ROHM BD6083GUL Technical data

A
LED Drivers for LCD BackLights
BD6083GUL
Description
BD6083GUL is “Intelligent LED Driver” that is the most suitable for the cellular phone. It has 3 - 6LED driver and output variable LDO4ch for LCD Backlight. It has ALC function that is “Low Power Consumption System” realized. It can be developed widely from the high End model to the Low End model. As it has charge pump circuit for DCDC, it is no need to use coils, and it contributes to small space. VCSP50L3 (3.15mm x 3.15mm 0.5mm pitch) It adopts the very thin CSP package that is the most suitable for the slim phone.
Features
1) Total 3 - 6LEDs driver for LCD Backlight ・It has 4LEDs (it can select 4LED or 3LED) for exclusire use of Main and 2LEDs which can chose independent control or a main allotment by resister setting. ・Main Group” can be controlled by Auto Luminous Control (ALC) system. “Main Group” can be controlled by external PWM signal. ・ON/ Off and a setup of LED current are possible at the time of the independent control by the independence.
2) Ambient Light sensor interface ・Incorporates various functions such as a sensor bias adjustment function, an ADC with an average filter, a gainoffset adjustment function and an LOG conversion function so that options can be increased for illumination intensity sensors (Photo Diode, Photo Transistor, Photo IC (Linear/LOG)). ・Incorporates an auto gain switching function for suppressing an illumination intensity sensor current at high illumination intensity and improving sensitivity at low illumination intensity ・Capable of customizing an LED current value according to a table setting. ・Slope control loading and an independent control change are possible.
3) Charge Pump DC/DC for LED driver ・It has x1/x1.5/ x2 mode that will be selected automatically. ・The most suitable voltage up magnification is controlled automatically by LED port voltage. ・Soft start
4) 4ch Series Regulator (LDO) ・It has selectable output voltage by the register.(16 steps) LDO1, LDO2, LDO3, LDO4: Iomax=150mA
5) Thermal shutdown
2
6) I
Absolute Maximum Ratings (Ta=25
Maximum Voltage VMAX 7 V
Power Dissipation Pd 1280 Operating Temperature Range Topr -30 ~ +85 Storage Temperature Range Tstg -55 ~ +150
Operating Conditions (VBAT≥VIO, Ta=-30~85
VBAT Input Voltage VBAT 2.7 ~ 5.5 V
VIO Pin Voltage VIO 1.65 ~ 3.3 V
C BUS FS mode (max 400 kHz) Compatibility
(Note) Power dissipation deleting is 10.24mW/ , when it’s used in over 25 ℃. (It’s deleting is on the board that is ROHM’s standard)
functionsOver voltage protection (Auto-return type),Over current protection (Auto-return type) loading
)
Parameter Symbol Ratings Unit
(Note)
mW
)
Parameter Symbol Limits Unit
No.10040EAT16
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
1/45
2010.07 - Rev.
A
BD6083GUL
Electrical Characteristics (Unless otherwise specified, Ta=25, VBAT=3.6V, VIO=1.8V)
Parameter Symbol
Min. Typ. Max.
Limits
Unit Conditions
Circuit Current
VBAT Circuit Current 1 IBAT1 - 0.1 3.0 μA RESETB=0V, VIO= 0V
VBAT Circuit Current 2 IBAT2 - 0.5 3.0 μA RESETB=0V, VIO=1.8V
Technical Note
VBAT Circuit Current 3 IBAT3 - 61 65 mA
VBAT Circuit Current 4 IBAT4 - 92 102 mA
VBAT Circuit Current 5 IBAT5 - 123 140 mA
DC/DC x1 mode, Io=60mA VBAT=4.0V
DC/DC x1.5 mode, Io=60mA VBAT=3.6V
DC/DC x2 mode, Io=60mA VBAT=2.7V
ALC Operating
VBAT Circuit Current 6 IBAT6 - 0.25 1.0 mA
ALCEN=1, AD cycle=0.5s setting Except sensor current
VBAT Circuit Current 7 IBAT7 - 90 150 μA LDO1,2=ON, I
VBAT Circuit Current 8 IBAT8 - 90 150 μA LDO3,4=ON, I
LED Driver
LED Current Step (Setup) ILEDSTP1 128 Step LED1~6
LED Current Step (At slope) ILEDSTP2 256 Step LED1~6
LED Maximum Setup Current IMAXWLED - 25.6 - mA LED1~6
LED Current Accuracy IWLED -7% 15 +7% mA I
LED Current Matching ILEDMT - - 4 %
=15mA setting, VLED=1.0V
LED
Between LED1~6 at VLED=1.0V, ILED=15mA
LED OFF Leak Current ILKLED - - 1.0 μA VLED=4.5V
LDO
LDO
=0mA
=0mA
DC/DC(Charge Pump)
Output Voltage VoCP - Vf+0.2 Vf+0.25 V Vf is forward direction of LED
Drive Ability IOUT - - 150 mA VBAT3.2V, VOUT=3.9V
Switching Frequency fosc 0.8 1.0 1.2 MHz
Over Voltage Protection Detect Voltage
Over Current Protection Detect Current
OVP - 5.6 - V
OCP - 250 375 mA VOUT=0V
Sensor Interface
SBIAS Output Voltage
SBIAS Maximum Output Current
SBIAS Discharge Resister at OFF
SSENS Input Range VISS 0 -
VoS 2.85 3.0 3.15 V Io=200µA
IomaxS 30 - - mA
ROFFS - 1.0 1.5 k
VoS×
255/256
V
ADC Resolution ADRES 8 bit
ADC Integral Calculus Non-linearity
ADC Differential Calculus Non-linearity
ADINL -3 - +3 LSB
ADDNL -1 - +1 LSB
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
2/45
2010.07 - Rev.
A
BD6083GUL
Electrical Characteristics (Unless otherwise specified, Ta=25, VBAT=3.6V, VIO=1.8V)
Parameter Symbol
Regulator (LDO1)
Output Voltage Vo1
Output Current Io1 - - 150 mA Vo=1.8V
Dropout Voltage Vsat1 - 0.2 0.3 V VBAT=2.5V, Io=150mA, Vo=2.8V
Load Stability ΔVo11 - 10 60 mV Io=1~150mA, Vo=1.8V
Input Voltage Stability ΔVo12 - 10 60 mV VBAT=3.4~4.5V, Io=50mA, Vo=1.8V
Ripple Rejection Ratio RR1 - 65 - dB
Short Circuit Current Limit Ilim1 - 200 400 mA Vo=0V
Discharge Resister at OFF ROFF1 - 1.0 1.5 k
Regulator (LDO2)
Output Voltage Vo2
Output Current Io2 - - 150 mA Vo=2.5V
Dropout Voltage Vsat2 - 0.2 0.3 V VBAT=2.5V, Io=150mA, Vo=2.8V
Load Stability Δvo21 - 10 60 mV Io=1~150mA, Vo=2.5V
Input Voltage Stability Δvo22 - 10 60 mV VBAT=3.4~4.5V, Io=50mA, Vo=2.5V
Ripple Rejection Ratio RR2 - 65 - dB
Short Circuit Current Limit Ilim2 - 200 400 mA Vo=0V
Discharge Resister at OFF ROFF2 - 1.0 1.5 k
Min. Typ. Max.
1.164 1.20 1.236 V Io=50mA
1.261 1.30 1.339 V Io=50mA
1.455 1.50 1.545 V Io=50mA
1.552 1.60 1.648 V Io=50mA
1.746 1.80 1.854 V Io=50mA <Initial Voltage>
2.134 2.20 2.266 V Io=50mA
2.328 2.40 2.472 V Io=50mA
2.425 2.50 2.575 V Io=50mA
2.522 2.60 2.678 V Io=50mA
2.619 2.70 2.781 V Io=50mA
2.716 2.80 2.884 V Io=50mA
2.813 2.90 2.987 V Io=50mA
2.910 3.00 3.090 V Io=50mA
3.007 3.10 3.193 V Io=50mA
3.104 3.20 3.296 V Io=50mA
3.201 3.30 3.399 V Io=50mA
1.164 1.20 1.236 V Io=50mA
1.261 1.30 1.339 V Io=50mA
1.455 1.50 1.545 V Io=50mA
1.552 1.60 1.648 V Io=50mA
1.746 1.80 1.854 V Io=50mA
2.134 2.20 2.266 V Io=50mA
2.328 2.40 2.472 V Io=50mA
2.425 2.50 2.575 V Io=50mA <Initial Voltage>
2.522 2.60 2.678 V Io=50mA
2.619 2.70 2.781 V Io=50mA
2.716 2.80 2.884 V Io=50mA
2.813 2.90 2.987 V Io=50mA
2.910 3.00 3.090 V Io=50mA
3.007 3.10 3.193 V Io=50mA
3.104 3.20 3.296 V Io=50mA
3.201 3.30 3.399 V Io=50mA
Limits
Unit Condition
f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz
f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
3/45
2010.07 - Rev.
A
BD6083GUL
Electrical Characteristics (Unless otherwise specified, Ta=25, VBAT=3.6V, VIO=1.8V)
Parameter Symbol
Regulator (LDO3)
Output Voltage Vo3
Output Current Io3 - - 150 mA Vo=1.8V
Dropout Voltage Vsat3 - 0.2 0.3 V VBAT=2.5V, Io=150mA, Vo=2.8V
Load Stability ΔVo31 - 10 60 mV Io=1~150mA, Vo=1.8V
Input Voltage Stability ΔVo32 - 10 60 mV VBAT=3.4~4.5V, Io=50mA, Vo=1.8V
Ripple Rejection Ratio RR3 - 65 - dB
Short Circuit Current Limit Ilim3 - 200 400 mA Vo=0V
Discharge Resister at OFF ROFF3 - 1.0 1.5 k
Regulator (LDO4)
Output Voltage Vo4
Output Current Io4 - - 150 mA Vo=2.8V
Dropout Voltage Vsat4 - 0.2 0.3 V VBAT=2.5V, Io=150mA, Vo=2.8V
Load Stability ΔVo41 - 10 60 mV Io=1~150mA, Vo=2.8V
Input Voltage Stability ΔVo42 - 10 60 mV VBAT=3.4~4.5V, Io=50mA, Vo=2.8V
Ripple Rejection Ratio RR4 - 65 - dB
Short Circuit Current Limit Ilim4 - 200 400 mA Vo=0V
Discharge Resister at OFF ROFF4 - 1.0 1.5 k
Min. Typ. Max.
1.164 1.20 1.236 V Io=50mA
1.261 1.30 1.339 V Io=50mA
1.455 1.50 1.545 V Io=50mA
1.552 1.60 1.648 V Io=50mA
1.746 1.80 1.854 V Io=50mA <Initial Voltage>
2.134 2.20 2.266 V Io=50mA
2.328 2.40 2.472 V Io=50mA
2.425 2.50 2.575 V Io=50mA
2.522 2.60 2.678 V Io=50mA
2.619 2.70 2.781 V Io=50mA
2.716 2.80 2.884 V Io=50mA
2.813 2.90 2.987 V Io=50mA
2.910 3.00 3.090 V Io=50mA
3.007 3.10 3.193 V Io=50mA
3.104 3.20 3.296 V Io=50mA
3.201 3.30 3.399 V Io=50mA
1.164 1.20 1.236 V Io=50mA
1.261 1.30 1.339 V Io=50mA
1.455 1.50 1.545 V Io=50mA
1.552 1.60 1.648 V Io=50mA
1.746 1.80 1.854 V Io=50mA
2.134 2.20 2.266 V Io=50mA
2.328 2.40 2.472 V Io=50mA
2.425 2.50 2.575 V Io=50mA
2.522 2.60 2.678 V Io=50mA
2.619 2.70 2.781 V Io=50mA
2.716 2.80 2.884 V Io=50mA <Initial Voltage>
2.813 2.90 2.987 V Io=50mA
2.910 3.00 3.090 V Io=50mA
3.007 3.10 3.193 V Io=50mA
3.104 3.20 3.296 V Io=50mA
3.201 3.30 3.399 V Io=50mA
Limits
Unit Condition
f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz
f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
4/45
2010.07 - Rev.
