ROHM BD60910GU Technical data

LED Drivers for LCD Backlights
White backlight LED Drivers for Small to Medium LCD Panels (Switching Regulator Type)
BD60910GU
Description
BD60910GU is maximum 8LED(minimum 4LED) serial LED driver with ALC (Auto Luminous Control) function. Best match for mobile application that needs long battery life.
Features
1) Boost DC/DC for LED back lighting Drives maximum 8 to minimum 4 serial LEDs. Integrated high voltage switching transistor Soft start function. Over voltage protection (Detect voltage is controllable) Over current protection (2nd side) VOUT short to GND protection VOUT open protection.
2) Constant current driver for LED back lighting Current step can be set in 7bit(0.2mA 128steps), and 8bit(0.1mA 256steps) in sloping. Rise and fall time of sloping are set independently. Iout max = 25.6mA PWM brightness control by external input.
3) Auto Luminous Control (ALC) Periodic ambient detection reduces sensor consumption current. LED brightness can be controlled by 16steps ambient brightness level. LED current for each ambient level is freely customizable. SBIAS for sensor bias is integrated. (3.0V or 2.6V) Photo Diode, Photo Transistor, Photo IC(Linear/ Logarithm) can be connected. Automatic gain control built-in, so BH1600FVC can be connected directly.
4) Thermal shutdown (Auto-return type)
2
5) I
6) VCSP85H3(3.00mm
Absolute Maximum Ratings (Ta=25
C BUS FS modemax 400kHz)Write/Read
Parameter Symbol Ratings Unit Pins
x 3.00mm) Small Size CSP package
)
No.11040EBT30
Maximum voltage 1 VMAX1 7 V except for VLED VOUT, SW
Maximum voltage 2 VMAX2 15 V VLED
Maximum voltage 3 VMAX3 40 V VOUT, SW
Power Dissipation Pd 1250 *1 mW Operating Temperature Range Topr -40 ~ +85 Storage Temperature Range Tstg -55 ~ +150
*1) Power dissipation deleting is 10mW/ ℃, when it’s used in over 25 ℃. It’s deleting is on the board that is ROHM’s standard. Dissipation by LSI should not exceed tolerance level of Pd.
Operating conditions (VBATVIO, Ta=-40~85
Parameter Symbol Ratings Unit
VBAT input voltage VBAT 2.7~5.5 V
VIO pin voltage VIO 1.65~3.3 V
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
)
1/30
2011.07 - Rev.B
BD60910GU
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VIO=1.8V)
Parameter Symbol
Circuit Current
VBAT Circuit current 1 IBAT1 - 0.1 1.0 A RESETB=0V, VIO=0V
VBAT Circuit current 2 IBAT2 - 0.5 3.0 A RESETB=0V, VIO=1.8V
Min. Typ. Max.
Limits
Unit Condition
Technical Note
VBAT Circuit current 3 IBAT3 - 3.5 5.0 mA
VBAT Circuit current 4 IBAT4 - 0.4 1.0 mA
LED Driver
LED current Step (Setup) ILEDSTP1 128 Step
LED current Step (At slope) ILEDSTP2 256 Step
LED Maximum current IMAXWLED - 25.6 - mA
LED current accuracy IWLED -7% 15 +7% mA I
DC/DC
VLED pin feedback voltage Vfb - 0.3 - V
Over current protection OCP - 650 - mA
Oscillator frequency fosc 0.8 1.0 1.2 MHz
OVP1 30 31 32 V
Over Voltage Protection detect voltage
OVP2 - 27 - V OVP3 - 24 - V OVP4 - 21 - V OVP5 - 18 - V
LED=ON, ILED=15mA setting Vo=24V
Only ALC block ON ADCYC=0.52s setting Except sensor current
=15mA setting
LED
Maximum Duty Mduty 92.5 - - %
VOUT open protection OVO - 0.7 1.4 V
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VIO=1.8V)
Parameter Symbol
I2C Input (SDA, SCL)
LOW level input voltage VIL -0.3 -
HIGH level input voltage VIH
Hysteresis of Schmitt trigger input
LOW level output voltage (SDA) at 3mA sink current
Input current each I/O pin lin -3 - 3 A Input voltage = 0.1×VIO~0.9×VIO
RESETB
LOW level input voltage VIL -0.3 -
HIGH level input voltage VIH
Input current each I/O pin Iin -3 - 3 A Input voltage = 0.1×VIO~0.9×VIO
Vhys
VOL 0 - 0.3 V
Min. Typ. Max.
