ROHM BD6095GUL Technical data

A
LED Drivers for LCD Backlights
BD6095GUL,BD6095GU
Description
BD6095GUL/BD6095GU is “Intelligent LED Driver” that is the most suitable for the cellular phone. It has many functions that are needed to "the upper side" of the cellular phone. It has ALC function, that is “Low Power Consumption System” realized. It has “Contents Adaptive Interface” (External PWM control), that is “Low Power Consumption System” realized. It adopts the very thin CSP package that is the most suitable for the slim phone.
Features
1) Total 5LEDs driver for LCD Backlight It can set maximum 25.6mA /ch by 128steps (Current DAC) for LCD Display. 3LEDs(LED1~LED3) are same controlled. Another 2LEDs(LED4~5) can be independent controlled. (Enable and Current setting) 2LEDs(LED4~5) can be attributed to “Main Group”. “Main Group” can be controlled by Auto Luminous Control (ALC) system. “Main Group” can be controlled by external PWM signal.
2) 1LED driver for Flash/Torch It can set maximum 120mA for Flash LED Driver. It has Flash mode and Torch mode, there can be changed by external pin or register.
3) Auto Luminous Control (ALC) Main backlight can be controlled by ambient brightness. Photo Diode, Photo Transistor, Photo IC(Linear/Logarithm) can be connected. Bias source for ambient light sensor, gain and offset adjustment are built in. LED driver current as ambient level can be customized.
4) 2ch Series Regulator (LDO) It has selectable output voltage by the register. LDO1,LDO2 : Iomax=150mA
5) Charge Pump DC/DC for LED driver It has x1/x1.33/x1.5/x2 mode that will be selected automatically. Soft start Over voltage protection (Auto-return type) Over current protection (Auto-return type)
6) Thermal shutdown (Auto-return type)
7) I2C BUS FS mode (max 400kHz)
8) VCSP50L3 (3.75mm
9) VCSP85H3 (3.75mm
*This chip is not designed to protect itself against radioactive rays. *This material may be changed on its way to designing. *This material is not the official specification.
Absolute Maximum Ratings (Ta=25 oC)
functions
2
, 0.55mmt max) Small and thin CSP package (BD6095GUL)
2
, 1.0mmt max) Small and thin CSP package (BD6095GU)
No.11040EAT31
Parameter Symbol Ratings Unit
Maximum voltage VMAX 7 V
Power Dissipation Pd 1500 mW
Operating Temperature Range Topr -35 ~ +85
Storage Temperature Range Tstg -55 ~ +150
note)Power dissipation deleting is 12.0mW/ oC, when it’s used in over 25 oC. (It’s deleting is on the board that is ROHM’s standard)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
1/41
o
C
o
C
2011.04 - Rev.
A
BD6095GUL,BD6095GU
y
Technical Note
Operating conditions (VBATVIO, Ta=-35~85 oC)
Parameter Symbol Ratrings Unit
VBAT input voltage VBAT 2.7~5.5 V
VIO pin voltage VIO 1.65~3.3 V
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VIO=1.8V)
Parameter Symbol
Min. Typ. Max.
Limits
Unit Condition
Circuit Current
VBAT Circuit current 1 IBAT1 - 0.1 1.0 μA RESETB=0V, VIO=0V
VBAT Circuit current 2 IBAT2 - 0.5 3.0 μA RESETB=0V, VIO=1.8V
VBAT Circuit current 3 IBAT3 - 90 150 μA
VBAT Circuit current 4 IBAT4 - 61 65 mA
VBAT Circuit current 5 IBAT5 - 83 94 mA
VBAT Circuit current 6 IBAT6 - 93 104 mA
VBAT Circuit current 7 IBAT7 - 124 136 mA
VBAT Circuit current 8 IBAT8 - 0.25 1.0 mA
LDO1=LDO2=ON, I Other blocks=OFF DC/DC x1mode, I
LED
VBAT=3.7V, LED Vf=3.0V DC/DC x1.33mode, I VBAT=3.1V, LED Vf=3.0V DC/DC x1.5mode, I VBAT=2.9V, LED Vf=3.5V DC/DC x2mode, I
LED
VBAT=3.2V, LED Vf=4.0V Onl
ALC block ON ADCYC=0.5s setting Except sensor current
LED Driver
LED current Step (Setup) ILEDSTP1 128 Step LED1~5
LED current Step (At slope) ILEDSTP2 256 Step LED1~5
LED current Step (Flash) ILEDSTPFL 32 Step LEDFL
White LED Maximum setup current IMAXWLED - 25.6 - mA LED1~5
Flash LED Maximum setup current IMAXFLED - 120 - mA LEDFL
LED1~5 current accuracy IWLED -7% 15 +7% mA I
Flash LED current accuracy IFLED -7% 60 +7% mA I
=15mA setting at VLED=1.0V
LED
=60mA setting at VLED=1.0V
LED
LED current Matching ILEDMT - - 4 % Between LED1~5 at VLED=1.0V
LED OFF Leak current ILKLED - - 1.0 μA VLED=4.5V
DC/DCCharge Pump)
Maximum Output voltage VoCP 4.65 5.1 5.55 V
Current Load IOUT - - 250 mA VBAT3.2V, VOUT=4V
Oscillator frequency fosc 0.8 1.0 1.2 MHz Over Voltage Protection detect
voltage
OVP - - 6.0 V
Short Circuit current limit Ilim - 125 250 mA VOUT=0V
I2C Input (SDA, SCL)
LOW level input voltage VIL -0.3 -
HIGH level input voltage VIH
Hysteresis of Schmitt trigger input Vhys
LOW level output voltage (SDA) at 3mA sink current
Input current each I/O pin lin -3 - 3 μA Input voltage = 0.1×VIO~0.9×VIO
VOL 0 - 0.3 V
0.75 × VIO
0.05 × VIO
0.25 × VIO
VBAT
­+0.3
V
V
- - V
RESETB
LOW level input voltage VIL -0.3 -
HIGH level input voltage VIH
0.75 × VIO
0.25 × VIO
VBAT
­+0.3
V
V
Input current each I/O pin Iin -3 - 3 μA Input voltage = 0.1×VIO~0.9×VIO
=0mA
LDO
=60mA
=60mA
LED
=60mA
LED
=60mA
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
2/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VIO=1.8V)
Parameter Symbol
Regulator (LDO1)
Output voltage Vo1
Output Current Io1 - - 150 mA Vo=1.8V
Dropout Voltage Vsat1 - 0.05 0.1 V VBAT=2.5V, Io=50mA, Vo=2.8V
Load stability ΔVo11 - 10 60 mV Io=1~150mA, Vo=1.8V
Input voltage stability ΔVo12 - 10 60 mV VBAT=3.4~4.5V, Io=50mA, Vo=1.8V
Ripple Rejection Ratio RR1 - 65 - dB
Short circuit current limit Ilim1 - 200 400 mA Vo=0V
Discharge resister at OFF ROFF1 - 1.0 1.5 k
Regulator (LDO2)
Output voltage Vo2
Output Current Io2 - - 150 mA Vo=2.5V
Dropout Voltage Vsat2 - 0.05 0.1 V VBAT=2.5V, Io=50mA, Vo=2.8V
Load stability Δvo21 - 10 60 mV Io=1~150mA, Vo=2.5V
Input voltage stability Δvo22 - 10 60 mV VBAT=3.4~4.5V, Io=50mA, Vo=2.5V
Ripple Rejection Ratio RR2 - 65 - dB
Short circuit current limit Ilim2 - 200 400 mA Vo=0V
Discharge resister at OFF ROFF2 - 1.0 1.5 k
Min. Typ. Max.
1.164 1.20 1.236 V Io=50mA
1.261 1.30 1.339 V Io=50mA
1.455 1.50 1.545 V Io=50mA
1.552 1.60 1.648 V Io=50mA
1.746 1.80 1.854 V Io=50mA <Initial Voltage>
2.134 2.20 2.266 V Io=50mA
2.328 2.40 2.472 V Io=50mA
2.425 2.50 2.575 V Io=50mA
2.522 2.60 2.678 V Io=50mA
2.619 2.70 2.781 V Io=50mA
2.716 2.80 2.884 V Io=50mA
2.813 2.90 2.987 V Io=50mA
2.910 3.00 3.090 V Io=50mA
3.007 3.10 3.193 V Io=50mA
3.104 3.20 3.296 V Io=50mA
3.201 3.30 3.399 V Io=50mA
1.164 1.20 1.236 V Io=50mA
1.261 1.30 1.339 V Io=50mA
1.455 1.50 1.545 V Io=50mA
1.552 1.60 1.648 V Io=50mA
1.746 1.80 1.854 V Io=50mA
2.134 2.20 2.266 V Io=50mA
2.328 2.40 2.472 V Io=50mA
2.425 2.50 2.575 V Io=50mA <Initial Voltage>
2.522 2.60 2.678 V Io=50mA
2.619 2.70 2.781 V Io=50mA
2.716 2.80 2.884 V Io=50mA
2.813 2.90 2.987 V Io=50mA
2.910 3.00 3.090 V Io=50mA
3.007 3.10 3.193 V Io=50mA
3.104 3.20 3.296 V Io=50mA
3.201 3.30 3.399 V Io=50mA
Limits
Unit Condition
f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz
f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz
Technical Note
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
3/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VIO=1.8V)
Parameter Symbol
Sensor Interface
SBIAS Output voltage VoS
SBIAS Output current IoS - - 30 mA Vo=3.0V
Min. Typ. Max.
