.0 mA “1101100” : 21.8 mA
“0101101” : 9.2 mA “1101101” : 22.0 mA
“0101110” : 9.4 mA “1101110” : 22.2 mA
“0101111” : 9.6 mA “1101111” : 22.4 mA
“0110000” : 9.8 mA “1110000” : 22.6 mA
“0110001” : 10.0 mA “1110001” : 22.8 mA
“0110010” : 10.2 mA “1110010” : 23.0 mA
“0110011” : 10.4 mA “1110011” : 23.2 mA
“0110100” : 10.6 mA “1110100” : 23.4 mA
“0110101” : 10.8 mA “1110101” : 23.6 mA
“0110110” : 11.0 mA “1110110” : 23.8 mA
“0110111” : 11.2 mA “1110111” : 24.0 mA
“0 111 0 0 0 ” : 11 . 4 mA “1111000 ” : 2 4 . 2 mA
“0 111 0 0 1 ” : 11 . 6 mA “11110 0 1 ” : 2 4 . 4 mA
“0 111 0 1 0 ” : 11 . 8 mA “1111010 ” : 2 4 . 6 mA
“0 111 0 11 ” : 12 . 0 mA “1111011” : 24.8 mA
“0 1111 0 0 ” : 12 .2 mA “ 1111100” : 25.0 mA
“0 1111 0 1 ” : 12 . 4 mA “1111101” : 25.2 mA
“0 11111 0 ” : 12 . 6 mA “1111110” : 2 5.4 mA
“0 111111 ” : 12 . 8 mA “1111111” : 2 5 . 6 mA
07h W - IW7(6) IW7(5) IW7(4) IW7(3) IW7(2) IW7(1) IW7(0)
Initial Value 00h - 0 0 0 0 0 0 0
Bit7 : (Not used)
Bit[6:0] : IW7 (6:0) LED7 Current setting
“0000000” : 0.2 mA (Initial Value) “1000000” : 13.0 mA
“0000001” : 0.4 mA “1000001” : 13.2 mA
“0000010” : 0.6 mA “1000010” : 13.4 mA
“0000011” : 0.8 mA “1000011” : 13.6 mA
“0000100” : 1.0 mA “1000100” : 13.8 mA
“0000101” : 1.2 mA “1000101” : 14.0 mA
“0000110” : 1.4 mA “1000110” : 14.2 mA
“0000111” : 1.6 mA “1000111” : 14.4 mA
“0001000” : 1.8 mA “1001000” : 14.6 mA
“0001001” : 2.0 mA “1001001” : 14.8 mA
“0001010” : 2.2 mA “1001010” : 15.0 mA
“0001011” : 2.4 mA “1001011” : 15.2 mA
“0001100” : 2.6 mA “1001100” : 15.4 mA
“0001101” : 2.8 mA “1001101” : 15.6 mA
“0001110” : 3.0 mA “1001110” : 15.8 mA
“0001111” : 3.2 mA “1001111” : 16.0 mA
“0010000” : 3.4 mA “1010000” : 16.2 mA
“0010001” : 3.6 mA “1010001” : 16.4 mA
“0010010” : 3.8 mA “1010010” : 16.6 mA
“0010011” : 4.0 mA “1010011” : 16.8 mA
“0010100” : 4.2 mA “1010100” : 17.0 mA
“0010101” : 4.4 mA “1010101” : 17.2 mA
“0010110” : 4.6 mA “1010110” : 17.4 mA
“0010111” : 4.8 mA “1010111” : 17.6 mA
“0011000” : 5.0 mA “1011000” : 17.8 mA
“0011001” : 5.2 mA “1011001” : 18.0 mA
“0011010” : 5.4 mA “1011010” : 18.2 mA
“0011011” : 5.6 mA “1011011” : 18.4 mA
“0011100” : 5.8 mA “1011100” : 18.6 mA
“0011101” : 6.0 mA “1011101” : 18.8 mA
“0011110” : 6.2 mA “1011110” : 19.0 mA
“0011111” : 6.4 mA “1011111” : 19.2 mA
“0100000” : 6.6 mA “1100000” : 19.4 mA