0.75 × VIO
0.05 × VIO
0.75 × VIO
Limits
0.25 × VIO
VBAT
­+0.3
- - V
0.25 × VIO
VBAT
­+0.3
Unit Condition
V
V
V
V
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
2/30
2011.07 - Rev.B
BD60910GU
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VIO=1.8V)
Parameter Symbol
ALC
SBIAS Output voltage VoS
SBIAS Output current IoS - - 30 mA Vo=3.0V
Min. Typ. Max.
2.850 3.0 3.150 V Io=200A <Initial value>
2.470 2.6 2.730 V Io=200A
Limits
Unit Condition
Technical Note
SSENS Input range VISS 0 -
SBIAS Discharge resister at OFF
ADC resolution ADRES 8 bit
ADC non-linearity error ADINL -3 - +3 LSB
ADC differential non-linearity error
SSENS Input impedance RSSENS 1 - - M
WPWMIN
L level input voltage VILA -0.3 - 0.3 V
H level input voltage VIHA 1.4 -
Input current IinA - 3.6 10 A Vin=1.8V
PWM input minimum High pulse width
GC1, GC2
L level output voltage VOLS - - 0.2 V IOL=1mA
H level output voltage VOHS
ROFFS - 1.0 1.5 k
ADDNL -1 - +1 LSB
PWpwm 50 - - s
VoS
-0.2
VoS x
255/256
VBAT
+0.3
- - V IOH=1mA
V
V
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
3/30
2011.07 - Rev.B
BD60910GU
A
( )
( )
( )
Block Diagram / Application Circuit example
VBAT
VBAT1
VBAT2
10µF
VIO
RESETB
SCL
SD
I/O
Level
Shift
WPWMIN
Photo IC
GC1
GC2
BH1600FVC
VDD
GND
IOUT
*
5.6k
SBIAS
SSENS
SGND
1F
Sensor
I/F
GC2
GC1
* The example when using BH1600FVC and assuming brightness range 10(lx)-50000(lx) by the panel of 20% transmissivity
Fig.1 Block Diagram / Application Circuit example
22H
2
C interface
I
Digital Control
ALC
RB520S-40
SW
DC/DC
External PWM
TSD
IREF
1F(50V)
T1
OCP
T2
GNDP
VREF
(Open)
T3
(Open)
GNDPS
OVP
Feed Back
T4
Technical Note
VOUT
VLED
LEDGND
GND1
GND2
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
4/30
2011.07 - Rev.B
BD60910GU
Pin Arrangement [Bottom View
Pin Functions
T4 GND2 GNDP SW T3
E
VIO SCL RESETB GNDPS VBAT2
D
GND1 SDA VOUT GC2 SGND
C
index
WPWMIN
B
T1 VBAT1 LEDGND VLED T2
A
GC1 SBIAS SSENS
12345
Fig.2 Pin Arrangement
Technical Note
No Ball No. Pin Name I/O
1 A2 VBAT1 - - GND Power supply A 2 D5 VBAT2 - - GND Power supply A
3 D1 VIO - VBAT GND Power supply for I/O C
4 C1 GND1 - VBAT - Ground B
5 E2 GND2 - VBAT - Ground B
6 A3 LEDGND - VBAT - Ground B
7 E3 GNDP - VBAT - Ground B
8 D4 GNDPS - VBAT - Ground B
9 C5 SGND - VBAT - Ground B
10 D3 RESETB I VBAT GND Reset input (L: reset, H: reset cancel) H
11 C2 SDA I/O VBAT GND I2C data input / output I
12 D2 SCL I VBAT GND I2C clock input H 13 B1 WPWMIN I VBAT GND External PWM input L
14 E4 SW O - GND DC/DC Switching port A
15 C3 VOUT O - GND DC/DC output voltage monitor A
16 A4 VLED I - GND LED cathode connection E
17 B4 SBIAS O VBAT GND Bias output for the Ambient Light Sensor Q
18 B5 SSENS I VBAT GND Ambient Light Sensor input N 19 B3 GC1 O VBAT GND Ambient Light Sensor gain control output 1 X 20 C4 GC2 O VBAT GND Ambient Light Sensor gain control output 2 X 21 A1 T1 I VBAT GND Test Input Pin (short to Ground) S 22 A5 T2 O VBAT GND Test Output Pin (Open) M 23 E5 T3 O VBAT GND Test Output Pin (Open) N
24 E1 T4 I VBAT GND Test Input Pin (short to Ground) S
ESD Diode
For Power For Ground
Functions
Equivalent
Circuit
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
5/30
2011.07 - Rev.B
BD60910GU
Equivalent Circuit
A VBATB E
C
VBAT
Technical Note
H VIOVBAT I
N
VIO VBAT
VBAT
Q
VBAT VBAT
VBATVBATL
S
VBATVBAT
M
X
VoS VBAT
VBAT
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
6/30
2011.07 - Rev.B
BD60910GU
Technical Note
I2C BUS format
The writing/reading operation is based on the I
2
C slave standard.