2.850 3.0 3.150 V Io=200μA <Initial Voltage>
2.470 2.6 2.730 V Io=200μA
Limits
Unit Condition
Technical Note
SSENS Input range VISS 0 -
SBIAS Discharge resister at OFF
ADC resolution ADRES 8 bit
ADC non-linearity error ADINL -3 - +3 LSB
ADC differential non-linearity error
SSENS Input impedance RSSENS 1 - - M
WPWMIN
L level input voltage VILA -0.3 - 0.3 V
H level input voltage VIHA 1.4 -
Input current IinA - 3.6 10 μA Vin=1.8V
PWM input minimum High pulse width
GC1, GC2
L level output voltage VOLS - - 0.2 V IOL=1mA
H level output voltage VOHS
FLASHCNT
ROFFS - 1.0 1.5 k
ADDNL -1 - +1 LSB
PWpwm 80 - - μs
VoS
-0.2
VoS x
255/256
VBAT
+0.3
- - V IOH=1mA
V
V
L level input voltage VILF -0.3 - 0.3 V
H level input voltage VIHF 1.4 -
Input current IinF - 3.6 10 μA Vin=1.8V
VBAT
+0.3
V
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
4/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
A
Block Diagram / Application Circuit example
1μF (6.3V)
1μF (6.3V)
Technical Note
1μF (6.3V)
VBAT
VBATCP
VBAT1
VBATLDO
10µF
VIO
RESETB
SCL
SD
WPWMIN
FLASHCNT
Charge Pump Mode Control
I/O
IREF
Level
Shift
C1P
C1N
C2P
C2N
C3N
Charge Pump
x1 / x1.33 / x1.5 / x2
OVP
LED terminal voltage feedback
2
I
C interface
Digital Control
To L ED1 ~ 5 LEDFL
TSD
C3P
VOUT
2.2μF
(6.3V)
LED1
LED2
LED3
Back Light
LED4
LED5
LEDFL
Flash
BH1600FVC
SBIAS
SSENS
GC1
GC2
SGND
1μF
VREF
Sensor
I/F
LED
control
ALC
T3
T1
T2
CPGND
LEDGND
LDO1
Vo selectable
Io=150mA
LDO2
Vo selectable
Io=150mA
T4
(Open)
(Open)
LDO1O
1μF
LDO2O
1μF
Fig.1 Block Diagram / Application Circuit example
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
5/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Pin Arrangement Bottom View
Technical Note
F
E
D
C
B
A
T4 LDO1O SSENS VBAT1 SBIAS T3
VBATLDO LDO2O GC2 GC1 SGND VIO
WPWMIN LED1 FLASHCNT SDA SCL C1N
LED3 LED2 RESETB C1P C2N
LED4 LED5 LEDGND VOUT VBATCP C2P
T1 LEDFL CPGND C3N C3P T2
Total: 35 balls
1 2 3 4 5 6
Index
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
6/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Package
BD6095GUL
VCSP50L3 SIZE : 3.75mm A ball pitch : 0.5mm Height : 0.55mm max
Technical Note
BD6095
Lot No.
( Unit : mm )
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
7/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
BD6095GU
VCSP85H3 SIZE : 3.75mm A ball pitch : 0.5mm Height : 1.0mm max
Technical Note
D6095
Lot No.
( Unit : mm )
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
8/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Pin Functions
ESD Diode
No Ball No. Pin Name I/O
1 B5 VBATCP - - GND Power supply for charge pump A 2 F4 VBAT1 - - GND Power supply A 3 E1 VBATLDO - - GND Power supply for LDO A 4 A1 T1 I VBAT GND Test Input Pin (short to Ground) S 5 A6 T2 I VBAT GND Test Input Pin (short to Ground) S 6 F6 T3 O VBAT GND Test Output Pin (Open) M 7 F1 T4 O VBAT GND Test Output Pin (Open) N 8 E6 VIO - VBAT GND Power supply for I/O and Digital C
9 C4 RESETB I VBAT GND Reset input (L: reset, H: reset cancel) H 10 D4 SDA I/O VBAT GND I2C data input / output I 11 D5 SCL I VBAT GND I2C clock input H 12 A3 CPGND - VBAT - Ground B 13 B3 LEDGND - VBAT - Ground B 14 D6 C1N I/O VBAT GND Charge Pump capacitor is connected F 15 C5 C1P I/O - GND Charge Pump capacitor is connected G 16 C6 C2N I/O VBAT GND Charge Pump capacitor is connected F 17 B6 C2P I/O - GND Charge Pump capacitor is connected G 18 A4 C3N I/O VBAT GND Charge Pump capacitor is connected F 19 A5 C3P I/O - GND Charge Pump capacitor is connected G 20 B4 VOUT O - GND Charge Pump output pin A 21 F2 LDO1O O VBAT GND LDO1 output pin Q 22 E2 LDO2O O VBAT GND LDO2 output pin Q 23 D2 LED1 I - GND LED cathode connection 1 E 24 C2 LED2 I - GND LED cathode connection 2 E 25 C1 LED3 I - GND LED cathode connection 3 E 26 B1 LED4 I - GND LED cathode connection 4 E 27 B2 LED5 I - GND LED cathode connection 5 E 28 A2 LEDFL I - GND LED cathode connection for Flash E 29 F5 SBIAS O VBAT GND Bias output for the Ambient Light Sensor Q 30 F3 SSENS I VBAT GND Ambient Light Sensor input N 31 E4 GC1 O VBAT GND Ambient Light Sensor gain control output 1 X 32 E3 GC2 O VBAT GND Ambient Light Sensor gain control output 2 X 33 E5 SGND - VBAT - Ground B 34 D1 WPWMIN I VBAT GND External PWM input for Back Light L 35 D3 FLASHCNT I VBAT GND External enable for Flash L
The LED terminal that isn't used is to short-circuit to the ground. But, the setup of a register concerned with LED that isn't used is prohibited.
Total: 35 Pin
For
Power
For
Ground
Functions
Technical Note
Equivalent
Circuit
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
9/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Equivalent Circuit
A VBATB E
C
VBAT
Technical Note
VBAT F G
J
N VBAT VBAT
VIO VBAT
VBAT
K
O
VIOVIO
VBAT
H VIO VBAT I
P
VBAT VBAT
VIOVBAT
VBATVBATL
M
Q
VBAT VBAT
R
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
VBAT VBAT
S VIO VBAT
VBATVBAT
T
10/41
X
VoS VBAT
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Technical Note
I2C BUS format
The writing/reading operation is based on the I2C slave standard.
Slave address
A7 A6 A5 A4 A3 A2 A1 R/W
1 1 1 0 1 1 0 1/0
Bit Transfer
SCL transfers 1-bit data during H. SCL cannot change signal of SDA during H at the time of bit transfer. If SDA changes while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal.
SDA
SCL
SDA a state of stability
Data are effective
SDA
It can change
START and STOP condition
When SDA and SCL are H, data is not transferred on the I
2
C- bus. This condition indicates, if SDA changes from H to L while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL has been H, it will become STOP (P) conditions and an access end.
SDA
SCL
S P
START condition
STOP condition
Acknowledge
It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data, and a receiver returns the acknowledge signal by setting SDA to L.
DATA OUTPUT BY TRANSMITTER
DATA OUTPUT BY RECEIVER
SCL
START condition
S
12 89
not acknowledge
acknowledge
clock pulse for acknowledgement
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
11/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
A A
A
A
A7 A6 A5A4A3A2A1A
A
A
A
A
A
A
A
A A
A
A
A6A5A4A3A2A1A
A
A
A
A
Technical Note
Writing protocol
A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The 3rd byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register address is carried out automatically. However, when a register address turns into the last address, it is set to 00h by the next transmission. After the transmission end, the increment of the address is carried out.
*1 *1
D7D6 D5 D4 D3 D2 D1D0 D7 D6 D5 D4 D3 D2 D1 D0
X X X X X X X
S
R/W=0(write)
from master to slave
from slave to master
register addressslave address
00
DATA
register address
increment
=acknowledge(SDA LOW)
=not acknowledge(SDA HIGH) S=START condition P=STOP condition *1: Write Timing
DATA
register address
Reading protocol
It reads from the next byte after writing a slave address and R/W bit. The register to read considers as the following address accessed at the end, and the data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out.
X X X X X X X
R/W=1(read)
from master to slave
from slave to master
P
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
DATA
register address
increment
=acknowledge(SDA LOW)
=not acknowledge(SDA HIGH) S=START condition P=STOP condition
DATA slave address
register address
increment
1 S
Multiple reading protocols
After specifying an internal address, it reads by repeated START condition and changing the data transfer direction. The data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out.