A
BD6083GUL
Technical Note
Electrical Characteristics (Unless otherwise specified, Ta=25, VBAT=3.6V, VIO=1.8V)
Parameter Symbol
Min. Typ. Max.
Limits
Unit Condition
SDA, SCL (I2C Interface)
L Level Input Voltage VILI -0.3 - 0.25 ×VIO V
H Level Input Voltage VIHI 0.75 ×VIO - VBAT+0.3 V
Hysteresis of Schmitt trigger Input
VhysI 0.05 ×VIO - - V
L Level Output Voltage VOLI 0 - 0.3 V SDA Pin, IOL=3 mA
Input Current linI - - 1 μA Input Voltage= 0.1×VIO ~ 0.9×VIO
RESETB (CMOS Input Pin)
L Level Input Voltage VILR -0.3 - 0.25 ×VIO V
H Level Input Voltage VIHR 0.75 ×VIO - VBAT+0.3 V
Input Current IinR - - 1 μA Input Voltage = 0.1×VIO ~ 0.9×VIO
WPWMIN (NMOS Input Pin)
L Level Input Voltage VILA -0.3 - 0.3 V
H Level Input Voltage VIHA 1.4 - VBAT+0.3 V
Input Current IinA - 3.6 10 μA Input Voltage = 1.8V
PWM Input Minimum High Pulse Width
PWmin 250 - - μs WPWMIN Pin
GC1, GC2 (Sensor Gain Control CMOS Output Pin)
L Level Output Voltage VOLS - - 0.2 V IOL=1mA
H Level Output Voltage VOHS VoS-0.2 - - V IOH=1mA
Power Dissipation (On the ROHM’s standard board)
1.6
1.4
1280mW
1.2
W)
1.0
0.8
0.6
0.4
Power Dissipation Pd
0.2
0.0 0 25 50 75 100 125 150
Ta(℃)
Information of the ROHM’s standard board
Material: glass-epoxy Size : 50mm×58mm×1.75mm(8
th
layer)
Wiring pattern figure Refer to after page.
Fig.1 Power Dissipation
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
5/45
2010.07 - Rev.
A
BD6083GUL
A
Block Diagram / Application Circuit Example 1
6LED + ALC +PWM
1μF/10V
Technical Note
1μF/10V
C2N
OVP
C2P
TSD
CPGND
C6B5
A5
VOUT
D6
1μF/10V
LED1
A2
LED2
B1
LED3
B2
LED4
C2
LED5
D1
LED6
D2
LEDGND
C1
6LED Main Back Light
IREF
LDO1
Vo Selectable
VREF
A3
GND1
Io=150mA
LDO2
Vo Selectable
Io=150mA
LDO3
Vo Selectable
Io=150mA
LDO4
Vo Selectable
Io=150mA
LDO1O
E6
LDO2O
E5
LDO3O
E4
LDO4O
E3
1μF/6.3V
1μF/6.3V
1μF/6.3V
1μF/6.3V
From CPU
From LCM
VIO Voltage
<ALS>
GC1
BH1621FVC
GC2
VBAT
GND
VBATCP
2.2µF/10V
RESETB
WPWMIN
SBIAS
VCC
1μF/6.3V
IOUT
VBAT1
VBAT2
VIO
SCL
SD
SSENS
SGND
GC2
GC1
C1P
C1N
A4
C5
B6
F4
F5
Charge Pump Mode Control
D5
B4
C4
Level
D4
B3
F3
E1
F2
D3
E2
I/O
Sensor
I/F
Shift
A6 F1
T2
Charge Pump
x1 / x1.5 / x2
I2C interface
Digital Control
LED
control
(ALC)
A1 F6
T4
T3
T1
(Open)
(Open)
LED terminal voltage feedback
Fig.2 Block Diagram / Application Circuit Example 1
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
6/45
2010.07 - Rev.
A
BD6083GUL
A
Block Diagram / Application Circuit Example 2
5LED + ALC +PWM
1μF/10V
Technical Note
1μF/10V
From CPU
From LCM
VIO Voltage
<ALS>
GC1
BH1621FVC
GC2
VBAT
GND
VBATCP
2.2µF/10V
RESETB
WPWMIN
SBIAS
VCC
1μF/6.3V
IOUT
VBAT1
VBAT2
VIO
SCL
SD
SSENS
SGND
GC2
GC1
C2N
OVP
C2P
TSD
CPGND
C6B5
A5
VOUT
D6
1μF/10V
LED1
A2
LED2
B1
LED3
B2
LED4
C2
LED5
D1
LED6
D2
LEDGND
C1
5LED Main Back Light
IREF
LDO1
Vo Selectable
VREF
A3
GND1
Io=150mA
LDO2
Vo Selectable
Io=150mA
LDO3
Vo Selectable
Io=150mA
LDO4
Vo Selectable
Io=150mA
LDO1O
E6
LDO2O
E5
LDO3O
E4
LDO4O
E3
1μF/6.3V
1μF/6.3V
1μF/6.3V
1μF/6.3V
C1P
C1N
A4
C5
B6
F4
F5
Charge Pump Mode Control
D5
B4
C4
Level
D4
B3
F3
E1
F2
D3
E2
I/O
Sensor
I/F
Shift
A6 F1
T2
Charge Pump
x1 / x1.5 / x2
I2C interface
Digital Control
LED
control
(ALC)
A1 F6
T4
T3
T1
(Open)
(Open)
LED terminal voltage feedback
Fig.3 Block Diagram / Application Circuit Example 2
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
7/45
2010.07 - Rev.
A
BD6083GUL
A
Block Diagram / Application Circuit Example 3
4LED + 2LED + ALC +PWM
1μF/10V
Technical Note
1μF/10V
C2N
OVP
C2P
TSD
CPGND
C6B5
A5
VOUT
D6
1μF/10V
LED1
A2
LED2
B1
LED3
B2
LED4
C2
LED5
D1
LED6
D2
LEDGND
C1
6LED Main Back Light
2LED Sub Back Light or Key Back Light
IREF
LDO1
Vo Selectable
VREF
A3
GND1
Io=150mA
LDO2
Vo Selectable
Io=150mA
LDO3
Vo Selectable
Io=150mA
LDO4
Vo Selectable
Io=150mA
LDO1O
E6
LDO2O
E5
LDO3O
E4
LDO4O
E3
1μF/6.3V
1μF/6.3V
1μF/6.3V
1μF/6.3V
From CPU
From LCM
VIO Voltage
<ALS>
GC1
BH1621FVC
GC2
VBAT
GND
VBATCP
2.2µF/10V
RESETB
WPWMIN
SBIAS
VCC
1μF/6.3V
IOUT
VBAT1
VBAT2
VIO
SCL
SD
SSENS
SGND
GC2
GC1
C1P
C1N
A4
C5
B6
F4
F5
Charge Pump Mode Control
D5
B4
C4
Level
D4
B3
F3
E1
F2
D3
E2
I/O
Sensor
I/F
Shift
A6 F1
T2
Charge Pump
x1 / x1.5 / x2
I2C interface
Digital Control
LED
control
(ALC)
A1 F6
T4
T3
T1
(Open)
(Open)
LED terminal voltage feedback
Fig.4 Block Diagram / Application Circuit Example 3
.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
8/45
2010.07 - Rev.
A
BD6083GUL
Pin Arrangement [Bottom View
F T4 SGND SBIAS VBAT1 VBAT2 T3
E SSENS GC1 LDO4O LDO3O LDO2O LDO1O
D LED5 LED6 GC2 SDA VIO VOUT
Technical Note
index
C LEDGND LED4
B LED2 LED3 WPWMIN RESETB C2N VBATCP
A T1 LED1 GND1 C1N CPGND T2
1 2 3 4 5 6
Total 35 Ball
SCL C1P C2P
Fig.5 Pin Arrangement
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
9/45
2010.07 - Rev.
A
BD6083GUL
Package Outline
VCSP50L3 CSP small package SIZE : 3.15mm x 3.15mm (A difference in public:X,Y Both ±0.05mm) Height : 0.55mm max A ball pitch : 0.5 mm
Fig.6 Package Outline
Technical Note
(Unit : mm)
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
10/45
2010.07 - Rev.
A
BD6083GUL
Pin Functions
No Ball No. Pin Name I/O
1 B6 VBATCP - - GND Battery is connected A
2 F4 VBAT1 - - GND Battery is connected A
3 F5 VBAT2 - - GND Battery is connected A
4 A1 T1 O VBAT GND Test Output Pin(Open) N
5 A6 T2 I VBAT GND Test Input Pin (short to Ground) S
6 F6 T3 O VBAT GND Test Output Pin(Open) M
7 F1 T4 I VBAT GND Test Input Pin (short to Ground) S
8 D5 VIO - VBAT GND I/O Power supply is connected C
9 B4 RESETB I VBAT GND Reset input (L: reset, H: reset cancel) H
10 D4 SDA I/O VBAT GND I2C data input / output I
11 C4 SCL I VBAT GND I2C clock input H
12 A5 CPGND - VBAT - Ground B
13 A3 GND1 - VBAT - Ground B
14 C1 LEDGND - VBAT - Ground B
15 A4 C1N I/O VBAT GND Charge Pump capacitor is connected F
16 C5 C1P I/O - GND Charge Pump capacitor is connected G
17 B5 C2N I/O VBAT GND Charge Pump capacitor is connected F
18 C6 C2P I/O - GND Charge Pump capacitor is connected G
19 D6 VOUT O - GND Charge Pump output pin A
20 A2 LED1 I - GND LED is connected 1 for LCD Back Light E
21 B1 LED2 I - GND LED is connected 2 for LCD Back Light E
22 B2 LED3 I - GND LED is connected 3 for LCD Back Light E
23 C2 LED4 I - GND LED is connected 4 for LCD Back Light E
24 D1 LED5 I - GND LED is connected 5 for LCD Back Light E
25 D2 LED6 I - GND LED is connected 6 for LCD Back Light E
26 F3 SBIAS O VBAT GND Bias output for the Ambient Light Sensor Q
27 E1 SSENS I VBAT GND Ambient Light Sensor input N
28 E2 GC1 O VBAT GND Ambient Light Sensor gain control output 1 X
29 D3 GC2 O VBAT GND Ambient Light Sensor gain control output 2 X
30 F2 SGND - VBAT - Ground B
31 B3 WPWMIN I VBAT GND External PWM input for Back Light * L
32 E6 LDO1O O VBAT GND LDO1 output pin Q
33 E5 LDO2O O VBAT GND LDO2 output pin Q
34 E4 LDO3O O VBAT GND LDO3 output pin Q
35 E3 LDO4O O VBAT GND LDO4 output pin Q
* A setup of a register is separately necessary to make it effective.