Slave address
A7 A6 A5 A4 A3 A2 A1 R/W
1 1 1 0 1 1 0 1/0
Bit Transfer
SCL transfers 1-bit data during H. SCL cannot change signal of SDA during H at the time of bit transfer. If SDA changes while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal.
SDA
SCL
SDA a state of stability
Data are effective
SDA
It can change
START and STOP condition
When SDA and SCL are H, data is not transferred on the I
2
C- bus. This condition indicates, if SDA changes from H to L while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL has been H, it will become STOP (P) conditions and an access end.
SDA
SCL
S P
START condition
STOP condition
Acknowledge
It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data, and a receiver returns the acknowledge signal by setting SDA to L.
DATA OUTPUT BY TRANSMITTER
DATA OUTPUT BY RECEIVER
SCL
START condition
S
12 89
not acknowledge
acknowledge
clock pulse for acknowledgement
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
7/30
2011.07 - Rev.B
BD60910GU
A A
A
A
A7 A6 A5A4A3A2A1A
A
A
A
A
A
A
A
A A
A
A
A6A5A4A3A2A1A
A
A
A
A
Technical Note
Writing protocol
A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The 3rd byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register address is carried out automatically. However, when a register address turns into the last address, it is set to 00h by the next transmission. After the transmission end, the increment of the address is carried out.
*1 *1
D7D6 D5 D4 D3 D2 D1D0 D7 D6 D5 D4 D3 D2 D1 D0
X X X X X X X
S
R/W=0(write)
from master to slave
from slave to master
register addressslave address
00
DATA
register address
increment
=acknowledge(SDA LOW)
=not acknowledge(SDA HIGH) S=START condition P=STOP condition *1: Write Timing
DATA
register address
Reading protocol
It reads from the next byte after writing a slave address and R/W bit. The register to read considers as the following address accessed at the end, and the data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out.
X X X X X X X
R/W=1(read)
from master to slave
from slave to master
P
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
DATA
register address
increment
=acknowledge(SDA LOW)
=not acknowledge(SDA HIGH) S=START condition P=STOP condition
DATA slave address
register address
increment
1 S
Multiple reading protocols
After specifying an internal address, it reads by repeated START condition and changing the data transfer direction. The data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out.
P
increment
S
slave address
R/W=0(write)
from master to slave
from slave to master
0
7
register address
D7 D6 D5 D4 D3D2D1D0 D7 D6 D5 D4 D3 D2 D1D0
DATA DATA
register address
increment
Sr 1
0X X X X X X X
X X X X X X X
slave address
=acknowledge(SDA LOW)
=not acknowledge(SDA HIGH) S=START condition P=STOP condition Sr=repeated START condition
R/W=1(read)
P
register address
increment
As for reading protocol and multiple reading protocols, please do A (not acknowledge) after doing the final reading operation. It stops with read when ending by A(acknowledge), and SDA stops in the state of Low when the reading data of that time is 0. However, this state returns usually when SCL is moved, data is read, and A (not acknowledge) is done.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
8/30
2011.07 - Rev.B
BD60910GU
S
Timing diagram
SDA
CL
t
LOW
t
SU;DAT
HD;STA
t
Technical Note
t BUF
t SU;STO
S
SU;STA
t
HD;STA
t
HD;DAT
t
S Sr P
HIGH
t
Electrical Characteristics(Unless otherwise specified, Ta=25, VBAT=3.6V, VIO=1.8V)
Standard-mode Fast-mode
Parameter Symbol
Unit
Min. Typ. Max. Min. Typ. Max.