P
increment
S
slave address
R/W=0(write)
from master to slave
from slave to master
0
7
register address
D7 D6 D5 D4 D3D2D1D0 D7D6 D5 D4 D3 D2 D1 D0
DATA DATA
register address
increment
Sr 1
0X X X X X X X
X X X X X X X
slave address
=acknowledge(SDA LOW)
=not acknowledge(SDA HIGH) S=START condition P=STOP condition Sr=repeated START condition
R/W=1(read)
P
register address
increment
As for reading protocol and multiple reading protocols, please do A(not acknowledge) after doing the final reading operation. It stops with read when ending by A(acknowledge), and SDA stops in the state of Low when the reading data of that time is
0. However, this state returns usually when SCL is moved, data is read, and A(not acknowledge) is done.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
12/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
S
Timing diagram
SDA
LOW
t
CL
SU;DAT
t
Technical Note
BUF
t
t
HD;STA
HD;STA
t
HD;DAT
S Sr P
t
t HIGH
Electrical Characteristics(Unless otherwise specified, Ta=25
Parameter Symbol
2
I
C BUS format
SU;STA
t
o
C, VBAT=3.6V, VIO=1.8V)
Standard-mode Fast-mode
Min. Typ. Max. Min. Typ. Max.
t SU;STO
S
Unit
SCL clock frequency fSCL 0 - 100 0 - 400 kHz
LOW period of the SCL clock tLOW 4.7 - - 1.3 - - μs
HIGH period of the SCL clock tHIGH 4.0 - - 0.6 - - μs
Hold time (repeated) START condition After this period, the first clock is generated
t
HD;STA 4.0 - - 0.6 - - μs
Set-up time for a repeated START condition tSU;STA 4.7 - - 0.6 - - μs
Data hold time tHD;DAT 0 - 3.45 0 - 0.9 μs
Data set-up time tSU;DAT 250 - - 100 - - ns
Set-up time for STOP condition tSU;STO 4.0 - - 0.6 - - μs
Bus free time between a STOP and START condition
t
BUF 4.7 - - 1.3 - - μs
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
13/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Technical Note
Register List
Address W/R
00h W - - - - - - - SFTRST
01h W - LED5MD(1) LED5MD(0) LED4MD - W PWMEN ALCEN MLEDMD LED, ALC Control
02h W FLASHEN TORCHEN SLEDEN MLEDEN - - LDO2EN LDO1EN Power Control
03h W - IMLED(6) IMLED(5) IMLED(4) IMLED(3) IMLED(2) IMLED(1) IMLED(0)
04h W - ISLED(6) ISLED(5) ISLED(4) ISLED(3) ISLED(2) ISLED(1) ISLED(0)
05h W - - - IFTLED(4) IFTLED(3) IFTLED(2) IFTLED(1) IFTLED(0)
06h W - - - IFFLED(4) IFFLED(3) IFFLED(2) IFFLED(1) IFFLED(0)
07h W LDO2VSEL(3) LDO2VSEL(2) LDO2VSEL(1) LDO2VSEL(0) LDO1VSEL(3) LDO1VSEL(2) LDO1VSEL(1) LDO1VSEL(0)
08h W THL(3) THL(2) THL(1) THL(0) TLH(3) TLH(2) TLH(1) TLH(0) Main Current transition
09h - - - - - - - - - -
0Ah - - - - - - - - - -
0Bh W ADCYC(1) ADCYC(0) GAIN(1) GAIN(0) STYPE VSB MDCIR SBIASON ALC mode setting
0Ch W SOFS(3) SOFS(2) SOFS(1) SOFS(0) SGAIN(3) SGAIN(2) SGAIN(1) SGAIN(0) ADC Data adjustment
D7 D6 D5 D4 D3 D2 D1 D0
Register data
Function
Software Reset
“Main Group” LED Current Setting at non-ALC mode
“Sub Group” LED Current Setting
Flash LED “Torch mode” Current Setting
Flash LED “Flash mode” Current Setting
LDO1, LDO2 Vout Setting
0Dh R - - - - AMB(3) AMB(2) AMB(1) AMB(0) Ambient level
0Eh W - IU0(6) IU0(5) IU0(4) IU0(3) IU0(2) IU0(1) IU0(0) Main Current at Ambient level 0h
0Fh W - IU1(6) IU1(5) IU1(4) IU1(3) IU1(2) IU1(1) IU1(0) Main Current at Ambient level 1h
10h W - IU2(6) IU2(5) IU2(4) IU2(3) IU2(2) IU2(1) IU2(0) Main Current at Ambient level 2h
11h W - IU3(6) IU3(5) IU3(4) IU3(3) IU3(2) IU3(1) IU3(0) Main Current at Ambient level 3h
12h W - IU4(6) IU4(5) IU4(4) IU4(3) IU4(2) IU4(1) IU4(0) Main Current at Ambient level 4h
13h W - IU5(6) IU5(5) IU5(4) IU5(3) IU5(2) IU5(1) IU5(0) Main Current at Ambient level 5h
14h W - IU6(6) IU6(5) IU6(4) IU6(3) IU6(2) IU6(1) IU6(0) Main Current at Ambient level 6h
15h W - IU7(6) IU7(5) IU7(4) IU7(3) IU7(2) IU7(1) IU7(0) Main Current at Ambient level 7h
16h W - IU8(6) IU8(5) IU8(4) IU8(3) IU8(2) IU8(1) IU8(0) Main Current at Ambient level 8h
17h W - IU9(6) IU9(5) IU9(4) IU9(3) IU9(2) IU9(1) IU9(0) Main Current at Ambient level 9h
18h W - IUA(6) IUA(5) IUA(4) IUA(3) IUA(2) IUA(1) IUA(0) Main Current at Ambient level Ah
19h W - IUB(6) IUB(5) IUB(4) IUB(3) IUB(2) IUB(1) IUB(0) Main Current at Ambient level Bh
1Ah W - IUC(6) IUC(5) IUC(4) IUC(3) IUC(2) IUC(1) IUC(0) Main Current at Ambient level Ch
1Bh W - IUD(6) IUD(5) IUD(4) IUD(3) IUD(2) IUD(1) IUD(0) Main Current at Ambient level Dh
1Ch W - IUE(6) IUE(5) IUE(4) IUE(3) IUE(2) IUE(1) IUE(0) Main Current at Ambient level Eh
1Dh W - IUF(6) IUF(5) IUF(4) IUF(3) IUF(2) IUF(1) IUF(0) Main Current at Ambient level Fh
Input "0” for "-". Prohibit to accessing the address that isn’t mentioned. The time indicated by register explanation is the TYP time made by dividing of the built-in OSC.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
14/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Register Map
Address 00h < Software Reset >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
00h W - - - - - - - SFTRST
Initial Value
00h - - - - - - - 0
Bit [7:1] : (Not used)
Bit0 : SFTRST Software Reset Command
“0” : Reset cancel “1” : Reset (All register initializing)
Refer to “The explanation of Reset” for detail.
Address 01h < LED, ALC Control >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
01h W - LED5MD(1) LED5MD(0) LED4MD - WPWMEN ALCEN MLEDMD
Initial Value
00h - 0 0 0 - 0 0 0
Bit7 : (Not used)
Bit [6:5] : LED5MD(1:0) LED5 Group Select (Main/Sub/OFF)
“00” : LED5 OFF “01” : reserved “10” : LED5 “Sub Group” “11” : LED5 “Main Group”
Refer to “The explanation of LED Driver” for detail.
Bit4 : LED4MD LED4 Group Select (Main/Sub)
“0” : LED4 “Sub Group” “1” : LED4 “Main Group”
Refer to “The explanation of LED Driver” for detail.
Bit3 : (Not used)
Bit2 : WPWMEN External PWM Input “WPWMIN” terminal Enable Control (Valid/Invalid)
“0” : WPWMIN input invalid “1” : WPWMIN input valid
Refer to “(11) Current Adjustment” of “The explanation of ALC” for detail.
Bit1 : ALCEN ALC Function Control (ON/OFF)
“0” : ALC function OFF “1” : ALC function ON
Refer to “(1) Auto Luminous Control ON/OFF” of “The explanation of ALC” for detail.
Bit0 : MLEDMD “Main Group” LED Mode Select (Non ALC / with ALC)
“0” : Non ALC mode “1” : ALC mode
Refer to “(1) Auto Luminous Control ON/OFF” of “The explanation of ALC” for detail.
Technical Note
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
15/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Technical Note
Address 02h < Power Control >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
02h W FLASHEN TORCHEN SLEDEN MLEDEN - - LDO2EN LDO1EN
Initial Value
00h 0 0 0 0 - - 0 0
Bit [7:6] : FLASHEN, TORCHEN LEDFL Control (Flash ON / Torch ON / OFF)
(At FLASHCNT=L) (At FLASHCNT=H) "FLASHCNT" means external pin.
“00” : LEDFL: OFF, Flash mode ON “01” : LEDFL: Torch mode ON, Flash mode ON “10” : LEDFL: Flash mode ON, Flash mode ON “11” : reserved
For Torch/Flash, refer to “Flash LED Current Setting” (address 05h, 06h) At FLASHCNT=H, even if RESETB=L, the Flash mode becomes ON, and LED is turned on. But, the setup of LED current becomes the minimum setting in this case. (Because the setting of LED current is reset at the time of RESETB=L.) Refer to “The explanation of LED Driver” for detail.