“0100001” : 6.8 mA “1100001” : 19.6 mA
“0100010” : 7.0 mA “1100010” : 19.8 mA
“0100011” : 7.2 mA “1100011” : 20.0 mA
“0100100” : 7.4 mA “1100100” : 20.2 mA
“0100101” : 7.6 mA “1100101” : 20.4 mA
“0100110” : 7.8 mA “1100110” : 20.6 mA
“0100111” : 8.0 mA “1100111” : 20.8 mA
“0101000” : 8.2 mA “1101000” : 21.0 mA
“0101001” : 8.4 mA “1101001” : 21.2 mA
“0101010” : 8.6 mA “1101010” : 21.4 mA
“0101011” : 8.8 mA “1101011” : 21.6 mA
“0101100” : 9.0 mA “1101100” : 21.8 mA
“0101101” : 9.2 mA “1101101” : 22.0 mA
“0101110” : 9.4 mA “1101110” : 22.2 mA
“0101111” : 9.6 mA “1101111” : 22.4 mA
“0110000” : 9.8 mA “1110000” : 22.6 mA
“0110001” : 10.0 mA “1110001” : 22.8 mA
“0110010” : 10.2 mA “1110010” : 23.0 mA
“0110011” : 10.4 mA “1110011” : 23.2 mA
“0110100” : 10.6 mA “1110100” : 23.4 mA
“0110101” : 10.8 mA “1110101” : 23.6 mA
“0110110” : 11.0 mA “1110110” : 23.8 mA
“0110111” : 11.2 mA “1110111” : 24.0 mA
“0 111 0 0 0 ” : 11 . 4 mA “1111000 ” : 2 4 . 2 mA
“0 111 0 0 1 ” : 11 . 6 mA “11110 0 1 ” : 2 4 . 4 mA
“0 111 0 1 0 ” : 11 . 8 mA “1111010 ” : 2 4 . 6 mA
“0 111 0 11 ” : 12 . 0 mA “1111011” : 24.8 mA
“0 1111 0 0 ” : 12 .2 mA “ 1111100” : 25.0 mA
“0 1111 0 1 ” : 12 . 4 mA “1111101” : 25.2 mA
“0 11111 0 ” : 12 . 6 mA “1111110” : 2 5.4 mA
“0 111111 ” : 12 . 8 mA “1111111” : 2 5 . 6 mA
08h W - IW8(6) IW8(5) IW8(4) IW8(3) IW8(2) IW8(1) IW8(0)
Initial Value 00h - 0 0 0 0 0 0 0
Bit7 : (Not used)
Bit[6:0] : IW8 (6:0) LED8 Current setting
“0000000” : 0.2 mA (Initial Value) “1000000” : 13.0 mA
“0000001” : 0.4 mA “1000001” : 13.2 mA
“0000010” : 0.6 mA “1000010” : 13.4 mA
“0000011” : 0.8 mA “1000011” : 13.6 mA
“0000100” : 1.0 mA “1000100” : 13.8 mA
“0000101” : 1.2 mA “1000101” : 14.0 mA
“0000110” : 1.4 mA “1000110” : 14.2 mA
“0000111” : 1.6 mA “1000111” : 14.4 mA
“0001000” : 1.8 mA “1001000” : 14.6 mA
“0001001” : 2.0 mA “1001001” : 14.8 mA
“0001010” : 2.2 mA “1001010” : 15.0 mA
“0001011” : 2.4 mA “1001011” : 15.2 mA
“0001100” : 2.6 mA “1001100” : 15.4 mA
“0001101” : 2.8 mA “1001101” : 15.6 mA
“0001110” : 3.0 mA “1001110” : 15.8 mA
“0001111” : 3.2 mA “1001111” : 16.0 mA
“0010000” : 3.4 mA “1010000” : 16.2 mA
“0010001” : 3.6 mA “1010001” : 16.4 mA
“0010010” : 3.8 mA “1010010” : 16.6 mA
“0010011” : 4.0 mA “1010011” : 16.8 mA
“0010100” : 4.2 mA “1010100” : 17.0 mA
“0010101” : 4.4 mA “1010101” : 17.2 mA