ESD Diode
For Power For Ground
Functions
Technical Note
Equivalent
Circuit
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
11/45
2010.07 - Rev.
A
BD6083GUL
Equivalent Circuit
A VBATB E
C
VBAT
Technical Note
F
VBAT
J
Q
VBAT VBAT
G
VIO VBAT
R
VBATVBAT L
VBATVBAT
H
M
VBAT VBAT
S
VIOVBAT
VBATVBAT
I
N
U
VIO VBAT
VBAT
VBAT VBAT V
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
VBAT W
VIO
Fig.7 Equivalent Circuit
X
VoS VBAT
12/45
Y
VIO VBAT
2010.07 - Rev.
A
BD6083GUL
Technical Note
I2C BUS Format
The writing/reading operation is based on the I
2
C slave standard.
Slave address
A7 A6 A5 A4 A3 A2 A1 R/W
1 1 1 0 1 1 0 1/0
Bit Transfer
SCL transfers 1-bit data during H. SCL cannot change signal of SDA during H at the time of bit transfer. If SDA changes while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal.
SDA
SCL
SDA a state of stability
Data are effective
SDA
It can change
Fig.8
START and STOP condition
When SDA and SCL are H, data is not transferred on the I
2
C- bus. This condition indicates, if SDA changes from H to L while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL has been H, it will become STOP (P) conditions and an access end.
SDA
SCL
S P
START condition
STOP condition
Fig.9
Acknowledge
It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data, and a receiver returns the acknowledge signal by setting SDA to L.
DATA OUTPUT BY TRANSMITTER
DATA OUTPUT BY RECEIVER
SCL
START condition
S
12 89
not acknowledge
acknowledge
clock pulse for acknowledgement
Fig.10
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
13/45
2010.07 - Rev.
A
BD6083GUL
AAA
A
A
A
A
A
A
A2A1A
A
A
A
A
A
A
A
A A
A
A
A6A5A4A3A2A1A
A
A
A
A
Technical Note
Writing protocol
A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The 3rd byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register address is carried out automatically. However, when a register address turns into the last address, it is set to 00h by the next transmission. After the transmission end, the increment of the address is carried out.
*1 *1
X X X X X X X
S
7
6
R/W=0(write)
from master to slave
from slave to master
register addressslave address
5
4
3
D7D6 D5 D4 D3D2 D1 D0 D7 D6D5 D4 D3 D2 D1 D0
00
DATA
register address
increment
=acknowledge(SDA LOW)
=not acknowledge(SDA HIGH) S=START condition P=STOP condition *1: Write Timing
DATA
register address
increment
P
Fig.11
Reading protocol
It reads from the next byte after writing a slave address and R/W bit. The register to read considers as the following address accessed at the end, and the data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out.
X X X X X X X
R/W=1(read)
from master to slave
from slave to master
P
DATA
register address
increment
=acknowledge(SDA LOW)
=not acknowledge(SDA HIGH) S=START condition P=STOP condition
DATA slave address
register address
increment
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
1 S
Fig.12
Multiple reading protocols
After specifying an internal address, it reads by repeated START condition and changing the data transfer direction. The data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out.
S
slave address
R/W=0(write)
from master to slave
from slave to master
0
7
register address
D7 D6 D5 D4 D3D2D1D0 D7 D6 D5 D4 D3 D2 D1D0
DATA DATA
register address
increment
Sr 1
0X X X X X X X
X X X X X X X
slave address
=acknowledge(SDA LOW)
=not acknowledge(SDA HIGH) S=START condition P=STOP condition Sr=repeated START condition
R/W=1(read)
P
register address
increment
Fig.13
As for reading protocol and multiple reading protocols, please do A(not acknowledge) after doing the final reading operation. It stops with read when ending by A(acknowledge), and SDA stops in the state of Low when the reading data of that time is 0. However, this state returns usually when SCL is moved, data is read, and A (not acknowledge) is done.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
14/45
2010.07 - Rev.
A
BD6083GUL
S
Technical Note
Timing Diagram
SDA
BUF
t
S
CL
SU;DAT
t
LOW
t
HD;STA
t
HD;DAT
S Sr P
t
t HIGH
HD;STA
t
SU;STA
t
SU;STO
t
Fig.14
Electrical Characteristics(Unless otherwise specified, Ta=25
Parameter Symbol
2
I
C BUS format
o
C, VBAT=3.6V, VIO=1.8V)
Standard-mode Fast-mode
Min. Typ. Max. Min. Typ. Max.
SCL clock frequency fSCL 0 - 100 0 - 400 kHz
LOW period of the SCL clock tLOW 4.7 - - 1.3 - - μs
HIGH period of the SCL clock tHIGH 4.0 - - 0.6 - - μs
Unit
Hold time (repeated) START condition After this period, the first clock is generated
t
HD;STA 4.0 - - 0.6 - - μs
Set-up time for a repeated START condition tSU;STA 4.7 - - 0.6 - - μs
Data hold time tHD;DAT 0 - 3.45 0 - 0.9 μs
Data set-up time tSU;DAT 250 - - 100 - - ns
Set-up time for STOP condition tSU;STO 4.0 - - 0.6 - - μs
Bus free time between a STOP and START condition
BUF 4.7 - - 1.3 - - μs
t
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
15/45
2010.07 - Rev.
A
BD6083GUL
A
Technical Note
Register List
ddress W/R
00h W - - - - - - - SFTRST Software Reset
01h W - - - - W6MD W5MD W4MD MLEDMD LED Pin function setting
02h W WPWMEN ALCEN - - W6EN W5EN - MLEDEN LED Power Control
03h W - IMLED(6) IMLED(5) IMLED(4) IMLED(3) IMLED(2) IMLED(1) IMLED(0) Main group current setting
04h - - - - - - - - - -
05h W - IW5(6) IW5(5) IW5(4) IW5(3) IW5(2) IW5(1) IW5(0) LED5 current setting
06h W - IW6(6) IW6(5) IW6(4) IW6(3) IW6(2) IW6(1) IW6(0) LED6 current setting
07h - - - - - - - - - -
08h - - - - - - - - - -
09h W THL (3) THL (2) THL (1) THL (0) TLH (3) TLH (2) TLH (1) TLH (0) Main Current transition
0Ah W - ADCYC - GAIN - - MDCIR SBIASON Measurement mode setting
0Bh W - - - - CRV STEP (2) STEP (1) STEP (0) ALC Slope curve setup
0Ch R - - - - AMB (3) AMB (2) AMB (1) AMB (0) Ambient level
0Dh W - IU0 (6) IU0 (5) IU0 (4) IU0 (3) IU0 (2) IU0 (1) IU0 (0) LED Current at Ambient level 0h (ALC)
0Eh W - IU1 (6) IU1 (5) IU1 (4) IU1 (3) IU1 (2) IU1 (1) IU1 (0) LED Current max (ALC)
0Fh - - - - - - - - - -
10h - - - - - - - - - -
11h - - - - - - - - - -
12h - - - - - - - - - -
13h W - - - - LDO4EN LDO3EN LDO2EN LDO1EN LDO Power Control
14h W LDO2VSEL3 LDO2VSEL2 LDO2VSEL1 LDO2VSEL0 LDO1VSEL3 LDO1VSEL2 LDO1VSEL1 LDO1VSEL0
15h W LDO4VSEL3 LDO4VSEL2 LDO4VSEL1 LDO4VSEL0 LDO3VSEL3 LDO3VSEL2 LDO3VSEL1 LDO3VSEL0
Input "0” for "-". A free address has the possibility to assign it to the register for the test. Access to the register for the test and the undefined register is prohibited.
D7 D6 D5 D4 D3 D2 D1 D0
Register data
Function
LDO1 Vout Control LDO2 Vout Control LDO3 Vout Control LDO4 Vout Control
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
16/45
2010.07 - Rev.
A
BD6083GUL
Register Map
Address 00h < Software Reset >
Address
00h W - - - - - - - SFTRST
Initial Value 00h - - - - - - - 0
Bit[7:1] : (Not used)
Bit0 : SFTRST Software Reset
Address 01h < LED Pin function setting>
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
01h W - - - - W6MD W5MD W4MD MLEDMD
Initial Value 02h - - - - 0 0 1 0
Bit[7:4] : (Not used)
Bit3 : W6MD LED6 control setting (individual / Main group)
Bit2 : W5MD LED5 control setting (individual / Main group)
Bit1 : W4MD LED4 Control Board setting (unuse / use)
Bit0 : MLEDMD Main group setting (Normal / ALC)
Set up a fixation in every design because it isn't presumed W*PW that it is changed dynamically. And, do the setup of W*PW when each LED is Off.
R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
“0” : Reset cancel “1” : Reset(All register initializing) Refer to “Reset” for detail.
“0” : LED6 individual control (Initial Value) “1” : LED6 Main group control Refer to “LED Driver” for detail.
“0” : LED5 individual control (Initial Value) “1” : LED5 Main group control Refer to “LED Driver” for detail.
“0” : LED4 unuse “1” : LED4 use (Main group Control) (Initial Value) Refer to “LED Driver” for detail.
“0” : Main group Normal Mode(ALCNon-reflection)(Initial Value) “1” : Main group ALC Mode Refer to “(1) Auto Luminous Control ON/OFF” of “ALC” for detail.
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
17/45
2010.07 - Rev.
A
BD6083GUL
Address 02h < LED Power Control>
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
02h W WPWMEN ALCEN - - W6EN W5EN - MLEDEN
Initial Value 00h 0 0 0 0 0 0 0 0
Bit7 : WPWMEN External PWM Input “WPWMIN” terminal Enable Control (Valid/Invalid)
“0” : External PWM input invalid (Initial Value) “1” : External PWM input valid
Refer to “(10) Current Adjustment” of “ALC” for detail.
Bit6 : ALCEN ALC function Control (ON/OFF)
“0” : ALC block OFF (Initial Value) “1” : ALC block ON (Ambient Measurement)
Refer to “(1) Auto Luminous Control ON/OFF” of “ALC” for detail.
Bit[5:4] : (Not used)
Bit3 : W6EN LED6 Control (ON/OFF)
“0” : LED6 OFF (Initial Value) “1” : LED6 ON(individual control) Refer to “LED Driver” for detail.
Bit2 : W5EN LED5 Control (ON/OFF)
“0” : LED5 OFF (Initial Value) “1” : LED5 ON(individual control) Refer to “LED Driver” for detail.
Bit1 : (Not used)
Bit0 : MLEDEN Main group LED Control (ON/OFF)
“0” : Main group OFF (Initial Value) “1” : Main group ON
Refer to “(1) Auto Luminous Control ON/OFF” of “ALC” for detail.
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
18/45
2010.07 - Rev.