Bit5 : SLEDEN Sub Group LED Control (ON/OFF)
“0” : “Sub Group” LED OFF “1” : “Sub Group” LED ON
Bit4 : MLEDEN Main Group LED Control (ON/OFF)
“0” : “Main Group” LED OFF “1” : “Main Group” LED ON
Bit [3:2] : (Not used)
Bit1 : LDO2EN LDO2 Control (ON/OFF)
“0” : LDO2 OFF “1” : LDO2 ON
Bit0 : LDO1EN LDO1 Control (ON/OFF)
“0” : LDO1 OFF “1” : LDO1 ON
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
16/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Address 03h < “Main Group” LED Current Setting at non-ALC mode >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
03h W - IMLED(6) IMLED(5) IMLED(4) IMLED(3) IMLED(2) IMLED(1) IMLED(0)
Initial Value
00h - 0 0 0 0 0 0 0
Bit7 : (Not used)
Bit [6:0] : IMLED(6:0) Main Group LED Current Setting at non-ALC mode
“0000000” : 0.2 mA “1000000” : 13.0 mA “0000001” : 0.4 mA “1000001” : 13.2 mA
“0000010” : 0.6 mA “1000010” : 13.4 mA “0000011” : 0.8 mA “1000011” : 13.6 mA “0000100” : 1.0 mA “1000100” : 13.8 mA “0000101” : 1.2 mA “1000101” : 14.0 mA “0000110” : 1.4 mA “1000110” : 14.2 mA
“0000111” : 1.6 mA “1000111” : 14.4 mA
“0001000” : 1.8 mA “1001000” : 14.6 mA
“0001001” : 2.0 mA “1001001” : 14.8 mA
“0001010” : 2.2 mA “1001010” : 15.0 mA
“0001011” : 2.4 mA “1001011” : 15.2 mA
“0001100” : 2.6 mA “1001100” : 15.4 mA
“0001101” : 2.8 mA “1001101” : 15.6 mA
“0001110” : 3.0 mA “1001110” : 15.8 mA “0001111” : 3.2 mA “1001111” : 16.0 mA “0010000” : 3.4 mA “1010000” : 16.2 mA “0010001” : 3.6 mA “1010001” : 16.4 mA “0010010” : 3.8 mA “1010010” : 16.6 mA “0010011” : 4.0 mA “1010011” : 16.8 mA “0010100” : 4.2 mA “1010100” : 17.0 mA “0010101” : 4.4 mA “1010101” : 17.2 mA “0010110” : 4.6 mA “1010110” : 17.4 mA “0010111” : 4.8 mA “1010111” : 17.6 mA “0011000” : 5.0 mA “1011000” : 17.8 mA
“0011001” : 5.2 mA “1011001” : 18.0 mA
“0011010” : 5.4 mA “1011010” : 18.2 mA
“0011011” : 5.6 mA “1011011” : 18.4 mA
“0011100” : 5.8 mA “1011100” : 18.6 mA
“0011101” : 6.0 mA “1011101” : 18.8 mA
“0011110” : 6.2 mA “1011110” : 19.0 mA
“0011111” : 6.4 mA “1011111” : 19.2 mA “0100000” : 6.6 mA “1100000” : 19.4 mA “0100001” : 6.8 mA “1100001” : 19.6 mA “0100010” : 7.0 mA “1100010” : 19.8 mA “0100011” : 7.2 mA “1100011” : 20.0 mA “0100100” : 7.4 mA “1100100” : 20.2 mA
“0100101” : 7.6 mA “1100101” : 20.4 mA
“0100110” : 7.8 mA “1100110” : 20.6 mA
“0100111” : 8.0 mA “1100111” : 20.8 mA “0101000” : 8.2 mA “1101000” : 21.0 mA “0101001” : 8.4 mA “1101001” : 21.2 mA “0101010” : 8.6 mA “1101010” : 21.4 mA
“0101011” : 8.8 mA “1101011” : 21.6 mA
“0101100” : 9.0 mA “1101100” : 21.8 mA
“0101101” : 9.2 mA “1101101” : 22.0 mA “0101110” : 9.4 mA “1101110” : 22.2 mA “0101111” : 9.6 mA “1101111” : 22.4 mA “0110000” : 9.8 mA “1110000” : 22.6 mA
“0110001” : 10.0 mA “1110001” : 22.8 mA
“0110010” : 10.2 mA “1110010” : 23.0 mA “0110011” : 10.4 mA “1110011” : 23.2 mA
“0110100” : 10.6 mA “1110100” : 23.4 mA “0110101” : 10.8 mA “1110101” : 23.6 mA
“0110110” : 11.0 mA “1110110” : 23.8 mA
“0110111” : 11.2 mA “1110111” : 24.0 mA
“0111000” : 11.4 mA “1111000” : 24.2 mA
“0111001” : 11.6 mA “1111001” : 24.4 mA
“0111010” : 11.8 mA “1111010” : 24.6 mA “0111011” : 12.0 mA “1111011” : 24.8 mA
“0111100” : 12.2 mA “1111100” : 25.0 mA
“0111101” : 12.4 mA “1111101” : 25.2 mA “0111110” : 12.6 mA “1111110” : 25.4 mA “0111111” : 12.8 mA “1111111” : 25.6 mA
Technical Note
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
17/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Address 04h < “Sub Group” LED Current Setting >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
04h W - ISLED(6) ISLED(5) ISLED(4) ISLED(3) ISLED(2) ISLED(1) ISLED(0)
Initial Value
00h - 0 0 0 0 0 0 0
Bit7 : (Not used)
Bit [6:0] : ISLED(6:0) Sub Group LED Current Setting
“0000000” : 0.2 mA “1000000” : 13.0 mA
“0000001” : 0.4 mA “1000001” : 13.2 mA
“0000010” : 0.6 mA “1000010” : 13.4 mA “0000011” : 0.8 mA “1000011” : 13.6 mA “0000100” : 1.0 mA “1000100” : 13.8 mA “0000101” : 1.2 mA “1000101” : 14.0 mA “0000110” : 1.4 mA “1000110” : 14.2 mA
“0000111” : 1.6 mA “1000111” : 14.4 mA
“0001000” : 1.8 mA “1001000” : 14.6 mA
“0001001” : 2.0 mA “1001001” : 14.8 mA
“0001010” : 2.2 mA “1001010” : 15.0 mA
“0001011” : 2.4 mA “1001011” : 15.2 mA
“0001100” : 2.6 mA “1001100” : 15.4 mA
“0001101” : 2.8 mA “1001101” : 15.6 mA
“0001110” : 3.0 mA “1001110” : 15.8 mA “0001111” : 3.2 mA “1001111” : 16.0 mA “0010000” : 3.4 mA “1010000” : 16.2 mA “0010001” : 3.6 mA “1010001” : 16.4 mA “0010010” : 3.8 mA “1010010” : 16.6 mA “0010011” : 4.0 mA “1010011” : 16.8 mA “0010100” : 4.2 mA “1010100” : 17.0 mA “0010101” : 4.4 mA “1010101” : 17.2 mA “0010110” : 4.6 mA “1010110” : 17.4 mA “0010111” : 4.8 mA “1010111” : 17.6 mA “0011000” : 5.0 mA “1011000” : 17.8 mA
“0011001” : 5.2 mA “1011001” : 18.0 mA
“0011010” : 5.4 mA “1011010” : 18.2 mA
“0011011” : 5.6 mA “1011011” : 18.4 mA
“0011100” : 5.8 mA “1011100” : 18.6 mA
“0011101” : 6.0 mA “1011101” : 18.8 mA
“0011110” : 6.2 mA “1011110” : 19.0 mA
“0011111” : 6.4 mA “1011111” : 19.2 mA “0100000” : 6.6 mA “1100000” : 19.4 mA “0100001” : 6.8 mA “1100001” : 19.6 mA “0100010” : 7.0 mA “1100010” : 19.8 mA “0100011” : 7.2 mA “1100011” : 20.0 mA “0100100” : 7.4 mA “1100100” : 20.2 mA
“0100101” : 7.6 mA “1100101” : 20.4 mA
“0100110” : 7.8 mA “1100110” : 20.6 mA
“0100111” : 8.0 mA “1100111” : 20.8 mA “0101000” : 8.2 mA “1101000” : 21.0 mA “0101001” : 8.4 mA “1101001” : 21.2 mA “0101010” : 8.6 mA “1101010” : 21.4 mA
“0101011” : 8.8 mA “1101011” : 21.6 mA
“0101100” : 9.0 mA “1101100” : 21.8 mA
“0101101” : 9.2 mA “1101101” : 22.0 mA “0101110” : 9.4 mA “1101110” : 22.2 mA “0101111” : 9.6 mA “1101111” : 22.4 mA “0110000” : 9.8 mA “1110000” : 22.6 mA
“0110001” : 10.0 mA “1110001” : 22.8 mA
“0110010” : 10.2 mA “1110010” : 23.0 mA “0110011” : 10.4 mA “1110011” : 23.2 mA
“0110100” : 10.6 mA “1110100” : 23.4 mA “0110101” : 10.8 mA “1110101” : 23.6 mA
“0110110” : 11.0 mA “1110110” : 23.8 mA
“0110111” : 11.2 mA “1110111” : 24.0 mA
“0111000” : 11.4 mA “1111000” : 24.2 mA
“0111001” : 11.6 mA “1111001” : 24.4 mA
“0111010” : 11.8 mA “1111010” : 24.6 mA “0111011” : 12.0 mA “1111011” : 24.8 mA
“0111100” : 12.2 mA “1111100” : 25.0 mA
“0111101” : 12.4 mA “1111101” : 25.2 mA “0111110” : 12.6 mA “1111110” : 25.4 mA “0111111” : 12.8 mA “1111111” : 25.6 mA
Technical Note
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
18/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Address 05h < Flash LED “Torch mode” Current Setting >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
05h W - - - IFTLED(4) IFTLED(3) IFTLED(2) IFTLED(1) IFTLED(0)
Initial Value
Bit [7:5] : (Not used)
Bit [4:0] : IFTLED(4:0) “Torch mode” of LEDFL Current Setting
00h - - - 0 0 0 0 0
“00000” : 3.75 mA (Initial value) “00001” : 7.50 mA “00010” : 11.25 mA “00011” : 15.00 mA “00100” : 18.75 mA “00101” : 22.50 mA “00110” : 26.25 mA “00111” : 30.00 mA “01000” : 33.75 mA “01001” : 37.50 mA “01010” : 41.25 mA “01011” : 45.00 mA “01100” : 48.75 mA “01101” : 52.50 mA “01110” : 56.25 mA “01111” : 60.00 mA “10000” : 63.75 mA “10001” : 67.50 mA “10010” : 71.25 mA “10011” : 75.00 mA “10100” : 78.75 mA “10101” : 82.50 mA “10110” : 86.25 mA “10111” : 90.00 mA “11000” : 93.75 mA “11001” : 97.50 mA “11010” : 101.25 mA “11011” : 105.00 mA “11100” : 108.75 mA “11101” : 112.50 mA “11110” : 116.25 m A “11111” : 120.00 mA
* LED Current : 120 x 1/32 mA Step ( =3.75 mA Step)
Technical Note
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