“0010110” : 4.6 mA “1010110” : 17.4 mA
“0010111” : 4.8 mA “1010111” : 17.6 mA
“0011000” : 5.0 mA “1011000” : 17.8 mA
“0011001” : 5.2 mA “1011001” : 18.0 mA
“0011010” : 5.4 mA “1011010” : 18.2 mA
“0011011” : 5.6 mA “1011011” : 18.4 mA
“0011100” : 5.8 mA “1011100” : 18.6 mA
“0011101” : 6.0 mA “1011101” : 18.8 mA
“0011110” : 6.2 mA “1011110” : 19.0 mA
“0011111” : 6.4 mA “1011111” : 19.2 mA
“0100000” : 6.6 mA “1100000” : 19.4 mA
“0100001” : 6.8 mA “1100001” : 19.6 mA
“0100010” : 7.0 mA “1100010” : 19.8 mA
“0100011” : 7.2 mA “1100011” : 20.0 mA
“0100100” : 7.4 mA “1100100” : 20.2 mA
“0100101” : 7.6 mA “1100101” : 20.4 mA
“0100110” : 7.8 mA “1100110” : 20.6 mA
“0100111” : 8.0 mA “1100111” : 20.8 mA
“0101000” : 8.2 mA “1101000” : 21.0 mA
“0101001” : 8.4 mA “1101001” : 21.2 mA
“0101010” : 8.6 mA “1101010” : 21.4 mA
“0101011” : 8.8 mA “1101011” : 21.6 mA
“0101100” : 9.0 mA “1101100” : 21.8 mA
“0101101” : 9.2 mA “1101101” : 22.0 mA
“0101110” : 9.4 mA “1101110” : 22.2 mA
“0101111” : 9.6 mA “1101111” : 22.4 mA
“0110000” : 9.8 mA “1110000” : 22.6 mA
“0110001” : 10.0 mA “1110001” : 22.8 mA
“0110010” : 10.2 mA “1110010” : 23.0 mA
“0110011” : 10.4 mA “1110011” : 23.2 mA
“0110100” : 10.6 mA “1110100” : 23.4 mA
“0110101” : 10.8 mA “1110101” : 23.6 mA
“0110110” : 11.0 mA “1110110” : 23.8 mA
“0110111” : 11.2 mA “1110111” : 24.0 mA
“0 111 0 0 0 ” : 11 . 4 mA “1111000 ” : 2 4 . 2 mA
“0 111 0 0 1 ” : 11 . 6 mA “11110 0 1 ” : 2 4 . 4 mA
“0 111 0 1 0 ” : 11 . 8 mA “1111010 ” : 2 4 . 6 mA
“0 111 0 11 ” : 12 . 0 mA “1111011” : 24.8 mA
“0 1111 0 0 ” : 12 .2 mA “ 1111100” : 25.0 mA
“0 1111 0 1 ” : 12 . 4 mA “1111101” : 25.2 mA
“0 11111 0 ” : 12 . 6 mA “1111110” : 2 5.4 mA
“0 111111 ” : 12 . 8 mA “1111111” : 2 5 . 6 mA
09h W THL(3) THL(2) THL(1) THL(0) TLH(3) TLH(2) TLH(1) TLH(0)
Initial Value C7h 1 1 0 0 0 1 1 1
Bit[7:4] : THL (3:0) Main LED current Down transition per 0.2mA step
“0000” : 0.256 ms
“0001” : 0.512 ms
“0010” : 1.024 ms
“0011” : 2.048 ms
“0100” : 4.096 ms
“0101” : 8.192 ms
“0110” : 16.38 ms
“0111” : 32.77 ms
“1000” : 65.54 ms
“1001” : 131.1 ms
“1010” : 196.6 ms
“1011” : 262.1 ms
“1100” : 327.7 ms (Initial Value)
“1101” : 393.2 ms
“1110” : 458.8 ms
“1111” : 5 2 4 . 3 ms
Setting time is counted based on the switching frequency of Charge Pump.
The above value becomes the value of the Typ (1MHz) time.