A
BD6083GUL
Technical Note
Address 03h < Main group LED Current setting(Normal Mode) >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
03h W - IMLED(6) IMLED(5) IMLED(4) IMLED(3) IMLED(2) IMLED(1) IMLED(0)
Initial Value 00h - 0 0 0 0 0 0 0
Bit7 : (Not used)
Bit[6:0] : IMLED (6:0) Main Group LED Current Setting at non-ALC mode
“0000000” : 0.2 mA (Initial Value) “1000000” : 13.0 mA “0000001” : 0.4 mA “1000001” : 13.2 mA “0000010” : 0.6 mA “1000010” : 13.4 mA
“0000011” : 0.8 mA “1000011” : 13.6 mA “0000100” : 1.0 mA “1000100” : 13.8 mA “0000101” : 1.2 mA “1000101” : 14.0 mA “0000110” : 1.4 mA “1000110” : 14.2 mA “0000111” : 1.6 mA “1000111” : 14.4 mA “0001000” : 1.8 mA “1001000” : 14.6 mA “0001001” : 2.0 mA “1001001” : 14.8 mA “0001010” : 2.2 mA “1001010” : 15.0 mA “0001011” : 2.4 mA “1001011” : 15.2 mA “0001100” : 2.6 mA “1001100” : 15.4 mA “0001101” : 2.8 mA “1001101” : 15.6 mA “0001110” : 3.0 mA “1001110” : 15.8 mA “0001111” : 3.2 mA “1001111” : 16.0 mA “0010000” : 3.4 mA “1010000” : 16.2 mA “0010001” : 3.6 mA “1010001” : 16.4 mA “0010010” : 3.8 mA “1010010” : 16.6 mA “0010011” : 4.0 mA “1010011” : 16.8 mA “0010100” : 4.2 mA “1010100” : 17.0 mA “0010101” : 4.4 mA “1010101” : 17.2 mA “0010110” : 4.6 mA “1010110” : 17.4 mA “0010111” : 4.8 mA “1010111” : 17.6 mA
“0011000” : 5.0 mA “1011000” : 17.8 mA
“0011001” : 5.2 mA “1011001” : 18.0 mA “0011010” : 5.4 mA “1011010” : 18.2 mA “0011011” : 5.6 mA “1011011” : 18.4 mA “0011100” : 5.8 mA “1011100” : 18.6 mA “0011101” : 6.0 mA “1011101” : 18.8 mA “0011110” : 6.2 mA “1011110” : 19.0 mA “0011111” : 6.4 mA “1011111” : 19.2 mA “0100000” : 6.6 mA “1100000” : 19.4 mA “0100001” : 6.8 mA “1100001” : 19.6 mA
“0100010” : 7.0 mA “1100010” : 19.8 mA “0100011” : 7.2 mA “1100011” : 20.0 mA “0100100” : 7.4 mA “1100100” : 20.2 mA
“0100101” : 7.6 mA “1100101” : 20.4 mA “0100110” : 7.8 mA “1100110” : 20.6 mA “0100111” : 8.0 mA “1100111” : 20.8 mA “0101000” : 8.2 mA “1101000” : 21.0 mA “0101001” : 8.4 mA “1101001” : 21.2 mA
“0101010” : 8.6 mA “1101010” : 21.4 mA
“0101011” : 8.8 mA “1101011” : 21.6 mA “0101100” : 9.0 mA “1101100” : 21.8 mA “0101101” : 9.2 mA “1101101” : 22.0 mA “0101110” : 9.4 mA “1101110” : 22.2 mA “0101111” : 9.6 mA “1101111” : 22.4 mA
“0110000” : 9.8 mA “1110000” : 22.6 mA
“0110001” : 10.0 mA “1110001” : 22.8 mA “0110010” : 10.2 mA “1110010” : 23.0 mA “0110011” : 10.4 mA “1110011” : 23.2 mA “0110100” : 10.6 mA “1110100” : 23.4 mA “0110101” : 10.8 mA “1110101” : 23.6 mA “0110110” : 11.0 mA “1110110” : 23.8 mA “0110111” : 11.2 mA “1110111” : 24.0 mA “0 111 0 0 0” : 11 .4 mA “1111 0 0 0 ” : 24 . 2 mA “0 111 0 0 1” : 11.6 m A “1111 0 0 1 ” : 24 . 4 mA “0 111 0 1 0” : 11 .8 mA “1111 0 1 0 ” : 24 . 6 mA “0 111 0 11 ” : 12. 0 m A “1111011” : 24. 8 m A “0 1111 0 0 ” : 12 . 2 mA “1111100” : 25.0 mA “0 1111 0 1 ” : 12 . 4 m A “1111101” : 25.2 mA “0 11111 0 ” : 12. 6 m A “1111110” : 25. 4 m A “0 111111 ” : 12.8 m A “1111111 ” : 25.6 m A
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
19/45
2010.07 - Rev.
A
BD6083GUL
Technical Note
Address 05h < LED5 Current setting(Independence control) >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
05h W - IW5(6) IW5(5) IW5(4) IW5(3) IW5(2) IW5(1) IW5(0)
Initial Value 00h - 0 0 0 0 0 0 0
Bit7 : (Not used)
Bit[6:0] : IW5 (6:0) LED5
“0000000” : 0.2 mA (Initial Value) “1000000” : 13.0 mA “0000001” : 0.4 mA “1000001” : 13.2 mA “0000010” : 0.6 mA “1000010” : 13.4 mA “0000011” : 0.8 mA “1000011” : 13.6 mA “0000100” : 1.0 mA “1000100” : 13.8 mA
“0000101” : 1.2 mA “1000101” : 14.0 mA “0000110” : 1.4 mA “1000110” : 14.2 mA
“0000111” : 1.6 mA “1000111” : 14.4 mA “0001000” : 1.8 mA “1001000” : 14.6 mA “0001001” : 2.0 mA “1001001” : 14.8 mA “0001010” : 2.2 mA “1001010” : 15.0 mA “0001011” : 2.4 mA “1001011” : 15.2 mA “0001100” : 2.6 mA “1001100” : 15.4 mA “0001101” : 2.8 mA “1001101” : 15.6 mA “0001110” : 3.0 mA “1001110” : 15.8 mA “0001111” : 3.2 mA “1001111” : 16.0 mA “0010000” : 3.4 mA “1010000” : 16.2 mA
“0010001” : 3.6 mA “1010001” : 16.4 mA “0010010” : 3.8 mA “1010010” : 16.6 mA “0010011” : 4.0 mA “1010011” : 16.8 mA “0010100” : 4.2 mA “1010100” : 17.0 mA “0010101” : 4.4 mA “1010101” : 17.2 mA “0010110” : 4.6 mA “1010110” : 17.4 mA “0010111” : 4.8 mA “1010111” : 17.6 mA “0011000” : 5.0 mA “1011000” : 17.8 mA
“0011001” : 5.2 mA “1011001” : 18.0 mA “0011010” : 5.4 mA “1011010” : 18.2 mA “0011011” : 5.6 mA “1011011” : 18.4 mA “0011100” : 5.8 mA “1011100” : 18.6 mA “0011101” : 6.0 mA “1011101” : 18.8 mA “0011110” : 6.2 mA “1011110” : 19.0 mA “0011111” : 6.4 mA “1011111” : 19.2 mA “0100000” : 6.6 mA “1100000” : 19.4 mA “0100001” : 6.8 mA “1100001” : 19.6 mA
“0100010” : 7.0 mA “1100010” : 19.8 mA “0100011” : 7.2 mA “1100011” : 20.0 mA “0100100” : 7.4 mA “1100100” : 20.2 mA
“0100101” : 7.6 mA “1100101” : 20.4 mA “0100110” : 7.8 mA “1100110” : 20.6 mA “0100111” : 8.0 mA “1100111” : 20.8 mA “0101000” : 8.2 mA “1101000” : 21.0 mA “0101001” : 8.4 mA “1101001” : 21.2 mA
“0101010” : 8.6 mA “1101010” : 21.4 mA
“0101011” : 8.8 mA “1101011” : 21.6 mA “0101100” : 9.0 mA “1101100” : 21.8 mA “0101101” : 9.2 mA “1101101” : 22.0 mA “0101110” : 9.4 mA “1101110” : 22.2 mA “0101111” : 9.6 mA “1101111” : 22.4 mA
“0110000” : 9.8 mA “1110000” : 22.6 mA
“0110001” : 10.0 mA “1110001” : 22.8 mA “0110010” : 10.2 mA “1110010” : 23.0 mA “0110011” : 10.4 mA “1110011” : 23.2 mA “0110100” : 10.6 mA “1110100” : 23.4 mA “0110101” : 10.8 mA “1110101” : 23.6 mA “0110110” : 11.0 mA “1110110” : 23.8 mA “0110111” : 11.2 mA “1110111” : 24.0 mA “0 111 0 0 0” : 11 .4 mA “1111 0 0 0 ” : 24 . 2 mA “0 111 0 0 1” : 11.6 m A “1111 0 0 1 ” : 24 . 4 mA “0 111 0 1 0” : 11 .8 mA “1111 0 1 0 ” : 24 . 6 mA “0 111 0 11 ” : 12. 0 m A “1111011” : 24. 8 m A “0 1111 0 0 ” : 12 . 2 mA “1111100” : 25.0 mA “0 1111 0 1 ” : 12 . 4 m A “1111101” : 25.2 mA “0 11111 0 ” : 12. 6 m A “1111110” : 25. 4 m A “0 111111 ” : 12.8 m A “1111111 ” : 25.6 m A
Current setting
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
20/45
2010.07 - Rev.
A
BD6083GUL
Technical Note
Address 06h < LED6 Current setting(Independence control) >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
06h W - IW6(6) IW6(5) IW6(4) IW6(3) IW6(2) IW6(1) IW6(0)
Initial Value 00h - 0 0 0 0 0 0 0
Bit7 : (Not used)
Bit[6:0] : IW6 (6:0) LED6
“0000000” : 0.2 mA (Initial Value) “1000000” : 13.0 mA “0000001” : 0.4 mA “1000001” : 13.2 mA “0000010” : 0.6 mA “1000010” : 13.4 mA “0000011” : 0.8 mA “1000011” : 13.6 mA “0000100” : 1.0 mA “1000100” : 13.8 mA
“0000101” : 1.2 mA “1000101” : 14.0 mA “0000110” : 1.4 mA “1000110” : 14.2 mA
“0000111” : 1.6 mA “1000111” : 14.4 mA “0001000” : 1.8 mA “1001000” : 14.6 mA “0001001” : 2.0 mA “1001001” : 14.8 mA “0001010” : 2.2 mA “1001010” : 15.0 mA “0001011” : 2.4 mA “1001011” : 15.2 mA “0001100” : 2.6 mA “1001100” : 15.4 mA “0001101” : 2.8 mA “1001101” : 15.6 mA “0001110” : 3.0 mA “1001110” : 15.8 mA “0001111” : 3.2 mA “1001111” : 16.0 mA “0010000” : 3.4 mA “1010000” : 16.2 mA
“0010001” : 3.6 mA “1010001” : 16.4 mA “0010010” : 3.8 mA “1010010” : 16.6 mA “0010011” : 4.0 mA “1010011” : 16.8 mA “0010100” : 4.2 mA “1010100” : 17.0 mA “0010101” : 4.4 mA “1010101” : 17.2 mA “0010110” : 4.6 mA “1010110” : 17.4 mA “0010111” : 4.8 mA “1010111” : 17.6 mA “0011000” : 5.0 mA “1011000” : 17.8 mA
“0011001” : 5.2 mA “1011001” : 18.0 mA “0011010” : 5.4 mA “1011010” : 18.2 mA “0011011” : 5.6 mA “1011011” : 18.4 mA “0011100” : 5.8 mA “1011100” : 18.6 mA “0011101” : 6.0 mA “1011101” : 18.8 mA “0011110” : 6.2 mA “1011110” : 19.0 mA “0011111” : 6.4 mA “1011111” : 19.2 mA “0100000” : 6.6 mA “1100000” : 19.4 mA “0100001” : 6.8 mA “1100001” : 19.6 mA
“0100010” : 7.0 mA “1100010” : 19.8 mA “0100011” : 7.2 mA “1100011” : 20.0 mA “0100100” : 7.4 mA “1100100” : 20.2 mA
“0100101” : 7.6 mA “1100101” : 20.4 mA “0100110” : 7.8 mA “1100110” : 20.6 mA “0100111” : 8.0 mA “1100111” : 20.8 mA “0101000” : 8.2 mA “1101000” : 21.0 mA “0101001” : 8.4 mA “1101001” : 21.2 mA
“0101010” : 8.6 mA “1101010” : 21.4 mA
“0101011” : 8.8 mA “1101011” : 21.6 mA “0101100” : 9.0 mA “1101100” : 21.8 mA “0101101” : 9.2 mA “1101101” : 22.0 mA “0101110” : 9.4 mA “1101110” : 22.2 mA “0101111” : 9.6 mA “1101111” : 22.4 mA
“0110000” : 9.8 mA “1110000” : 22.6 mA
“0110001” : 10.0 mA “1110001” : 22.8 mA “0110010” : 10.2 mA “1110010” : 23.0 mA “0110011” : 10.4 mA “1110011” : 23.2 mA “0110100” : 10.6 mA “1110100” : 23.4 mA “0110101” : 10.8 mA “1110101” : 23.6 mA “0110110” : 11.0 mA “1110110” : 23.8 mA “0110111” : 11.2 mA “1110111” : 24.0 mA “0 111 0 0 0” : 11 .4 mA “1111 0 0 0 ” : 24 . 2 mA “0 111 0 0 1” : 11.6 m A “1111 0 0 1 ” : 24 . 4 mA “0 111 0 1 0” : 11 .8 mA “1111 0 1 0 ” : 24 . 6 mA “0 111 0 11 ” : 12. 0 m A “1111011” : 24. 8 m A “0 1111 0 0 ” : 12 . 2 mA “1111100” : 25.0 mA “0 1111 0 1 ” : 12 . 4 m A “1111101” : 25.2 mA “0 11111 0 ” : 12. 6 m A “1111110” : 25. 4 m A “0 111111 ” : 12.8 m A “1111111 ” : 25.6 m A
Current setting
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
21/45
2010.07 - Rev.