19/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Address 06h < Flash LED “Flash mode” Current Setting >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
06h W - - - IFFLED(4) IFFLED(3) IFFLED(2) IFFLED(1) IFFLED(0)
Initial Value
Bit [7:5] : (Not used)
Bit [4:0] : IFFLED(4:0) “Flash mode” of LEDFL Current Setting
00h - - - 0 0 0 0 0
“00000” : 3.75 mA (Initial value) “00001” : 7.50 mA “00010” : 11.25 mA “00011” : 15.00 mA “00100” : 18.75 mA “00101” : 22.50 mA “00110” : 26.25 mA “00111” : 30.00 mA “01000” : 33.75 mA “01001” : 37.50 mA “01010” : 41.25 mA “01011” : 45.00 mA “01100” : 48.75 mA “01101” : 52.50 mA “01110” : 56.25 mA “01111” : 60.00 mA “10000” : 63.75 mA “10001” : 67.50 mA “10010” : 71.25 mA “10011” : 75.00 mA “10100” : 78.75 mA “10101” : 82.50 mA “10110” : 86.25 mA “10111” : 90.00 mA “11000” : 93.75 mA “11001” : 97.50 mA “11010” : 101.25 mA “11011” : 105.00 mA “11100” : 108.75 mA “11101” : 112.50 mA “11110” : 116.25 m A “11111” : 120.00 mA
* LED Current : 120 x 1/32 mA Step ( =3.75 mA Step)
Technical Note
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
20/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
)
Address 07h < LDO1 Vout Control, LDO2 Vout Control >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
Technical Note
07h W
Initial Value
LDO2VSEL(3)LDO2VSEL(2)LDO2VSEL(1)LDO2VSEL(0)LDO1VSEL(3)LDO1VSEL(2)LDO1VSEL(1)LDO1VSEL(0
74h 0 1 1 1 0 1 0 0
Bit [7:4] : LDO2VSEL(3:0) LDO2 Output Voltage Control
“0000” : 1.20 V “0001” : 1.30 V “0010” : 1.50 V “0011” : 1.60 V “0100” : 1.80 V “0101” : 2.20 V “0110” : 2.40 V “0111” : 2.50 V (Initial value) “1000” : 2.60 V “1001” : 2.70 V “1010” : 2.80 V “1011” : 2.90 V “1100” : 3.00 V “1101” : 3.10 V “1110” : 3.20 V “1111” : 3. 3 0 V
Bit [3:0] : LDO1VSEL(3:0) LDO1 Output Voltage Control
“0000” : 1.20 V “0001” : 1.30 V “0010” : 1.50 V “0011” : 1.60 V “0100” : 1.80 V (Initial value) “0101” : 2.20 V “0110” : 2.40 V “0111” : 2.50 V “1000” : 2.60 V “1001” : 2.70 V “1010” : 2.80 V “1011” : 2.90 V “1100” : 3.00 V “1101” : 3.10 V “1110” : 3.20 V “1111” : 3. 3 0 V
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
21/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Address 08h < Main Current transition >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
08h W THL(3) THL(2) THL(1) THL(0) TLH(3) TLH(2) TLH(1) TLH(0)
Initial Value
Bit [7:4] : THL(3:0) Main LED current Down transition per 0.2mA step
Setting time is counted based on the switching frequency of Charge Pump.
Bit [3:0] : TLH(3:0) Main LED current Up transition per 0.2mA step
Setting time is counted based on the switching frequency of Charge Pump.
C7h 1 1 0 0 0 1 1 1
“0000” : 0.256 ms “0001” : 0.512 ms “0010” : 1.024 ms “0011” : 2.048 ms “0100” : 4.096 ms “0101” : 8.192 ms “0110” : 16.38 ms “0111” : 32.77 ms “1000” : 65.54 ms “1001” : 131.1 ms “1010” : 196.6 ms “1011” : 262.1 ms “1100” : 327.7 ms (Initial value) “1101” : 393.2 ms “1110” : 458.8 ms “1111” : 524.3 m s
The above value becomes the value of the Typ (1MHz) time. Refer to “(9) Slope Process” of “The explanation of ALC” for detail.
“0000” : 0.256 ms “0001” : 0.512 ms “0010” : 1.024 ms “0011” : 2.048 ms “0100” : 4.096 ms “0101” : 8.192 ms “0110” : 16.38 ms “0111” : 32.77 ms (Initial value) “1000” : 65.54 ms “1001” : 131.1 ms “1010” : 196.6 ms “1011” : 262.1 ms “1100” : 327.7 ms “1101” : 393.2 ms “1110” : 458.8 ms “1111” : 524.3 m s
The above value becomes the value of the Typ (1MHz) time. Refer to “(9) Slope Process” of “The explanation of ALC” for detail.
Technical Note
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
22/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Address 0Bh < ALC mode setting >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
0Bh W ADCYC(1) ADCYC(0) GAIN(1) GAIN(0) STYPE VSB MDCIR SBIASON
Initial Value
Bit [7:6] : ADCYC(1:0) ADC Measurement Cycle
Refer to “(4) A/D conversion” of “The explanation of ALC” for detail.
Bit [5:4] : GAIN(1:0) Sensor Gain Switching Function Control (This is effective only at STYPE=“0”.)
Refer to “(3) Gain control” of “The explanation of ALC” for detail.
Bit3 : STYPE Ambient Light Sensor Type Select (Linear/Logarithm)
Refer to “(7) Ambient level detection” of “The explanation of ALC” for detail.
Bit2 : VSB SBIAS Output Voltage Control
Refer to “(2) I/V conversion” of “The explanation of ALC” for detail.
Bit1 : MDCIR LED Current Reset Select by Mode Change
Refer to “(10) LED current reset when mode change” of “The explanation of ALC” for detail.
Bit0 : SBIASON SBIAS Control (ON/OFF)
Refer to “(4) A/D conversion” of “The explanation of ALC” for detail.
81h 1 0 0 0 0 0 0 1
“00” : 0.52 s “01” : 1.05 s “10” : 1.57 s (Initial value) “11” : 2.10 s
“00” : Auto Change (Initial value) “01” : High “10” : Low “11” : Fixed
“0” : For Linear sensor (Initial value) “1” : For Log sensor
“0” : SBIAS output voltage 3.0V (Initial value) “1” : SBIAS output voltage 2.6V
“0” : LED current non-reset when mode change (Initial value) “1” : LED current reset when mode change
“0” : Measurement cycle synchronous “1” : Usually ON (at ALCEN=1) (Initial value)
Technical Note
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
23/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Address 0Ch < ADC Data adjustment >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
0Ch W SOFS(3) SOFS(2) SOFS(1) SOFS(0) SGAIN(3) SGAIN(2) SGAIN(1) SGAIN(0)
Initial Value
Bit [7:4] : SOFS(3:0) AD Data Offset Adjustment
Offset adjust is performed to ADC data. Refer to “(5) ADC data Gain/offset adjustment” of “The explanation of ALC” for detail.
Bit [3:0] : SGAIN(3:0) AD Data Gain Adjustment
Gain adjust is performed to ADC data. The data after adjustment are round off by 8-bit data. Refer to “(5) ADC data Gain/offset adjustment” of “The explanation of ALC” for detail.
00h 0 0 0 0 0 0 0 0
“1000” : -8 LSB “1001” : -7 LSB “1010” : -6 LSB “1011” : -5 LSB “1100” : -4 LSB “1101” : -3 LSB “1110” : -2 LSB “1111” : -1 LSB “0000” : non-adjust “0001” : +1 LSB “0010” : +2 LSB “0011” : +3 LSB “0100” : +4 LSB “0101” : +5 LSB “0110” : +6 LSB “0111” : +7 LSB
“1000” : reserved “1001” : reserved “1010” : -37.50% “1011” : -31.25% “1100” : -25.00% “1101” : -18.75% “1110” : -12.50% “1111” : -6.25% “0000” : non-adjust “0001” : +6.25% “0010” : +12.50% “0011” : +18.75% “0100” : +25.00% “0101” : +31.25% “0110” : +37.50% “0111” : reserved
Technical Note
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
24/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Address 0Dh < Ambient level (Read Only) >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
0Dh R - - - - AMB(3) AMB(2) AMB(1) AMB(0)
Initial Value
- - - - - - - - -
Bit [7:4] : (Not used)
Bit [3:0] : AMB(3:0) Ambient Level
“0000” : 0h “0001” : 1h “0010” : 2h “0011” : 3h “0100” : 4h “0101” : 5h “0110” : 6h “0111” : 7h “1000” : 8h “1001” : 9h “1010” : Ah “1011” : Bh “1100” : Ch “1101” : Dh “1110” : Eh “1111” : Fh
The data can be read through I
2
C.
Refer to “(7) Ambient level detection” of “The explanation of ALC” for detail.
Technical Note
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
25/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Address 0Eh~1Dh < Main Current at Ambient level 0h~Fh >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
0Eh~1Dh W - IU*(6) IU*(5) IU*(4) IU*(3) IU*(2) IU*(1) IU*(0)
Initial Value
-
Refer to after page for initial table.
“*” means 0~F.