Refer to “
Bit[3:0] : TLH (3:0) Main LED current Up transition per 0.2mA step
“0000” : 0.256 ms
“0001” : 0.512 ms
“0010” : 1.024 ms
“0011” : 2.048 ms
“0100” : 4.096 ms
“0101” : 8.192 ms
“0110” : 16.38 ms
“0111” : 32.77 ms (Initial Value)
“1000” : 65.54 ms
“1001” : 131.1 ms
“1010” : 196.6 ms
“1011” : 262.1 ms
“1100” : 327.7 ms
“1101” : 393.2 ms
“1110” : 458.8 ms
“1111” : 5 2 4 . 3 ms
Setting time is counted based on the switching frequency of Charge Pump.
The above value becomes the value of the Typ (1MHz) time.
Refer to “
“0000” : 1.20 V
“0001” : 1.30 V
“0010” : 1.50 V
“0011” : 1.60 V
“0100” : 1.80 V
“0101” : 2.20 V
“0110” : 2.40 V
“0111” : 2.50 V (Initial Value)
“1000” : 2.60 V
“1001” : 2.70 V
“1010” : 2.80 V
“1011” : 2.90 V
“1100” : 3.00 V
“1101” : 3.10 V
“1110” : 3.20 V
“1111” : 3.30 V
Bit[3:0] : LDO1VSEL [3:0]
“0000” : 1.20 V
“0001” : 1.30 V
“0010” : 1.50 V
“0011” : 1.60 V
“0100” : 1.80 V (Initial Value)
“0101” : 2.20 V
“0110” : 2.40 V
“0111” : 2.50 V
“1000” : 2.60 V
“1001” : 2.70 V
“1010” : 2.80 V
“1011” : 2.90 V
“1100” : 3.00 V
“1101” : 3.10 V
“1110” : 3.20 V
“1111” : 3.30 V
“0000” : 1.20 V
“0001” : 1.30 V
“0010” : 1.50 V
“0011” : 1.60 V
“0100” : 1.80 V
“0101” : 2.20 V
“0110” : 2.40 V
“0111” : 2.50 V
“1000” : 2.60 V
“1001” : 2.70 V
“1010” : 2.80 V (Initial Value)
“1011” : 2.90 V
“1100” : 3.00 V
“1101” : 3.10 V
“1110” : 3.20 V
“1111” : 3.30 V
Bit[3:0] : LDO3VSEL [3:0]
“0000” : 1.20 V
“0001” : 1.30 V
“0010” : 1.50 V
“0011” : 1.60 V
“0100” : 1.80 V (Initial Value)
“0101” : 2.20 V
“0110” : 2.40 V
“0111” : 2.50 V
“1000” : 2.60 V
“1001” : 2.70 V
“1010” : 2.80 V
“1011” : 2.90 V
“1100” : 3.00 V
“1101” : 3.10 V
“1110” : 3.20 V
“1111” : 3.30 V
There are two kinds of reset, software reset and hardware reset
(1) Software reset
・All the registers are initialized by SFTRST="1".
・SFTRST is an automatically returned to "0". (Auto Return 0).
(2) Hardware reset
・It shifts to hardware reset by changing RESETB pin “H” → “L”.
・The condition of all the registers under hardware reset pin is returned to the Initial Value, and it stops accepting all address.
・It’s possible to release from a state of hardware reset by changing RESETB pin “L” → “H”.
・RESETB pin has delay circuit. It doesn’t recognize as hardware reset in “L” period under 5μs.
(3) Reset Sequence
・When hardware reset was done during software reset, software reset is canceled when hardware reset is canceled.
(Because the Initial Value of software reset is “0”)
●VIODET
The decline of the VIO voltage is detected, and faulty operation inside the IC is prevented by giving resetting to Levelsift block
Image Block Diagram
VIO VBAT
DEToutput
Inside reset
VBAT
2.6V
Reset by
VIODET
(typ)1.0V
VIO
VIODET
RESETB
Digital
pin
I/O
R
LEVEL
SHIFT
RESETB
DET output
Inside reset
Fig.15 Fig.16
When the VIO voltage becomes more than typ1.0V(Vth of NMOS in the IC), VIODET is removed.
On the contrary, when VIO is as follows 1.0V, it takes reset. (The VBAT voltage being a prescribed movement range)
●Thermal Shut Down
A thermal shutdown function is effective in the following block.