A
BD6083GUL
Address 09h < Main Current slope time setting >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
09h W THL(3) THL(2) THL(1) THL(0) TLH(3) TLH(2) TLH(1) TLH(0)
Initial Value C7h 1 1 0 0 0 1 1 1
Bit[7:4] : THL (3:0) Main LED current Down transition per 0.2mA step
“0000” : 0.256 ms “0001” : 0.512 ms “0010” : 1.024 ms “0011” : 2.048 ms “0100” : 4.096 ms “0101” : 8.192 ms “0110” : 16.38 ms “0111” : 32.77 ms “1000” : 65.54 ms “1001” : 131.1 ms “1010” : 196.6 ms “1011” : 262.1 ms “1100” : 327.7 ms (Initial Value) “1101” : 393.2 ms “1110” : 458.8 ms
“1111” : 5 2 4 . 3 ms Setting time is counted based on the switching frequency of Charge Pump. The above value becomes the value of the Typ (1MHz) time. Refer to “(8) Slope Process” of “ALC” for detail.
Bit[3:0] : TLH (3:0) Main LED current Up transition per 0.2mA step
“0000” : 0.256 ms
“0001” : 0.512 ms
“0010” : 1.024 ms
“0011” : 2.048 ms
“0100” : 4.096 ms
“0101” : 8.192 ms
“0110” : 16.38 ms
“0111” : 32.77 ms (Initial Value)
“1000” : 65.54 ms
“1001” : 131.1 ms
“1010” : 196.6 ms
“1011” : 262.1 ms
“1100” : 327.7 ms
“1101” : 393.2 ms
“1110” : 458.8 ms
“1111” : 5 2 4 . 3 ms Setting time is counted based on the switching frequency of Charge Pump. The above value becomes the value of the Typ (1MHz) time. Refer to “(8) Slope Process” of “ALC” for detail.
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
22/45
2010.07 - Rev.
A
BD6083GUL
Technical Note
Address 0Ah < ALC mode setting >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
0Ah W - ADCYC - GAIN - - MDCIR SBIASON
Initial Value 01h - 0 - 0 - - 0 1
Bit7 : (Not used)
Bit6 : ADCYC ADC Measurement Cycle
“0” : 0.52 s (Initial Value) “1” : 1.05 s
Refer to “(4) A/D conversion” of “ALC” for detail.
Bit5 : (Not used)
Bit4 : GAIN Sensor Gain Switching Function Control
“0” : Auto Change (Initial Value) “1” : Fixed
Refer to “(3) Gain control” of “ALC” for detail.
Bit[3:2] : (Not used)
Bit1 : MDCIR LED Current Reset Select by Mode Change
“0” : LED current non-reset when mode change (Initial Value) “1” : LED current reset when mode change
Refer to “(9) LED current reset when mode change” of “ALC” for detail.
Bit0 : SBIASON
“0” : Measurement cycle synchronous “1” : Usually ON (at ALCEN=1) (Initial Value)
Refer to “(4) A/D conversion” of “ALC” for detail.
Address 0Bh < ALC slope curve setting >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
0Bh W - - - - CRV STEP (2) STEP (1) STEP (0)
Initial Value 00h - - - - 0 0 0 1
Bit[7:4] : (Not used)
Bit3 : CRV Brightness Current Conversion Curve Type
“0” Log curve (Initial Value) “1” linear
Bit[2:0] : STEP (2:0) Step At the time of Brightness Current Conversion
“000” : 1.0mA
“001” : 1.1mA (Initial Value)
“010” : 1.2mA
“011” : 1.3mA
“100” : 1.6mA
“101” : 1.7mA
“110” : 1.8mA
“111” : 1.9mA
Refer to “(7) Convert LED Current” of “ALC” for detail.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
23/45
2010.07 - Rev.
A
BD6083GUL
Address 0Ch < Ambient level (Read Only) >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
0Ch R - - - - AMB(3) AMB(2) AMB(1) AMB(0)
Initial Value (00h) - - - - (0) (0) (0) (0)
Bit[7:4] : (Not used)
Bit[3:0] : AMB (3:0) Ambient Level
“0000” : 0h (Initial Value) “0001” : 1h “0010” : 2h “0011” : 3h “0100” : 4h “0101” : 5h “0110” : 6h “0111” : 7h “1000” : 8h “1001” : 9h “1010” : Ah “1011” : Bh “1100” : Ch “1101” : Dh “1110” : Eh “1111” : Fh
It begins to read Ambient data through I To the first AD measurement completion, it is AMB(3:0)=0000. Refer to “(6) Ambient level detection” of “ALC” for detail.
2
C, and possible.
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
24/45
2010.07 - Rev.
A
BD6083GUL
Technical Note
Address 0Dh < Ambient LED Current setting >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
0Dh W - IU0 (6) IU0 (5) IU0 (4) IU0 (3) IU0 (2) IU0 (1) IU0 (0)
Initial Value 13 - 0 0 1 0 0 1 1
Bit7 : (Not used)
Bit[6:0] : IU0 (6:0) Main Current at Ambient Level for 0h
“0000000” : 0.2 mA “1000000” : 13.0 mA “0000001” : 0.4 mA “1000001” : 13.2 mA “0000010” : 0.6 mA “1000010” : 13.4 mA “0000011” : 0.8 mA “1000011” : 13.6 mA
“0000100” : 1.0 mA “1000100” : 13.8 mA “0000101” : 1.2 mA “1000101” : 14.0 mA “0000110” : 1.4 mA “1000110” : 14.2 mA
“0000111” : 1.6 mA “1000111” : 14.4 mA
“0001000” : 1.8 mA “1001000” : 14.6 mA
“0001001” : 2.0 mA “1001001” : 14.8 mA
“0001010” : 2.2 mA “1001010” : 15.0 mA
“0001011” : 2.4 mA “1001011” : 15.2 mA
“0001100” : 2.6 mA “1001100” : 15.4 mA
“0001101” : 2.8 mA “1001101” : 15.6 mA
“0001110” : 3.0 mA “1001110” : 15.8 mA
“0001111” : 3.2 mA “1001111” : 16.0 mA
“0010000” : 3.4 mA “1010000” : 16.2 mA “0010001” : 3.6 mA “1010001” : 16.4 mA “0010010” : 3.8 mA “1010010” : 16.6 mA “0010011” : 4.0 mA “0010100” : 4.2 mA “1010100” : 17.0 mA “0010101” : 4.4 mA “1010101” : 17.2 mA “0010110” : 4.6 mA “1010110” : 17.4 mA “0010111” : 4.8 mA “1010111” : 17.6 mA “0011000” : 5.0 mA “1011000” : 17.8 mA
“0011001” : 5.2 mA “1011001” : 18.0 mA
“0011010” : 5.4 mA “1011010” : 18.2 mA
“0011011” : 5.6 mA “1011011” : 18.4 mA
“0011100” : 5.8 mA “1011100” : 18.6 mA
“0011101” : 6.0 mA “1011101” : 18.8 mA
“0011110” : 6.2 mA “1011110” : 19.0 mA
“0011111” : 6.4 mA “1011111” : 19.2 mA
“0100000” : 6.6 mA “1100000” : 19.4 mA
“0100001” : 6.8 mA “1100001” : 19.6 mA “0100010” : 7.0 mA “1100010” : 19.8 mA “0100011” : 7.2 mA “1100011” : 20.0 mA “0100100” : 7.4 mA “1100100” : 20.2 mA
“0100101” : 7.6 mA “1100101” : 20.4 mA
“0100110” : 7.8 mA “1100110” : 20.6 mA
“0100111” : 8.0 mA “1100111” : 20.8 mA
“0101000” : 8.2 mA “1101000” : 21.0 mA
“0101001” : 8.4 mA “1101001” : 21.2 mA “0101010” : 8.6 mA “1101010” : 21.4 mA
“0101011” : 8.8 mA “1101011” : 21.6 mA
“0101100” : 9.0 mA “1101100” : 21.8 mA
“0101101” : 9.2 mA “1101101” : 22.0 mA
“0101110” : 9.4 mA “1101110” : 22.2 mA
“0101111” : 9.6 mA “1101111” : 22.4 mA “0110000” : 9.8 mA “1110000” : 22.6 mA
“0110001” : 10.0 mA “1110001” : 22.8 mA
“0110010” : 10.2 mA “1110010” : 23.0 mA
“0110011” : 10.4 mA “1110011” : 23.2 mA
“0110100” : 10.6 mA “1110100” : 23.4 mA
“0110101” : 10.8 mA “1110101” : 23.6 mA
“0110110” : 11.0 mA “1110110” : 23.8 mA
“0110111” : 11.2 mA “1110111” : 24.0 mA
“0 111 0 0 0” : 11 .4 mA “1111 0 0 0 ” : 24 . 2 mA
“0 111 0 0 1” : 11.6 m A “1111 0 0 1 ” : 24 . 4 mA
“0 111 0 1 0” : 11 .8 mA “1111 0 1 0 ” : 24 . 6 mA
“0 111 0 11 ” : 12. 0 m A “1111011” : 24. 8 m A
“0 1111 0 0 ” : 12 . 2 mA “1111100” : 25.0 mA
“0 1111 0 1 ” : 12 . 4 m A “1111101” : 25.2 mA
“0 11111 0 ” : 12. 6 m A “1111110” : 25. 4 m A
“0 111111 ” : 12.8 m A “1111111 ” : 25.6 m A
(Initial Value) “1010011” : 16.8 mA
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
25/45
2010.07 - Rev.