Bit7 : (Not used)
Bit [6:0] : IU*(6:0) Main Current at Ambient Level for 0h~Fh
“0000000” : 0.2 mA “1000000” : 13.0 mA
“0000001” : 0.4 mA “1000001” : 13.2 mA
“0000010” : 0.6 mA “1000010” : 13.4 mA “0000011” : 0.8 mA “1000011” : 13.6 mA “0000100” : 1.0 mA “1000100” : 13.8 mA “0000101” : 1.2 mA “1000101” : 14.0 mA “0000110” : 1.4 mA “1000110” : 14.2 mA
“0000111” : 1.6 mA “1000111” : 14.4 mA
“0001000” : 1.8 mA “1001000” : 14.6 mA
“0001001” : 2.0 mA “1001001” : 14.8 mA
“0001010” : 2.2 mA “1001010” : 15.0 mA
“0001011” : 2.4 mA “1001011” : 15.2 mA
“0001100” : 2.6 mA “1001100” : 15.4 mA
“0001101” : 2.8 mA “1001101” : 15.6 mA
“0001110” : 3.0 mA “1001110” : 15.8 mA “0001111” : 3.2 mA “1001111” : 16.0 mA “0010000” : 3.4 mA “1010000” : 16.2 mA “0010001” : 3.6 mA “1010001” : 16.4 mA “0010010” : 3.8 mA “1010010” : 16.6 mA “0010011” : 4.0 mA “1010011” : 16.8 mA “0010100” : 4.2 mA “1010100” : 17.0 mA “0010101” : 4.4 mA “1010101” : 17.2 mA “0010110” : 4.6 mA “1010110” : 17.4 mA “0010111” : 4.8 mA “1010111” : 17.6 mA “0011000” : 5.0 mA “1011000” : 17.8 mA
“0011001” : 5.2 mA “1011001” : 18.0 mA
“0011010” : 5.4 mA “1011010” : 18.2 mA
“0011011” : 5.6 mA “1011011” : 18.4 mA
“0011100” : 5.8 mA “1011100” : 18.6 mA
“0011101” : 6.0 mA “1011101” : 18.8 mA
“0011110” : 6.2 mA “1011110” : 19.0 mA
“0011111” : 6.4 mA “1011111” : 19.2 mA “0100000” : 6.6 mA “1100000” : 19.4 mA “0100001” : 6.8 mA “1100001” : 19.6 mA “0100010” : 7.0 mA “1100010” : 19.8 mA “0100011” : 7.2 mA “1100011” : 20.0 mA “0100100” : 7.4 mA “1100100” : 20.2 mA
“0100101” : 7.6 mA “1100101” : 20.4 mA
“0100110” : 7.8 mA “1100110” : 20.6 mA
“0100111” : 8.0 mA “1100111” : 20.8 mA “0101000” : 8.2 mA “1101000” : 21.0 mA “0101001” : 8.4 mA “1101001” : 21.2 mA “0101010” : 8.6 mA “1101010” : 21.4 mA
“0101011” : 8.8 mA “1101011” : 21.6 mA
“0101100” : 9.0 mA “1101100” : 21.8 mA
“0101101” : 9.2 mA “1101101” : 22.0 mA “0101110” : 9.4 mA “1101110” : 22.2 mA “0101111” : 9.6 mA “1101111” : 22.4 mA “0110000” : 9.8 mA “1110000” : 22.6 mA
“0110001” : 10.0 mA “1110001” : 22.8 mA
“0110010” : 10.2 mA “1110010” : 23.0 mA “0110011” : 10.4 mA “1110011” : 23.2 mA
“0110100” : 10.6 mA “1110100” : 23.4 mA “0110101” : 10.8 mA “1110101” : 23.6 mA
“0110110” : 11.0 mA “1110110” : 23.8 mA
“0110111” : 11.2 mA “1110111” : 24.0 mA
“0111000” : 11.4 mA “1111000” : 24.2 mA
“0111001” : 11.6 mA “1111001” : 24.4 mA
“0111010” : 11.8 mA “1111010” : 24.6 mA “0111011” : 12.0 mA “1111011” : 24.8 mA
“0111100” : 12.2 mA “1111100” : 25.0 mA
“0111101” : 12.4 mA “1111101” : 25.2 mA “0111110” : 12.6 mA “1111110” : 25.4 mA “0111111” : 12.8 mA “1111111” : 25.6 mA
Technical Note
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
26/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
V
V
Explanation for operate
1. The explanation of Reset There are two kinds of reset, software reset and hardware reset.
Software reset
All the registers are initialized by SFTRST="1". SFTRST is an automatically returned to "0". (Auto Return 0).
Hardware reset
It shifts to hardware reset by changing RESETB pin “H” “L”. The condition of all the registers under hardware reset pin is returned to the initial value, and it stops accepting all address. It’s possible to release from a state of hardware reset by changing RESETB pin “L” “H”. RESETB pin has delay circuit. It doesn’t recognize as hardware reset in “L” period under 5μs. Even if RESETB=L, at FLASHCNT=H, Flash mode becomes ON by minimum setting.
Reset Sequence
When hardware reset was done during software reset, software reset is canceled whenhardware reset is canceled.
(Because the initial value of software reset is “0”)
2. The explanation of Thermal shutdown The blocks which thermal shutdown function is effective in the following.
Charge pump LED Driver LDO1, LDO2, SBIAS
A thermal shutdown function works in about 190 Detection temperature has a hysteresis, and detection release temperature is about 170
3. The explanation of Charge Pump for LED driver Charge Pump block is designed for the power supply for LED driver. It has the x1.0/x1.33/x1.5/x2.0 mode. It changes to the most suitable mode automatically by Vf of LED and the battery voltage. It has the mode of x1.33 and it can be higher efficiency than traditional.
Start
Charge Pump circuit operates when any LED turns ON.
Soft start
When the start of the Charge Pump circuit is done, it has the soft start function to prevent a rush current.
BAT
IO
RESETB
EN (*1)
T
VBATON
T
VIOON=min 0.1ms
T
RSTB=min 0.1ms
o
C.
Technical Note
o
C.(Design reference value)
T
VBATOFF
T
VIOOFF=min 1ms
T
RST=min 0ms
T
SOFT
VOUT
LED Current
(*1) An EN signal in the upper figure means the following;
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
“EN is high” = Any LED turns ON
But if Ta >TSD, EN Signal doesn’t become effective.
27/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Charge Pump Mode transition
The transition of boost multiple transits automatically by Vf of LED and the battery voltage.
BD6095GUL/BD6095GU changes the four charge pump movement mode automatically to realize low consumption power.
< Mode Up >
A LED terminal voltage is monitored, and the movement mode is changed to ×1×1.33, ×1.33×1.5 and ×1.5→×2 automatically when a LED terminal voltage is lower than 0.2V (typ). At this time, the maximum output voltage of the charge pump is restricted to 5.1V (typ).
< Mode Down >
The rise in the battery voltage, the off control of LED lighting, “Main Group” LED current value and the data writing to the address 04h,05h,06h (LED Current Setting) is monitored, and the movement mode is changed to ×2×1.5×1.33×1 automatically. This mode down movement lasts until a mode up movement happens. At Flash mode and Torch mode, the mode down doesn't happen. The thresholds of rise in a battery voltage are 2.9V, 3.3V, 3.7V and 4.1V (typ). And, as for the off control of LED lighting, it is shown that MLEDEN, SLEDEN, TORCHEN, FLASHEN and FLASHCNT transited in “1” →“0”.
Over Voltage protection / Over Current protection
Charge Pump circuit output (VOUT) is equipped with the over-voltage protection and the over current protection function. A VOUT over-voltage detection voltage is about 5.5V(typ). (VOUT at the time of rise in a voltage) A detection voltage has a hysteresis, and a detection release voltage is about 5.1V(typ). And, when VOUT output short to ground, input current of the battery terminal is limited by an over current protection function.
mode down=”H”
mode down=”H”
mode down=”H”
All LED OFF
RESET
STANDBY
1
SOFT
After “VOUT>1.5V(t yp)” detected, 142us(typ) wait
X1.0
X1.33
X1.5
X2.0
ALL off
Any LED on
Ta< T
TSD
VBAT>2.3V(typ)
CP x1.0 mode
CP x1.0 mode
mode up=”H”
CP x1.33 mode
mode up=”H”
CP x1.5mode
mode up=”H”
CP x2.0mode
Technical Note
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
28/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
4. The explanation of LED Driver
LED1~LED3
LED1~LED3 are same controlled. These are using for “Main backlight” and we call it “Main Group”. Current setting: IMLED(6:0) ON/OFF: MLEDEN (ON=1, OFF=0)
LED4~LED5
LED4 and LED5 can be independent controlled. There are attributed to “Main Group” or “Sub Group”. If these are attributed to “Main Group”, these are controlled by same as LED1~LED3. <Independent Control> Current setting: ISLED(6:0) ON/OFF: SLEDEN (ON=1, OFF=0) <Attribute to “Main Group”> Current setting: IMLED(6:0) ON/OFF: MLEDEN (ON=1, OFF=0)
The number of LED Lighting (LED1~LED5)
The number of lighting for Main/Sub LED can be set up grouping by the register The setting of the number of lighting is as the following. The Main/Sub LED is independently controlled by register MLEDEN, SLEDEN.
LED5MD(1) LED5MD(0) LED4MD LED1 LED2 LED3 LED4 LED5
0 0 0 Main Main Main Sub OFF
0 0 1 Main Main Main Main OFF
1 0 0 Main Main Main Sub Sub
1 0 1 Main Main Main Main Sub
1 1 0 Main Main Main Sub Main
1 1 1 Main Main Main Main Main
The change of the Grouping setting with turning it on is prohibited. The LED terminal that isn’t used must be connected to the ground.