DC/DC (Charge Pump)
LED Driver
LDO1, LDO2, LDO3, LDO4
The thermal shutdown function is detection temperature that it works is about 195
Detection temperature has a hysteresis, and detection release temperature is about 175
DC/DC circuit operates when any LED turns ON. (DCDCFON=0)
When the start of theDC/DC circuit is done, it has the soft start function to prevent a rush current.
Force of VBAT and VIO is to go as follows.
Technical Note
BAT
IO
RESETB
EN (*)
OUT
LEDcurrent
(*) An EN signal means the following in the upper figure.
EN = “MLEDEN” or “W*EN” (= LED The LED lighting control of a setup of connection VOUT)
But, as for Ta > T
T
T
changes by the capacitor connected to VOUT and inside OSC.
SOFT
is Typ 200μs (when the output capacitor of VOUT =1.0μF).
SOFT
TSD
T
VIOON=min 0.1ms
T
RSTB=min 0.1ms
T
SOFT
(typ : 195° C), a protection function functions, and an EN signal doesn't become effective.
Fig.17
Over Voltage protection / Over Current protection
DC/DC circuit output (VOUT) is equipped with the over-voltage protection and the over current protection function.
A VOUT over-voltage detection voltage is about 5.6V(typ). (VOUT at the time of rise in a voltage)
A detection voltage has a hysteresis, and a detection release voltage is about 5.4V(typ).
And, when VOUT output short to ground, input current of the battery terminal is limited by an over current protection
function.
The LED driver of 8ch is constructed as the ground plan.
Equivalence control is possible with LED1 ~ 4(LED4 can choose use/un-use with a register W4MD.).
LED5, LED6, LED7, LED8 is controllable individually.
As for LED5 ~ 8, grouping setting to the main control is possible, and main control becomes effective for the main group in
the allotment. LED5 ~ 8 are setups of grouping to the main control.
When LED5 ~ 8 are used by the individual control, a slope time setup (register THL and TLH) doesn't become effective.
●Current Adjustment
・When the register setting permits it, PWM drive by the external terminal (WPWMIN) is possible.
Register: WPWMEN
・It is suitable for the intensity correction by external control, because PWM based on Main LED current of register.
WPWMEN (Register) WPWMIN(External Pin) Main group LED current
0
1
" Normal operation " depends on the setup of each register.
EN(*)
DC/DC Output
WPWMIN input
L Normal operation
H Normal operation
L Forced OFF
H Normal operation
Internal Soft-Start Time
WPWMEN
LED Current
EN(*) : it means “MLEDEN” or “W*EN”.
It is possible to make it a WPWMIN input and W PWMEN=1 in front of EN(*).
PWM drive becomes effective after the time of an LED current standup.
When rising during PWM operation, as for the standup time of a DC/DC output, only the rate o
PWM Duty becomes late. Appearance may be influenced when extremely late frequency and
extremely low Duty are inputted.
Please secure 250 μs or more of H sections at the time of PWM pulse Force.
●Slope Process
・Slope process is given to LED current to dim naturally.
・LED current changes in the 256Step gradation in sloping.
Current Data which is set
・Up(dark→bright),Down(bright→dark)
LED current transition speed are set individually.
Register : THL(3:0)
Register : TLH(3:0)
・Main LED current changes as follows at the time as the slope.
TLH (THL) is setup of time of the current step 2/256.
TLH(3:0)
TLH
Main LED current
Up/Down transition Speed
25.6mA
256
=0.1mA
THL
Zoom
Fig.21
Main LED current
●I/O
When the RESETB pin is Low, the input buffers (SDA and SCL) are disabling for the Low consumption power.
When RESETB=L, output is fixed at “H.”
Technical Note
LED Current
THL (3:0)
is set individually
time
TLH(3:0)
time
SCL
(SDA)
EN
Level shifter
Logic
RESETB
Fig.22
Special care should be taken because a current path may be formed via a terminal protection diode, depending on an I/O
power-on sequence or an input level.
→ VIO ON (Enough rise up) → Reset release → LDO ON (Register access acceptable)
<End Sequence>
LDO OFF
→ Reset → VIO OFF (Enough fall down) → VBAT OFF
●About the pin management of the function that isn't used and test pins
Setting it as follows is recommended with the test pin and the pin which isn't used.
Set up pin referring to the “Equivalent circuit diagram” so that there may not be a problem under the actual use.