A
BD6083GUL
Technical Note
Address 0Eh < LED Max Current setting >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
0Eh W - IU1 (6) IU1 (5) IU1 (4) IU1 (3) IU1 (2) IU1 (1) IU1 (0)
Initial Value 63h - 1 1 0 0 0 1 1
Bit7 : (Not used)
Bit[6:0] : IU1 (6:0) LED Max Current (for ALC)
“0000000” : 0.2 mA “1000000” : 13.0 mA
“0000001” : 0.4 mA “1000001” : 13.2 mA
“0000010” : 0.6 mA “1000010” : 13.4 mA
“0000011” : 0.8 mA “1000011” : 13.6 mA
“0000100” : 1.0 mA “1000100” : 13.8 mA “0000101” : 1.2 mA “1000101” : 14.0 mA “0000110” : 1.4 mA “1000110” : 14.2 mA
“0000111” : 1.6 mA “1000111” : 14.4 mA
“0001000” : 1.8 mA “1001000” : 14.6 mA
“0001001” : 2.0 mA “1001001” : 14.8 mA
“0001010” : 2.2 mA “1001010” : 15.0 mA
“0001011” : 2.4 mA “1001011” : 15.2 mA
“0001100” : 2.6 mA “1001100” : 15.4 mA
“0001101” : 2.8 mA “1001101” : 15.6 mA
“0001110” : 3.0 mA “1001110” : 15.8 mA
“0001111” : 3.2 mA “1001111” : 16.0 mA
“0010000” : 3.4 mA “1010000” : 16.2 mA “0010001” : 3.6 mA “1010001” : 16.4 mA “0010010” : 3.8 mA “1010010” : 16.6 mA “0010011” : 4.0 mA “1010011” : 16.8 mA “0010100” : 4.2 mA “1010100” : 17.0 mA “0010101” : 4.4 mA “1010101” : 17.2 mA “0010110” : 4.6 mA “1010110” : 17.4 mA “0010111” : 4.8 mA “1010111” : 17.6 mA “0011000” : 5.0 mA “1011000” : 17.8 mA
“0011001” : 5.2 mA “1011001” : 18.0 mA
“0011010” : 5.4 mA “1011010” : 18.2 mA
“0011011” : 5.6 mA “1011011” : 18.4 mA
“0011100” : 5.8 mA “1011100” : 18.6 mA
“0011101” : 6.0 mA “1011101” : 18.8 mA
“0011110” : 6.2 mA “1011110” : 19.0 mA
“0011111” : 6.4 mA “1011111” : 19.2 mA
“0100000” : 6.6 mA “1100000” : 19.4 mA
“0100001” : 6.8 mA “1100001” : 19.6 mA “0100010” : 7.0 mA “1100010” : 19.8 mA “0100011” : 7.2 mA “1100011” : 20.0 mA “0100100” : 7.4 mA “1100100” : 20.2 mA
“0100101” : 7.6 mA “1100101” : 20.4 mA
“0100110” : 7.8 mA “1100110” : 20.6 mA
“0100111” : 8.0 mA “1100111” : 20.8 mA
“0101000” : 8.2 mA “1101000” : 21.0 mA
“0101001” : 8.4 mA “1101001” : 21.2 mA “0101010” : 8.6 mA “1101010” : 21.4 mA
“0101011” : 8.8 mA “1101011” : 21.6 mA
“0101100” : 9.0 mA “1101100” : 21.8 mA
“0101101” : 9.2 mA “1101101” : 22.0 mA
“0101110” : 9.4 mA “1101110” : 22.2 mA
“0101111” : 9.6 mA “1101111” : 22.4 mA “0110000” : 9.8 mA “1110000” : 22.6 mA
“0110001” : 10.0 mA “1110001” : 22.8 mA
“0110010” : 10.2 mA “1110010” : 23.0 mA
“0110011” : 10.4 mA “1110011” : 23.2 mA
“0110100” : 10.6 mA “1110100” : 23.4 mA
“0110101” : 10.8 mA “1110101” : 23.6 mA
“0110110” : 11.0 mA “1110110” : 23.8 mA
“0110111” : 11.2 mA “1110111” : 24.0 mA
“0 111 0 0 0” : 11 .4 mA “1111 0 0 0 ” : 24 . 2 mA
“0 111 0 0 1” : 11.6 m A “1111 0 0 1 ” : 24 . 4 mA
“0 111 0 1 0” : 11 .8 mA “1111 0 1 0 ” : 24 . 6 mA
“0 111 0 11 ” : 12. 0 m A “1111011” : 24. 8 m A
“0 1111 0 0 ” : 12 . 2 mA “1111100” : 25.0 mA
“0 1111 0 1 ” : 12 . 4 m A “1111101” : 25.2 mA
“0 11111 0 ” : 12. 6 m A “1111110” : 25. 4 m A
“0 111111 ” : 12.8 m A “1111111 ” : 25.6 m A
(Initial Value)
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
26/45
2010.07 - Rev.
A
BD6083GUL
Address 13h <LDO Power Control>
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
13h W/R - - - - LDO4EN LDO3EN LDO2EN LDO1EN
Initial Value 00h - - - - 0 0 0 0
Bit[7:4] : (Not used)
Bit3 : LDO4EN LDO4 control (ON/OFF)
“0” : LDO4 OFF (Initial Value) “1” : LDO4 ON
Bit2 : LDO3EN LDO3 control (ON/OFF)
“0” : LDO3 OFF (Initial Value) “1” : LDO3 ON
Bit1 : LDO2EN LDO2 control (ON/OFF)
“0” : LDO2 OFF (Initial Value) “1” : LDO2 ON
Bit0 : LDO1EN LDO1 control (ON/OFF)
“0” : LDO1 OFF (Initial Value) “1” : LDO1 ON
Address 14h < LDO1 Vout Control, LDO2 Vout Control >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
14h R /W LDO2VSEL3 LDO2VSEL2 LDO2VSEL1 LDO2VSEL0 LDO1VSEL3 LDO1VSEL2 LDO1VSEL1 LDO1VSEL0
Initial Value 74h 0 1 1 1 0 1 0 0
Bit[7:4] : LDO2VSEL [3:0]
“0000” : 1.20 V “0001” : 1.30 V “0010” : 1.50 V “0011” : 1.60 V “0100” : 1.80 V “0101” : 2.20 V “0110” : 2.40 V “0111” : 2.50 V (Initial Value) “1000” : 2.60 V “1001” : 2.70 V “1010” : 2.80 V “1011” : 2.90 V “1100” : 3.00 V “1101” : 3.10 V “1110” : 3.20 V “1111” : 3.30 V
Bit[3:0] : LDO1VSEL [3:0]
“0000” : 1.20 V “0001” : 1.30 V “0010” : 1.50 V “0011” : 1.60 V “0100” : 1.80 V (Initial Value) “0101” : 2.20 V “0110” : 2.40 V “0111” : 2.50 V “1000” : 2.60 V “1001” : 2.70 V “1010” : 2.80 V “1011” : 2.90 V “1100” : 3.00 V “1101” : 3.10 V “1110” : 3.20 V “1111” : 3.30 V
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
27/45
2010.07 - Rev.
A
BD6083GUL
Address 15h < LDO3 Vout Control, LDO4 Vout Control >
Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
15h R /W LDO4VSEL3 LDO4VSEL2 LDO4VSEL1 LDO4VSEL0 LDO3VSEL3 LDO3VSEL2 LDO3VSEL1 LDO3VSEL0
Initial Value A4h 1 0 1 0 0 1 0 0
Bit[7:4] : LDO4VSEL [3:0]
“0000” : 1.20 V “0001” : 1.30 V “0010” : 1.50 V “0011” : 1.60 V “0100” : 1.80 V “0101” : 2.20 V “0110” : 2.40 V “0111” : 2.50 V “1000” : 2.60 V “1001” : 2.70 V “1010” : 2.80 V (Initial Value) “1011” : 2.90 V “1100” : 3.00 V “1101” : 3.10 V “1110” : 3.20 V “1111” : 3.30 V
Bit[3:0] : LDO3VSEL [3:0]
“0000” : 1.20 V “0001” : 1.30 V “0010” : 1.50 V “0011” : 1.60 V “0100” : 1.80 V (Initial Value) “0101” : 2.20 V “0110” : 2.40 V “0111” : 2.50 V “1000” : 2.60 V “1001” : 2.70 V “1010” : 2.80 V “1011” : 2.90 V “1100” : 3.00 V “1101” : 3.10 V “1110” : 3.20 V “1111” : 3.30 V
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
28/45
2010.07 - Rev.
A
BD6083GUL
Technical Note
Reset
There are two kinds of reset, software reset and hardware reset (1)Software reset
All the registers are initialized by SFTRST="1". SFTRST is an automatically returned to "0". (Auto Return 0).
(2) Hardware reset
It shifts to hardware reset by changing RESETB pin “H” “L”. The condition of all the registers under hardware reset pin is returned to the Initial Value, and it stops accepting all address. It’s possible to release from a state of hardware reset by changing RESETB pin “L” “H”. RESETB pin has delay circuit. It doesn’t recognize as hardware reset in “L” period under 5μs.
(3) Reset Sequence
When hardware reset was done during software reset, software reset is canceled when hardware reset is canceled.
(Because the Initial Value of software reset is “0”)
VIODET
The decline of the VIO voltage is detected, and faulty operation inside the IC is prevented by giving resetting to Levelsift block
Image Block Diagram
VIO VBAT
DEToutput
Inside reset
VBAT
2.6V
Reset by
VIODET
(typ)1.0V
VIO
VIODET
RESETB
Digital
pin
I/O
R
LEVEL
SHIFT
RESETB
DET output
Inside reset
Fig.15 Fig.16
When the VIO voltage becomes more than typ1.0V(Vth of NMOS in the IC), VIODET is removed. On the contrary, when VIO is as follows 1.0V, it takes reset.(The VBAT voltage being a prescribed movement range)
Thermal Shut Down
A thermal shutdown function is effective in the following block. DC/DC (Charge Pump) LED Driver SBIAS LDO1, LDO2, LDO3, LDO4 The thermal shutdown function is detection temperature that it works is about 195 Detection temperature has a hysteresis, and detection release temperature is about 175
℃.
o
C.
(Design reference value)
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
29/45
2010.07 - Rev.
A
BD6083GUL
V
V
V
DC / DC
Start
DC/DC circuit operates when any LED turns ON. (DCDCFON=0) When the start of theDC/DC circuit is done, it has the soft start function to prevent a rush current. Force of VBAT and VIO is to go as follows.
Technical Note
BAT
IO
RESETB
EN (*)
OUT
LEDcurrent
(*) An EN signal means the following in the upper figure.
EN = “MLEDEN” or “W*EN” (= LED The LED lighting control of a setup of connection VOUT)
But, as for Ta > T
SOFT changes by the capacitor connected to VOUT and inside OSC.
T
SOFT is Typ 200μs (when the output capacitor of VOUT =1.0μF).