LEDFL
LEDFL is for Flash. It has the two mode, “Torch” and “Flash”. Torch mode current: IFTLED(4:0) Flash mode current: IFFLED(4:0) ON/OFF: TORCHEN, FLASHEN, FLASHCNT (refer to “Power Control” address 02h)
Flash mode is started by the rise edge of FLASHEN or FLASHCNT. At FLASHCNT=H, even if RESETB=L, the Flash mode becomes ON, and LED is turned on. (But, the setup of LED current becomes the minimum setting in this case because current setting is reset.) Please set FLASHCNT=L when you don't turn on Flash.
Technical Note
Main/Sub
Setting Example
3 / 0 , 3 / 1
4 / 0
3 / 0 , 3 / 2
4 / 0 , 4 / 1
4 / 0 , 4 / 1
5 / 0
TORCHEN
FLASHEN or FLASHCNT
LED current
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
IFTLED (4:0)
< Torch mode > < Flash mode > < Torch mode >
IFFLED (4:0)
TORCHEN
FLASHEN or FLASHCNT
LED current
29/41
IFFLED (4:0)
< OFF > < Flash mode > < OFF >
2011.04 - Rev.
A
BD6095GUL,BD6095GU
5. The explanation of ALC (Auto Luminous Control) LCD backlight current adjustment is possible in the basis of the data detected by external ambient light sensor.
• Extensive selection of the ambient light sensors (Photo Diode, Photo Transistor, Photo IC(linear/logarithm)) is
possible by building adjustment feature of Sensor bias, gain adjustment and offset adjustment.
• Ambient data is changed into ambient level by digital data processing, and it can be read through I
• Register setting can customize a conversion to LED current. (Initial value is pre-set.)
• Natural dimming of LED driver is possible with the adjustment of the current transition speed.
Sensor
Usually ON / intermittent
Output Voltage
SBIAS
SSENS
SBIAS
ADC
Offset Correction
Gain Correction
Data
Correction
Sensor type
Logarithmic Conv.
Ambient Level detect
Average
Conversion
Tab l e
Current
Conversion
Mode Sel ect
PWM enabling
Slope Timer
Slope
process
WPWMIN
Technical Note
2
C I/F.
LED*
LCD
BackLight
GC1
GC2
Gain
Control
Sensor Gain Control
Ambient Level
Sensor I/F LED control
* Wave form in this explanation just shows operation image, not shows absolute value precisely.
(1) Auto Luminous Control ON/OFF
ALC block can be independent setting ON/OFF. It can use only to measure the Ambient level.
Register : ALCEN Register : MLEDEN Register : MLEDMD
Refer to under about the associate ALC mode and Main LED current.
ALCEN MLEDEN MLEDMD Sensor I/F LED control Mode Main LED current
0 0 x
0 1 0
0 1 1 IU0(6:0) (*1)
1 0 x
1 1 0
1 1 1 ALC mode (*2)
(*1) At this mode, because Sensor I/F is OFF, AMB(3:0)=0h. So, Main LED current is selected IU0(6:0). (*2) At this mode, Main LED current is selected IU0(6:0)~IUF(6:0) It becomes current value corresponding to each brightness.
OFF
( AMB(3:0)=0h )
ON
Main Gr oup
LED Driver
Main current setting
OFF OFF -
ON
OFF
ON
Non ALC
mode
ALC mode
IMLED(6:0)
-
IMLED(6:0)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
30/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
A
A
(2) I/V conversion
The bias voltage and external resistance for the I-V conversion (Rs)
are adjusted with adaptation of sensor characteristic
The bias voltage is selectable by register setup.
Register : VSB “0” : SBIAS output voltage 3.0V “1” : SBIAS output voltage 2.6V
IOUT
SSENS voltage
VSSENS
Iout
VCC
Sensor IC
GND
SBIAS
SSENS
Rs
SGND
SBIAS
A/D
BD6095GUL
Rs : Sense resistance (A sensor output current is changed into the voltage value.)
SBIAS : Bias power supply terminal for the sensor (3.0V / 2.6V by register setting)
SSENS : Sense voltage input terminal
SSENS Voltage = Iout x Rs
Technical Note
Sensor Current (Iout)
mbient
Rs is large
Rs is small
SSENS Voltage (=Iout x Rs)
mbient
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
31/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
A
A
A
(3) Gain control
Sensor gain switching function is built in to extend the dynamic range. It is controlled by register setup. When automatic gain control is off, the gain status can be set up
in the manual.
Register : GAIN(1:0)
GC1 and GC2 are outputted corresponding to each gain status.
Example 1 (Use BH1600FVC) Example 2 Example 3
SBIAS
VCC
Application
example
BH1600
GND
Operating mode Auto
IOUT
GC1
GC2
SSENS
GC1
GC2
SGND
Manual
High Low High Low
Resister values are relative
Auto
GAIN(1:0) setting 00 01 10 00 01 10 11
Gain status High Low High Low High Low High Low -
GC1 output L L L L
GC2 output L L L L L
: This means that it becomes High with A/D measurement cycle synchronously. (*1) : Set up the relative ratio of the resistance in the difference in the brightness change of the High Gain mode and the Low Gain mode carefully.
Technical Note
High Gain mode
SSENS Voltage
uto Gain mode
SSENS Voltage
SBIAS
SSENS
9.5 (*1)
GC1
GC2
SGND
Manual
Low Gain mode
mbient
mbient
SBIAS
SSENS
GC1
GC2
SGND
Fixed
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
32/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
A
A
A
A
A
A
A
A
A
A
A
A
(4) A/D conversion
The detection of ambient data is done periodically for the low power. SBIAS and ADC are turned off except for the ambient measurement. The sensor current may be shut in this function, it can possible to decrease the current consumption. SBIAS pin and SSENS pin are pull-down in internal when there are OFF. SBIAS circuit has the two modes. (Usually ON mode or intermittent mode)
Register : ADCYC(1:0)
Register : SBIASON
LCEN
DC Cycle
DCYC(1:0 )
16 times
SBIAS Output
DC Movement
GC1, GC2
MB(3:0)
wait= 64ms(typ)
T
oprt= 80.4ms(typ)
T
(Operate time)
(Wait time)
AD= 16.4ms(typ)
T
(A/D conve rsion time)
MB(3:0)
When SBIASON=1
AD start signal
GC1, GC2=00
TADone= 1.024ms(typ)
16 times measurem ent
(5) ADC data Gain / offset adjustment
To correct the characteristic dispersion of the sensor,
Gain and offset adjustment to ADC output data is possible.
They are controlled by register setup.
Register : SGAIN(3:0)
Register : SOFS(3:0)
< Gain Adjustment >
Gain adjustment SGAIN(3:0)
SSENS Voltage
mbient
SSENS Voltage
SSENS Voltage
mbient
< Offset Adjustment >
SSENS Voltage
mbient
SSENS Voltage
SSENS Voltage
mbient
Offset adjustment SOFS(3:0)
Technical Note
mbient
mbient
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
33/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
(6) Average filter
Average filter is built in to rid noise or flicker. Average is 16 times
(7) Ambient level detection
Averaged A/D value is converted to Ambient level corresponding to Gain control and sensor type.
・ Ambient level is judged to rank of 16 steps by ambient data.
The type of ambient light sensor can be chosen by register.
(Linear type sensor / Logarithm type sensor)
Register : STYPE “0” : For Linear sensor “1” : For Log sensor
Ambient level is output through I
Register : AMB(3:0)
STYPE 0 1
GAIN(1:0) 00 10 01 11 xx
Gain
Status
Ambient
level
0h
1h VoS ×1256 VoS×1256 VoS×1256
2h VoS ×2256 VoS×2256 VoS×2256
3h
4h
5h VoS ×0256
6h VoS ×1256
7h
8h
9h
Ah
Bh
Ch
Dh
Eh
Fh
This is in case of not adjustments of the gain/offset control.
In the Auto Gain control mode, sensor gain changes in gray-colored ambient level.
” : This means that this zone is not outputted in this mode.
Low High Low High - -
VoS×2256 VoS×3256 VoS×4256 VoS×6256 VoS×7256
VoS×11256 VoS×12256 VoS×20256 VoS×21256 VoS×36256 VoS×37256 VoS×64256 VoS×65256
VoS×114 256 VoS×115 256 VoS×199256 VoS×200256 VoS×255256
2
C.
VoS×0256
VoS×3256 VoS×4256 VoS×5256 VoS×7256
VoS×8256 VoS×12256 VoS×13256 VoS×21256 VoS×22256 VoS×37256 VoS×38256 VoS×65256 VoS×66256
VoS×113 256
VoS×114 256 VoS×199256 VoS×200256 VoS×255256
SSENS voltage
VoS×0256
VoS×1256
VoS×2256 VoS×3256 VoS×4256 VoS×6256
VoS×7256 VoS×11256 VoS×12256 VoS×20256 VoS×21256 VoS×36256 VoS×37256 VoS×64256
VoS×65256
VoS×114 256 VoS×115 256 VoS×199256 VoS×200256 VoS×255256
VoS×0256 VoS×0256
VoS×3256 VoS×4256 VoS×5256 VoS×7256
VoS×8256 VoS×12256 VoS×13256 VoS×21256 VoS×22256 VoS×37256 VoS×38256 VoS×65256 VoS×66256
VoS×113 256 VoS×114 256 VoS×199256 VoS×200256 VoS×255256
VoS×3256 VoS×4256 VoS×5256 VoS×6256 VoS×7256
VoS×9256 VoS×10256 VoS×13256 VoS×14256 VoS×19256 VoS×20256 VoS×27256 VoS×28256 VoS×38256 VoS×39256 VoS×53256 VoS×54256 VoS×74256 VoS×75256
VoS×104256 VoS×105256
VoS×144256 VoS×145256 VoS×199256 VoS×200256 VoS×255256
Technical Note
VoS×0256 VoS×17256 VoS×18256 VoS×26256 VoS×27256 VoS×36256 VoS×37256 VoS×47256 VoS×48256 VoS×59256 VoS×60256 VoS×71256 VoS×72256 VoS×83256 VoS×84256 VoS×95256 VoS×96256
VoS×107256 VoS×108256 VoS×119 256 VoS×120256 VoS×131256 VoS×132256 VoS×143256 VoS×144256 VoS×155256 VoS×156256 VoS×168256 VoS×169256 VoS×181256 VoS×182256 VoS×255256
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
34/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
A
THL
(8) LED current assignment
LED current can be assigned as each of 16 steps of the ambient level. Setting of a user can do by overwriting, though it prepares for the
table setup in advance.