T2, T4 Short to GND because pin for test input
Technical Note
T1, T3 OPEN because pin for test output
Non-used LED Pin
WPWMIN
Short to GND (Must)
But, the setup of a register concerned with LED that isn’t used is prohibited.
Short to ground
(A Pull-Down resistance built-in terminal is contained, too.)
●Operation Settings (Flow Example)
Backlight: Fade-in/Fade-out
Apply supply voltage.
Backlight: Various settings
Backlight setting.
Slow time setting.
MLEDEN=1
The backlight turns on.
(Rise at designated slope time)
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can
break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any
special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety
measures including the use of fuses, etc.
(2) Power supply and ground line
Design PCB pattern to provide low impedance for the wiring between the power supply and the ground lines. Pay attention
to the interference by common impedance of layout pattern when there are plural power supplies and ground lines.
Especially, when there are ground pattern for small signal and ground pattern for large current included the external
circuits, please separate each ground pattern. Furthermore, for all power supply pins to ICs, mount a capacitor between
the power supply and the ground pin. At the same time, in order to use a capacitor, thoroughly check to be sure the
characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low
temperature, thus determining the constant.
(3) Ground voltage
Make setting of the potential of the ground pin so that it will be maintained at the minimum in any operating state.
Furthermore, check to be sure no pins are at a potential lower than the ground voltage including an actual electric
transient.
(4) Short circuit between pins and erroneous mounting
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can
break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between pins or between the pin
and the power supply or the ground pin, the ICs can break down.
(5) Operation in strong electromagnetic field
Be noted that using ICs in the strong electromagnetic field can malfunction them.
(6) Input pins
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the
parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the
input pin. Therefore, pay thorough attention not to handle the input pins, such as to apply to the input pins a voltage lower
than the ground respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input
pins when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to
the input pins a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.
(7) External capacitor
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a
degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.
(8) Thermal Shut Down Circuit (TSD)
This IC builds in a thermal shutdown (TSD) circuit. When junction temperatures become detection temperature or higher,
the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at isolating
the IC from thermal runaway as much as possible, is not aimed at the protection or guarantee of the IC. Therefore, do not
continuously use the IC with this circuit operating or use the IC assuming its operation.
(9) Thermal design
Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in
actual states of use.
(10) LDO
Use each output of LDO by the independence. Don’t use under the condition that each output is short-circuited because it
has the possibility that an operation becomes unstable.
(11) About the pin for the test, the un-use pin
Prevent a problem from being in the pin for the test and the un-use pin under the state of actual use. Please refer to a
function manual and an application notebook. And, as for the pin that doesn't specially have an explanation, ask our
company person in charge.
(12) About the rush current
For ICs with more than one power supply, it is possible that rush current may flow instantaneously due to the internal
powering sequence and delays. Therefore, give special consideration to power coupling capacitance, power wiring, width
of ground wiring, and routing of wiring.
(13) About the function description or application note or more.
The function description and the application notebook are the design materials to design a set. So, the contents of the
materials aren't always guaranteed. Please design application by having fully examination and evaluation include the
external elements.
No copying or reproduction of this document, in part or in whole, is permitted without the
consent of ROHM Co.,Ltd.
The content specied herein is subject to change for improvement without notice.
The content specied herein is for the purpose of introducing ROHM's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specications,
which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein
illustrate the standard usage and operations of the Products. The peripheral conditions must
be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specied in this document.
However, should you incur any damage arising from any inaccuracy or misprint of such
information, ROHM shall bear no responsibility for such damage.
The technical information specied herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of such technical information.
Notice
The Products specied in this document are intended to be used with general-use electronic
equipment or devices (such as audio visual equipment, ofce-automation equipment, communication devices, electronic appliances and amusement devices).
The Products specied in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a
Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard
against the possibility of physical injury, re or any other damage caused in the event of the
failure of any Product, such as derating, redundancy, re control and fail-safe designs. ROHM
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed
scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or
system which requires an extremely high level of reliability the failure or malfunction of which
may result in a direct threat to human life or create a risk of human injury (such as a medical
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any
of the Products for the above special purposes. If a Product is intended to be used for any
such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specied herein that may
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.