T
(typ : 195° C), a protection function functions, and an EN signal doesn't become effective.
TSD
Over Voltage protection / Over Current protection
DC/DC circuit output (VOUT) is equipped with the over-voltage protection and the over current protection function. A VOUT over-voltage detection voltage is about 5.6V(typ). (VOUT at the time of rise in a voltage) A detection voltage has a hysteresis, and a detection release voltage is about 5.4V (typ). And, when VOUT output short to ground, input current of the battery terminal is limited by an over current protection function.
T
VIOON=min 0.1ms
T
RSTB=min 0.1ms
T
SOFT
Fig.17
T
VIOOFF=min 0.1ms
T
RST=min 0ms
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
30/45
2010.07 - Rev.
A
BD6083GUL
A
Mode transition
The transition of boosts multiple transits automatically by VBAT Voltage and the VOUT Pin Voltage.
The mode transition of the charge pump works as follows.
x1.0x1.5x2.0 Mode transition
The transition of the mode is done when VOUT was compared with VBAT and the next condition was satisfied.
x1.0 VBAT ≤ VOUT + (Ron10×Iout) (LED Pin feedback:VOUT = Vf+0.2(Typ)) x1.5 VBAT×1.5 ≤ VOUT +(Ron15×Iout) (LED Pin feedback:VOUT = Vf+0.2(Typ))
Ron10: x1 Charge pump on resistance 1.4Ω(Typ) Ron15: x1.5 Charge pump on resistance 8.5Ω(Typ)
x2.0x1.5x1.0 Mode transition
The transition of the mode is done when the ratio of VOUT and VBAT is detected and it exceeds a fixed voltage ratio.
x1.5 VBAT / VOUT =1.16(Design value) x2.0 VBAT / VOUT =1.12(Design value)
condition
mode down=”H”
mode down=”H”
STANDBY
1
SOFT
X1.0
X1.5
X2.0
Fig.18
x1.5 Mode transition
x2.0 Mode transition
x1.0 Mode transition
x1.5 Mode transition
ALL off
MLEDEN=”1” or W*EN=”1”
1
and
Ta< T
TSD
CP x1.0 mode
fter detecting VOUT>1.5V(typ), 128us(typ) wait
CP x1.0 mode
mode up=”H”
CP x1.5 mode
mode u p=”H”
CP x2.0 mode
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
31/45
2010.07 - Rev.
A
BD6083GUL
Technical Note
LED Driver
The LED driver of 6ch is constructed as the ground plan. Equivalence control is possible with LED1 - 4(LED4 can choose use/un-use with a register W4MD.). LED5, LED6 is controllable individually. As for LED5, LED6, grouping setting to the main control is possible, and main control becomes effective for the main group in the allotment. LED5 and LED6 are setups of grouping to the main control. When LED5 and LED6 are used by the individual control, a slope time setup (register THL and TLH) doesn't become effective.
IMLED[6:0]
MLEDEN
MLEDMD
WPWMIN
LED1
LED2
LED3
LED4
W4MD
IW5[6:0]
W5EN
IW6[6:0]
W6EN
1
0
W5MD
1
0
W6MD
LED5
LED6
Fig.19
LED Composition which can be set up is the following. The main, other1 and other2 are controllable to each.(Enable and current setting)
Main
(ALC,PWM)
Other1 Other2
6LEDs - -
5LEDs - -
5LEDs 1LED -
4LEDs - -
4LEDs 1 LED -
4LEDs 2 LEDs -
4LEDs 1 LED 1LED
3LEDs - -
3LEDs 1 LED -
3LEDs 2 LEDs -
3LEDs 1 LED 1LED
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
32/45
2010.07 - Rev.
A
BD6083GUL
Technical Note
ALC (Auto Luminous Control)
LCD backlight current adjustment is possible in the basis of the data detected by external ambient light sensor.
Extensive selection of the ambient light sensors (Photo Diode, Photo Transistor, Photo IC(linear / logarithm)) is possible by
building adjustment feature of Sensor bias, gain adjustment and offset adjustment.
Ambient data is changed into ambient level by digital data processing, and it can be read through I
2
C I / F.
Register setting can customize a conversion to LED current. (Initial Value is pre-set.) Natural dimming of LED driver is possible with the adjustment of the current transition speed.
Slope
process
DC current setup
WPWMIN
LED*
Main Grou p
setup
LCD
Backlight
Sensor
Always ON / Intermittence
SBIAS
SBIAS
SSENS
GC1
GC2
ADC
Control
Gain
PWM enabling
Conversion
Average
Logarithmic Conv.
Ambient Level
Current
Conversion
Slope Timer
Mode Sel ect
Gain Control ON/OFF
Ambient Level
Fig.20
(1)Auto Luminous Control ON/OFF
ALC block can be independent setting ON/OFF. It can use only to measure the Ambient level.
Register: ALCEN Register: MLEDEN Register: MLEDMD
Refer to under about the associate ALC mode and Main LED current.
ALCEN MLEDEN MLEDMD Sensor I/F LED control Mode Main LED current
0 0 x
0 1 0
OFF
( AMB(3:0)=0h )
0 1 1 IU0(6:0) (*1)
1 0 x
1 1 0
ON
1 1 1 ALC mode (*2)
(*1) At this mode, because Sensor I/F is OFF, AMB(3:0)=0h. So, Main LED current is selected IU0(6:0). (*2) At this mode, Main LED current is calculated (See(8)Convert LED Current) It becomes current value corresponding to each brightness.
Effective also in ALC functional the case of not using it
OFF OFF -
ON Non ALC mode
OFF
ON
ALC mode
IMLED(6:0)
-
IMLED(6:0)
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
33/45
2010.07 - Rev.
A
BD6083GUL
A
A
(2) I/V conversion
External resistance for the I-V conversion (Rs)
are adjusted with adaptation of sensor characteristic
IOUT
SSENS voltage
VSSENS
Iout
VCC
Sensor IC
GND
SBIAS
SSENS
Rs
SBIAS
A/D
SGND
Rs : Sense resistance (A sensor output current is changed into the voltage value.) SBIAS : Bias power supply terminal for the sensor SSENS : Sense voltage input terminal
SSENS Voltage = Iout x Rs
Fig.21
Technical Note
Sensor Current (Iout)
mbient
Rs is large
Rs is small
SSENS Voltage (=Iout x Rs)
mbient
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
34/45
2010.07 - Rev.
A
BD6083GUL
A
A
A
(3) Gain control
Sensor gain switching function is built in to extend the dynamic range. It is controlled by register setup. When automatic gain control is off, the gain status can be set upin the manual.
Register : GAIN
GC1 and GC2 are outputted corresponding to each gain status.
Example 1 (Use BH1621FVC) Example 2 Example 3
SBIAS
Application
example
VCC
IOUT
BH1621
GC1
GC2
GND
SSENS
GC1
GC2
SGND
Technical Note
High Gain mode
SSENS Voltage
uto Gain mode
SSENS Voltage
SBIAS
SSENS
9.5 (*1)
GC1
GC2
SGND
Low Gain mode
mbient
mbient
SBIAS
SSENS
GC1
GC2
SGND
Resister values are relative
Operating mode Auto Auto Fixed
GAIN setting 0 0 1
Gain status High Low High Low -
GC1 output
GC2 output L
: This means that it becomes High with A/D measurement cycle synchronously.
(*1) : Set up the relative ratio of the resistance in the difference in the brightness change of the High Gain mode and the Low Gain mode carefully.
L
L
L
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
35/45
L
2010.07 - Rev.
A
BD6083GUL
A
A
A
A
A
A
A
(4) A/D conversion
The detection of ambient data is done periodically for the low power. SBIAS and ADC are turned off except for the ambient measurement. The sensor current may be shut in this function, it can possible to decrease the current consumption. SBIAS pin and SSENS pin are pull-down in internal when there are OFF. SBIAS circuit has the two modes. (Usually ON mode or intermittent mode)
Register: ADCYC Register: SBIASON
LCEN
DC Cycle
DCYC
16 times
SBIAS Output
DC Movement
GC1, GC2
MB(3:0)
wait= 64ms(typ)
T
Toprt= 80.4ms(typ)
(Operate time)
(Wait time)
TAD= 16.4ms(typ)
(A/D conversion time)
MB(3:0 )
When SBIASON=1
D start signal
GC1, GC2=00
16 times measurement
Fig.22
(5) Average filter
Average filter is built in to rid noise or flicker. Average is 16 times
(6) Ambient level detection
Averaged A/D value is converted to Ambient level corresponding to Gain control. Ambient level is judged to rank of 16 steps by ambient data.Ambient level is output through I
2
C.
Register: AMB(3:0)
GAIN 0 1
GAIN Setting Low High -
Ambient Level SSENS Voltage
0h
VoS×0 / 256 VoS×0 / 256 1h VoS×1 / 256 VoS×1 / 256 2h VoS×2 / 256 VoS×2 / 256
3h
4h
5h VoS×0 / 256
6h VoS×1 / 256
7h
8h
9h
Ah
Bh
Ch
Dh
Eh
Fh
In the Auto Gain control mode, sensor gain changes in gray-colored ambient level. “/”: This means that this zone is not outputted in this mode.
VoS
VoS VoS VoS VoS
VoS×2 / 256 VoS×3 / 256 VoS×4 / 256 VoS×6 / 256 VoS
×7 / 256
VoS
×11 / 256 ×12 / 256
VoS
×20 / 256
VoS VoS
×21 / 256
VoS
×36 / 256 ×37 / 256
VoS
×64 / 256
VoS VoS
×65 / 256 ×114 / 256 ×115 / 256
×199 / 256 ×200 / 256 ×255 / 256
VoS
×3 / 256
VoS
×4 / 256 ×5 / 256
VoS
×7 / 256
VoS VoS
×8 / 256
VoS
×12 / 256 ×13 / 256
VoS
×21 / 256
VoS
×22 / 256
VoS VoS
×37 / 256
VoS
×38 / 256 ×65 / 256
VoS
×66 / 256
VoS
VoS
×113 / 256
VoS×114 / 256 VoS×199 / 256 VoS×200 / 256 VoS×255 / 256
×3 / 256
VoS VoS
×4 / 256
VoS
×5 / 256 ×6 / 256
VoS
×7 / 256
VoS VoS
×9 / 256
VoS
×10 / 256 ×13 / 256
VoS
×14 / 256
VoS VoS
×19 / 256
VoS
×20 / 256 ×27 / 256
VoS
×28 / 256
VoS VoS
×38 / 256
VoS
×39 / 256 ×53 / 256
VoS
×54 / 256
VoS VoS
×74 / 256
VoS×75 / 256
×104 / 256
VoS
×105 / 256
VoS VoS
×144 / 256
VoS
×145 / 256 ×199 / 256
VoS
×200 / 256
VoS VoS
×255 / 256
ADone= 1.024ms(typ)
T
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
36/45
2010.07 - Rev.
A
BD6083GUL
Technical Note
(7)Convert LED Current
LED current can be assigned as each of 16 steps of the ambient level. Convert LED Current by Min Current setting,Max Current setting,step setting and curbu setting.