Register : IU*(6:0)
Conversion Table (initial value)
Ambient
Level
Setting data Current value
Ambient
Level
0h 11h 3.6mA 8h 48h 14.6mA
1h 13h 4.0mA 9h 56h 17.4mA
2h 15h 4.4mA Ah 5Fh 19.2mA
3h 18h 5.0mA Bh 63h 20.0mA
4h 1Eh 6.2mA Ch 63h 20.0mA
5h 25h 7.6mA Dh 63h 20.0mA
6h 2Fh 9.6mA Eh 63h 20.0mA
7h 3Bh 12.0mA Fh 63h 20.0mA
(9) Slope process
Slope process is given to LED current to dim naturally. LED current changes in the 256Step gradation in sloping. Up(darkbright),Down(brightdark) LED current transition speed
are set individually.
Register : THL(3:0) Register : TLH(3:0)
Main LED current changes as follows at the time as the slope.
TLH (THL) is setup of time of the current step 2/256.
TLH
25.6mA 256
=0.1mA
THL
Main LED Current
Conversion table
can be changed
mbient Level
Setting data Current value
Current Data which is set
TLH(3:0)
Main LED current
Up/Down transition Speed
is set individually
time
Zoom
Main LED Current
time
Technical Note
LED Current
TLH(3:0)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
35/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
A
A
(10) LED current reset when mode change
When mode is changed (ALC↔Non ALC),
it can select the way to sloping. Register : MDCIR
NonALC
mode
IMLED(6:0) IMLED(6:0)
“0” : LED current non-reset when mode change “1” : LED current reset when mode change
Main LED current
MDCIR= “0”
0m
NonALC
mode
IMLED(6:0) IMLED(6:0)
Main LED current
0m
MDCIR= “1”
(11) Current adjustment
When it is permitted by the register setting, PWM drive by the external terminal (WPWMIN) is possible.
Register : WPWMEN
It is suitable for the intensity correction by external control,
because PWM based on Main LED current of register setup or ALC control.
WPWMEN
0 L ON
0 H ON
1 L Forced OFF
1 H ON
WPWMIN
(External input)
Back light current
PWM input invalid
PWM input valid
Current ON is depending on “MLEDEN”.
MLEDEN
Inte rna l S o ft-S tar t Tim e
DC/DC Output
W P W M IN in p u t
WPWMEN
LED Current
It ca n b e inp utte d W P W M IN b ef or e M L E D EN =1 . It ca n b e se t W PW M E N =1 b ef or e M L E D EN =1 . P W M m ove m en t is effe ctive at th e tim e L E D cu rre n t ris e u p.
PW M H igh pulse w idth m ust be m ore than 80µs.
ALC
mode
time
ALC
mode
time
Technical Note
NonALC
mode
IU*(6:0)
NonALC
mode
IU*(6:0)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
36/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
6. The explanation of I/O When the RESETB pin is Low, the input buffers (SDA and SCL) are disabling for the Low consumption power.
Technical Note
VBAT
VIO
EN
RESETB=L, Output “H”
LOGIC
Level
Shift
SCL
(SDA)
RESETB
7. The explanation of the start of LDO1~LDO2 It must start as follows.
VBAT
VIO
RESETB
LDO1EN or LDO2E N
LDO1O or LDO2O (LDO output)
T
VBATON
T
VIOON=min 0.1ms
T
RSTB=min 0.1ms
T
RISE = max 1ms(TBD)
T
VBATOFF
T
VIOOF F=min 1m s
T
RST=min 0ms
<Start Sequence> VBAT ON (Enough rise up) → VIO ON (Enough rise up) → Reset release → LDO ON
(Register access acceptable)
<End Sequence> LDO OFF → Reset → VIO OFF (Enough fall down) → VBAT OFF
8. The explanation of the terminal management of the function that isn’t used
Set up the terminal that isn't used as follows.
The LED terminal which isn't used : Short to ground Don't do the control concerned with this terminal. T1, T2 : Short to ground T3, T4 : Open
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
37/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
PCB pattern of the Power dissipation measuring board
Technical Note
1st layer(component) 2nd layer
3rd layer 4th layer
5th layer 6th layer
7th layer 8th layer(solder)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
38/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Notes for use
(1) Absolute Maximum Ratings
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc.
(2) Power supply and ground line
Design PCB pattern to provide low impedance for the wiring between the power supply and the ground lines. Pay attention to the interference by common impedance of layout pattern when there are plural power supplies and ground lines. Especially, when there are ground pattern for small signal and ground pattern for large current included the external circuits, please separate each ground pattern. Furthermore, for all power supply pins to ICs, mount a capacitor between the power supply and the ground pin. At the same time, in order to use a capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant.
(3) Ground voltage
Make setting of the potential of the ground pin so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no pins are at a potential lower than the ground voltage including an actual electric transient.
(4) Short circuit between pins and erroneous mounting
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between pins or between the pin and the power supply or the ground pin, the ICs can break down.
Technical Note
(5) Operation in strong electromagnetic field
Be noted that using ICs in the strong electromagnetic field can malfunction them.
(6) Input pins
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input pin. Therefore, pay thorough attention not to handle the input pins, such as to apply to the input pins a voltage lower than the ground respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input pins when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to the input pins a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.
(7) External capacitor
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.
(8) Thermal shutdown circuit (TSD)
This LSI builds in a thermal shutdown (TSD) circuit. When junction temperatures become detection temperature or higher, the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at isolating the LSI from thermal runaway as much as possible, is not aimed at the protection or guarantee of the LSI. Therefore, do not continuously use the LSI with this circuit operating or use the LSI assuming its operation.
(9) Thermal design
Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in actual states of use.
(10) LDO
Use each output of LDO by the independence. Don’t use under the condition that each output is short-circuited because it has the possibility that an operation becomes unstable.
(11) About the pin for the test, the un-use pin
Prevent a problem from being in the pin for the test and the un-use pin under the state of actual use. Please refer to a function manual and an application notebook. And, as for the pin that doesn't specially have an explanation, ask our company person in charge.
(12) About the rush current
For ICs with more than one power supply, it is possible that rush current may flow instantaneously due to the internal powering sequence and delays. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of wiring.
(13) About the function description or application note or more.
The function description and the application notebook are the design materials to design a set. So, the contents of the materials aren't always guaranteed. Please design application by having fully examination and evaluation include the external elements.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
39/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Power dissipation (On the ROHM’s standard board)
1.6
1500mW
1.4
1.2
1.0
0.8
Power Dissipation Pd (W)
0.6
0.4
Technical Note
0.2
0.0
0 25 50 75 100 125 150
Ta(℃)
Information of the ROHM’s standard board
Material : glass-epoxy Size : Refer to after page.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
40/41
2011.04 - Rev.
A
BD6095GUL,BD6095GU
Ordering part number
Technical Note
B D
Part No. Part No.
VCSP50L3
(BD6095GUL)
1PIN MARK
35-φ0.25±0.05
0.05
(φ0.15)INDEX POST
0.625±0.1
BA
F E D C B A
VCSP85H3
(BD6095GU)
1PIN MARK
35-φ0.3±0.05
0.05
BA
0.625±0.05
F E D C B A
(φ0.15)INDEX POST
6 0 9 5
6095
3.75±0.1
3.75±0.1
0.08 S
A
123456
P=0.5×5
3.75±0.05
0.06 S
A
123456
P=0.5× 5
0.55MAX
0.1±0.05
S
0.625±0.1
B
P=0.5×5
(Unit : mm)
3.75±0.05
1.0MAX
0.25±0.1
S
0.625±0.05
B
P=0.5× 5
(Unit : mm)
GU L
Package
GUL : VCSP50L3 GU
: VCSP85H3
<Tape and Reel information>
Embossed carrier tapeTape
Quantity
Direction of feed
<Tape and Reel information>
Quantity
Direction of feed
2500pcs E2
The direction is the 1pin of product is at the upper left when you hold
()
reel on the left hand and you pull out the tape on the right hand
Reel
Embossed carrier tapeTape 2500pcs
E2
The direction is the 1pin of product is at the upper left when you hold
()
reel on the left hand and you pull out the tape on the right hand
Reel
1pin
1pin
-
E 2
Packaging and forming specification E2: Embossed tape and reel
Direction of feed
Order quantity needs to be multiple of the minimum quantity.
Direction of feed
Order quantity needs to be multiple of the minimum quantity.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
41/41
2011.04 - Rev.
Notes
No copying or reproduction of this document, in par t or in whole, is permitted without the consent of ROHM Co.,Ltd.
The content specied herein is subject to change for improvement without notice.
The content specied herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specications, which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specied in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.
The technical information specied herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.
The Products specied in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, ofce-automation equipment, commu­nication devices, electronic appliances and amusement devices).
The Products specied in this document are not designed to be radiation tolerant.
While ROHM always makes effor ts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, re or any other damage caused in the event of the failure of any Product, such as derating, redundancy, re control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel­controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specied herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.
Notice
www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved.
Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
R1120
A
Loading...