2
I
C BUS format
SCL clock frequency fSCL 0 - 100 0 - 400 kHz
LOW period of the SCL clock tLOW 4.7 - - 1.3 - - s
HIGH period of the SCL clock tHIGH 4.0 - - 0.6 - - s
Hold time (repeated) START condition After this period, the first clock is generated
Set-up time for a repeated START condition
tHD;STA 4.0 - - 0.6 - - s
t
SU;STA 4.7 - - 0.6 - - s
Data hold time tHD;DAT 0 - 3.45 0 - 0.9 s
Data set-up time tSU;DAT 250 - - 100 - - ns
Set-up time for STOP condition tSU;STO 4.0 - - 0.6 - - s
Bus free time between a STOP and START condition
BUF 4.7 - - 1.3 - - s
t
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
9/30
2011.07 - Rev.B
BD60910GU
Register List
Input "0” for "-".
Address W/R
Technical Note
Register data
Function
D7 D6 D5 D4 D3 D2 D1 D0
00h W - - - - - - - SFTRST
01h R/W - VOVP(2) VOVP(1) VOVP(0) WPWMEN ALCEN LEDMD LEDEN LED, ALC, OVP Control
02h - - - - - - - - - -
03h R/W - ILED(6) ILED(5) ILED(4) ILED(3) ILED(2) ILED(1) ILED(0)
04h - - - - - - - - - -
05h - - - - - - - - - -
06h - - - - - - - - - -
07h - - - - - - - - - -
08h W THL(3) THL(2) THL(1) THL(0) TLH(3) TLH(2) TLH(1) TLH(0) LED Current transition
09h - - - - - - - - - -
0Ah - - - - - - - - - -
0Bh R/W ADCYC(1) ADCYC(0) GAIN(1) GAIN(0) STYPE VSB MDCIR SBIASON ALC mode setting
0Ch - - - - - - - - - -
0Dh R - - - - AMB(3) AMB(2) AMB(1) AMB(0) Ambient level output
0Eh W - IU0(6) IU0(5) IU0(4) IU0(3) IU0(2) IU0(1) IU0(0) LED Current at Ambient level 0h
0Fh W - IU1(6) IU1(5) IU1(4) IU1(3) IU1(2) IU1(1) IU1(0) LED Current at Ambient level 1h
10h W - IU2(6) IU2(5) IU2(4) IU2(3) IU2(2) IU2(1) IU2(0) LED Current at Ambient level 2h
Software Reset
LED Current Setting at non-ALC mode
11h W - IU3(6) IU3(5) IU3(4) IU3(3) IU3(2) IU3(1) IU3(0) LED Current at Ambient level 3h
12h W - IU4(6) IU4(5) IU4(4) IU4(3) IU4(2) IU4(1) IU4(0) LED Current at Ambient level 4h
13h W - IU5(6) IU5(5) IU5(4) IU5(3) IU5(2) IU5(1) IU5(0) LED Current at Ambient level 5h
14h W - IU6(6) IU6(5) IU6(4) IU6(3) IU6(2) IU6(1) IU6(0) LED Current at Ambient level 6h
15h W - IU7(6) IU7(5) IU7(4) IU7(3) IU7(2) IU7(1) IU7(0) LED Current at Ambient level 7h
16h W - IU8(6) IU8(5) IU8(4) IU8(3) IU8(2) IU8(1) IU8(0) LED Current at Ambient level 8h
17h W - IU9(6) IU9(5) IU9(4) IU9(3) IU9(2) IU9(1) IU9(0) LED Current at Ambient level 9h
18h W - IUA(6) IUA(5) IUA(4) IUA(3) IUA(2) IUA(1) IUA(0) LED Current at Ambient level Ah
19h W - IUB(6) IUB(5) IUB(4) IUB(3) IUB(2) IUB(1) IUB(0) LED Current at Ambient level Bh
1Ah W - IUC(6) IUC(5) IUC(4) IUC(3) IUC(2) IUC(1) IUC(0) LED Current at Ambient level Ch
1Bh W - IUD(6) IUD(5) IUD(4) IUD(3) IUD(2) IUD(1) IUD(0) LED Current at Ambient level Dh
1Ch W - IUE(6) IUE(5) IUE(4) IUE(3) IUE(2) IUE(1) IUE(0) LED Current at Ambient level Eh
1Dh W - IUF(6) IUF(5) IUF(4) IUF(3) IUF(2) IUF(1) IUF(0) LED Current at Ambient level Fh
Prohibit to accessing the address that isn’t mentioned. The timing indicated by explanation of registers, is a value in case built-in OSC has Typ. frequency.(1MHz)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
10/30
2011.07 - Rev.B
Loading...
+ 21 hidden pages