Register: IU0 IU1 CRV STEP [2:0]
Conversion Table (Initial Value) Step Table Setting
Ambient
Level
Coefficient
CRV=0 CRV=1 CRV=0 CRV=1
Ambient
Level
0h 0 0 8h 6.5 8
1h 0.25 1 9h 8 9
2h 0.5 2 Ah 10 10
3h 1 3 Bh 12 11
4h 1.5 4 Ch 13 12
5h 2.5 5 Dh 14 13
6h 3.5 6 Eh 15 14
7h 5 7 Fh 16 15
Coefficient
STEP[2:0] ΔI
000 1.0mA
001 1.1mA
010 1.2mA
011 1.3mA
100 1.6mA
101 1.7mA
110 1.8mA
111 1.9mA
I=
ΔI×Coefficient+IU0
I≧IU1:I=IU1 ※ ΔI×Coefficient
Drop under 1mA
The example of a setting
IU0=4mA IU1=20mA
30
25
20
15
30
25
20
15
SLP=1mA SLP=1.1mA SLP=1.2mA SLP=1.3mA SLP=1.6mA SLP=1.7mA SLP=1.8mA SLP=1.9mA
CRV=0
SLP=1mA SLP=1.1mA SLP=1.2mA SLP=1.3mA SLP=1.6mA SLP=1.7mA SLP=1.8mA SLP=1.9mA
CRV=1
LED Current(mA)
LED Current(mA)
10
10
5
0
03691215
AMB
Ambient Level
Ch Fh0h 3h 6h 9h
5
0
0h 3h 6h 9h
03691215
AMB
Ambient Level
Ch
C
Fh
Fig.23 Fig.24
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
37/45
2010.07 - Rev.
A
BD6083GUL
(8) Slope process
Slope process is given to LED current to dim naturally. LED current changes in the 256Step gradation in sloping. Up(darkbright),Down(brightdark) LED current transition speed
are set individually.
Register: THL (3:0) Register: TLH (3:0)
Main LED current changes as follows at the time as the slope.
TLH (THL) is setup of time of the current step 2/256.
TLH
25.6mA 256
=0.1mA
THL
Fig.25
(9) LED current reset when mode change
When mode is changed (ALC↔Non ALC),
it can select the way to sloping.
Register : MDCIR “0” : LED current non-reset when mode change “1” : LED current reset when mode change
Technical Note
Current Data which is set
LED Current
TLH(3:0)
NonALC
NonALC
THL (3:0)
mode
mode
TLH(3:0)
Main LED current
Up/Down transition Speed
is set individually
time
Zoom
Main LED current
time
NonALC
mode
IMLED(6:0) IMLED(6:0)
ALC
mode
IU*(6:0)
MDCIR= “0”
Main LED current
0mA
time
NonALC
mode
IMLED(6:0) IMLED(6:0)
Main LED current
0mA
ALC
mode
IU*(6:0)
MDCIR= “1”
time
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
38/45
2010.07 - Rev.
A
BD6083GUL
A
f
Technical Note
(10) Current adjustment
When the register setting permits it, PWM drive by the external terminal (WPWMIN) is possible.
Register : WPWMEN
It is suitable for the intensity correction by external control, because PWM based on Main LED current of register
setup or ALC control.
WPWMEN
(Register)
0
1
" Normal operation " depends on the setup of each register.
WPWMIN(External Pin) Main group LED current
L Normal operation
H Normal operation
L Forced OFF
H Normal operation
EN(*)
Internal Soft-Start Time
DC/DC Output
WPWMIN input
WPWMEN
LED Current
EN(*) : it means “MLEDEN” or “W*EN”.
It is possible to make it a WPWMIN input and WPWMEN=1 in front of EN(*).
PWM drive becomes effective after the time of an LED current standup.
When rising during PWM operation, as for the standup time of a DC/DC output, only the rate o PWM Duty becomes late. Appearance may be influenced when extremely late frequency and extremely low Duty are inputted.
Please secure 250 μs or more of H sections at the time of PWM pulse Force.
Fig.26
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
39/45
2010.07 - Rev.
A
BD6083GUL
V
V
I/O
When the RESETB pin is Low, the input buffers (SDA and SCL) are disabling for the Low consumption power.
When RESETB=L, output is fixed at “H.”
Technical Note
EN
Level shifter
Logic
SCL
(SDA)
RESETB
Fig.27
Special care should be taken because a current path may be formed via a terminal protection diode, depending on an I/O power-on sequence or an input level.
About the start of LDO1~LDO4
It must start as follows.
BAT
IO
RESETB
LDO1EN or LDO2EN or LDO3EN or LDO4EN
LDO1O or LDO2O or LDO3O or LDO4O
(LDO output)
T
VBATON
T
VIOON=min 0.1ms
T
RSTB=min 0.1ms
T
RISE = max 1m s
T
VBATOFF
T
VIOOFF=min 1ms
T
RST=min 0ms
Fig.28
<Start Sequence>
VBAT ON (Enough rise up) VIO ON (Enough rise up) Reset release LDO ON (Register access acceptable)
<End Sequence>
LDO OFF Reset VIO OFF (Enough fall down) VBAT OFF
About the pin management of the function that isn't used and test pins
Setting it as follows is recommended with the test pin and the pin which isn't used. Set up pin referring to the “Equivalent circuit diagram” so that there may not be a problem under the actual use.
T2, T4 Short to GND because pin for test input
T1,T3 OPEN because pin for test output
Non-used LED Pin
WPWMIN
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
Short to GND (Must) But, the setup of a register concerned with LED that isn’t used is prohibited.
Short to ground (A Pull-Down resistance built-in terminal is contained, too.)
40/45
2010.07 - Rev.
A
BD6083GUL
A
A
A
A
A
A
Operation Settings (Flow Example)
1. Backlight: Auto Luminous Mode
Apply supply voltage.
Cancel reset.
Luminous control: Various settings Backlight: Various settings
The backlight settings can be made at any timing so long as it precedes MLEDEN=1. MLEDMD=1 is mandatory.
ALCEN=1
Wait for 80.4 ms or more Time required for initial Illumination Intensity acquisition.
MLEDEN=1
ALC block operation takes place for Illumination Intensity measurement.
The backlight turns on.
MLEDEN=0 must be set first when the backlight is off.
Fig.29
LCEN
DC Cycle
DCYC
SBIAS Output
DC Movement
GC1, GC2
wa it= 64m s(typ)
T
When S BIASON=1
T AD= 16.4ms(typ)
GC1, GC2=00
MB(3:0)
VOUT
LED current
TAMB= 80.4ms(typ)
SOFT
T
MB(3:0)
Fig.30
When It cannot wait for the first illumination measurement, backlight lighting is possible with ALCEN. But the extremely short case of slope rise time, a shoulder may be done like
for an LED electric current.
(To the first illumination measurement for AMB(3:0)=00h)
2. Backlight: Fade-in/Fade-out
Apply supply voltage.
Cancel reset.
Backlight: Various settings
Backlight setting. Slow time setting.
MLEDEN=1
The backlight turns on. (Rise at designated slope time)
Set the minimum current.
(Rise at designated slope time)
MLEDEN=0
The backlight turns off.
Fig.31
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
41/45
2010.07 - Rev.
A
BD6083GUL
3. Backlight without Auto Luminous Mode
Apply supply voltage.
Cancel reset.
Backlight: Various settings
MLEDEN=1
Fig.32
MLEDEN
VOUT
LED current
T SOFT
The rise time depends on TLH(3:0) settin g
Fig.33
The backlight settings can be made at any timing so long as it precedes MLEDEN=1. MLEDMD=0 is mandatory.
The backlight turns on.
MLEDEN=0 must be set first when the backlight is off.
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
42/45
2010.07 - Rev.
A
BD6083GUL
PCB Pattern of the Power Dissipation Measuring Board
1st layer(component) 2nd layer
Technical Note
3rd layer 4th layer
5th layer 6th layer
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
7th layer 8th layer(solder)
Fig.34 PCB Pattern of the Power Dissipation Measuring Board
43/45
2010.07 - Rev.
A
BD6083GUL
Notes for Use
(1) Absolute Maximum Ratings
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc.
(2) Power supply and ground line
Design PCB pattern to provide low impedance for the wiring between the power supply and the ground lines. Pay attention to the interference by common impedance of layout pattern when there are plural power supplies and ground lines. Especially, when there are ground pattern for smalICgnal and ground pattern for large current included the external circuits, please separate each ground pattern. Furthermore, for all power supply pins to ICs, mount a capacitor between the power supply and the ground pin. At the same time, in order to use a capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant.
(3) Ground voltage
Make setting of the potential of the ground pin so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no pins are at a potential lower than the ground voltage including an actual electric transient.
(4) Short circuit between pins and erroneous mounting
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between pins or between the pin and the power supply or the ground pin, the ICs can break down.
(5) Operation in strong electromagnetic field
Be noted that using ICs in the strong electromagnetic field can malfunction them.
(6) Input pins
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input pin. Therefore, pay thorough attention not to handle the input pins, such as to apply to the input pins a voltage lower than the ground respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input pins when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to the input pins a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.
(7) External capacitor
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.
(8) Thermal shutdown circuit (TSD)
This IC builds in a thermal shutdown (TSD) circuit. When junction temperatures become detection temperature or higher, the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at isolating the IC from thermal runaway as much as possible, is not aimed at the protection or guarantee of the IC. Therefore, do not continuously use the IC with this circuit operating or use the IC assuming its operation.
(9) Thermal design
Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in actual states of use.
(10) LDO
Use each output of LDO by the independence. Don’t use under the condition that each output is short-circuited because it has the possibility that an operation becomes unstable.
(11) About the pin for the test, the un-use pin
Prevent a problem from being in the pin for the test and the un-use pin under the state of actual use. Please refer to a function manual and an application notebook. And, as for the pin that doesn't specially have an explanation, ask our company person in charge.
(12) About the rush current
For ICs with more than one power supply, it is possible that rush current may flow instantaneously due to the internal powering sequence and delays. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of wiring.
(13) About the function description or application note or more.
The function description and the application notebook are the design materials to design a set. So, the contents of the materials aren't always guaranteed. Please design application by having fully examination and evaluation include the external elements.
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
44/45
2010.07 - Rev.
A
BD6083GUL
Ordering Part Number
B D 6 0 8 3 G U L - E 2
Technical Note
Part No. Part No. Package
VCSP50L3
(BD6083GUL)
1PIN MARK
35-φ0.25±0.05
0.05
(φ0.15)INDEX POST
0.325±0.05
BA
F E D C B A
3.15±0.05
0.06 S
A
1 2345 6
P=0.5× 5
B
3.15±0.05
0.55MAX
0.1±0.05
0.325±0.05
P=0.5× 5
(Unit : mm)
<Tape and Reel information>
Quantity
Direction
S
of feed
Packaging and forming specification
GUL: VCSP50L3
Embossed carrier tape(heat sealing method)Tape 2500pcs
E2
The direction is the 1pin of product is at the upper left when you hold
()
reel on the left hand and you pull out the tape on the right hand
Reel
1pin
E2: Embossed tape and reel
Direction of feed
Order quantity needs to be multiple of the minimum quantity.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
45/45
2010.07 - Rev.
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.
The content specied herein is subject to change for improvement without notice.
The content specied herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specications, which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specied in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.
The technical information specied herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.
Notice
The Products specied in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, ofce-automation equipment, commu­nication devices, electronic appliances and amusement devices).
The Products specied in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, re or any other damage caused in the event of the failure of any Product, such as derating, redundancy, re control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel­controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specied herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved.
http://www.rohm.com/contact/
R1010
A
Loading...