ROHM BD6083GUL Technical data

A
LED Drivers for LCD BackLights
BD6083GUL
Description
BD6083GUL is “Intelligent LED Driver” that is the most suitable for the cellular phone. It has 3 - 6LED driver and output variable LDO4ch for LCD Backlight. It has ALC function that is “Low Power Consumption System” realized. It can be developed widely from the high End model to the Low End model. As it has charge pump circuit for DCDC, it is no need to use coils, and it contributes to small space. VCSP50L3 (3.15mm x 3.15mm 0.5mm pitch) It adopts the very thin CSP package that is the most suitable for the slim phone.
Features
1) Total 3 - 6LEDs driver for LCD Backlight ・It has 4LEDs (it can select 4LED or 3LED) for exclusire use of Main and 2LEDs which can chose independent control or a main allotment by resister setting. ・Main Group” can be controlled by Auto Luminous Control (ALC) system. “Main Group” can be controlled by external PWM signal. ・ON/ Off and a setup of LED current are possible at the time of the independent control by the independence.
2) Ambient Light sensor interface ・Incorporates various functions such as a sensor bias adjustment function, an ADC with an average filter, a gainoffset adjustment function and an LOG conversion function so that options can be increased for illumination intensity sensors (Photo Diode, Photo Transistor, Photo IC (Linear/LOG)). ・Incorporates an auto gain switching function for suppressing an illumination intensity sensor current at high illumination intensity and improving sensitivity at low illumination intensity ・Capable of customizing an LED current value according to a table setting. ・Slope control loading and an independent control change are possible.
3) Charge Pump DC/DC for LED driver ・It has x1/x1.5/ x2 mode that will be selected automatically. ・The most suitable voltage up magnification is controlled automatically by LED port voltage. ・Soft start
4) 4ch Series Regulator (LDO) ・It has selectable output voltage by the register.(16 steps) LDO1, LDO2, LDO3, LDO4: Iomax=150mA
5) Thermal shutdown
2
6) I
Absolute Maximum Ratings (Ta=25
Maximum Voltage VMAX 7 V
Power Dissipation Pd 1280 Operating Temperature Range Topr -30 ~ +85 Storage Temperature Range Tstg -55 ~ +150
Operating Conditions (VBAT≥VIO, Ta=-30~85
VBAT Input Voltage VBAT 2.7 ~ 5.5 V
VIO Pin Voltage VIO 1.65 ~ 3.3 V
C BUS FS mode (max 400 kHz) Compatibility
(Note) Power dissipation deleting is 10.24mW/ , when it’s used in over 25 ℃. (It’s deleting is on the board that is ROHM’s standard)
functionsOver voltage protection (Auto-return type),Over current protection (Auto-return type) loading
)
Parameter Symbol Ratings Unit
(Note)
mW
)
Parameter Symbol Limits Unit
No.10040EAT16
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
1/45
2010.07 - Rev.
A
BD6083GUL
Electrical Characteristics (Unless otherwise specified, Ta=25, VBAT=3.6V, VIO=1.8V)
Parameter Symbol
Min. Typ. Max.
Limits
Unit Conditions
Circuit Current
VBAT Circuit Current 1 IBAT1 - 0.1 3.0 μA RESETB=0V, VIO= 0V
VBAT Circuit Current 2 IBAT2 - 0.5 3.0 μA RESETB=0V, VIO=1.8V
Technical Note
VBAT Circuit Current 3 IBAT3 - 61 65 mA
VBAT Circuit Current 4 IBAT4 - 92 102 mA
VBAT Circuit Current 5 IBAT5 - 123 140 mA
DC/DC x1 mode, Io=60mA VBAT=4.0V
DC/DC x1.5 mode, Io=60mA VBAT=3.6V
DC/DC x2 mode, Io=60mA VBAT=2.7V
ALC Operating
VBAT Circuit Current 6 IBAT6 - 0.25 1.0 mA
ALCEN=1, AD cycle=0.5s setting Except sensor current
VBAT Circuit Current 7 IBAT7 - 90 150 μA LDO1,2=ON, I
VBAT Circuit Current 8 IBAT8 - 90 150 μA LDO3,4=ON, I
LED Driver
LED Current Step (Setup) ILEDSTP1 128 Step LED1~6
LED Current Step (At slope) ILEDSTP2 256 Step LED1~6
LED Maximum Setup Current IMAXWLED - 25.6 - mA LED1~6
LED Current Accuracy IWLED -7% 15 +7% mA I
LED Current Matching ILEDMT - - 4 %
=15mA setting, VLED=1.0V
LED
Between LED1~6 at VLED=1.0V, ILED=15mA
LED OFF Leak Current ILKLED - - 1.0 μA VLED=4.5V
LDO
LDO
=0mA
=0mA
DC/DC(Charge Pump)
Output Voltage VoCP - Vf+0.2 Vf+0.25 V Vf is forward direction of LED
Drive Ability IOUT - - 150 mA VBAT3.2V, VOUT=3.9V
Switching Frequency fosc 0.8 1.0 1.2 MHz
Over Voltage Protection Detect Voltage
Over Current Protection Detect Current
OVP - 5.6 - V
OCP - 250 375 mA VOUT=0V
Sensor Interface
SBIAS Output Voltage
SBIAS Maximum Output Current
SBIAS Discharge Resister at OFF
SSENS Input Range VISS 0 -
VoS 2.85 3.0 3.15 V Io=200µA
IomaxS 30 - - mA
ROFFS - 1.0 1.5 k
VoS×
255/256
V
ADC Resolution ADRES 8 bit
ADC Integral Calculus Non-linearity
ADC Differential Calculus Non-linearity
ADINL -3 - +3 LSB
ADDNL -1 - +1 LSB
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
2/45
2010.07 - Rev.
A
BD6083GUL
Electrical Characteristics (Unless otherwise specified, Ta=25, VBAT=3.6V, VIO=1.8V)
Parameter Symbol
Regulator (LDO1)
Output Voltage Vo1
Output Current Io1 - - 150 mA Vo=1.8V
Dropout Voltage Vsat1 - 0.2 0.3 V VBAT=2.5V, Io=150mA, Vo=2.8V
Load Stability ΔVo11 - 10 60 mV Io=1~150mA, Vo=1.8V
Input Voltage Stability ΔVo12 - 10 60 mV VBAT=3.4~4.5V, Io=50mA, Vo=1.8V
Ripple Rejection Ratio RR1 - 65 - dB
Short Circuit Current Limit Ilim1 - 200 400 mA Vo=0V
Discharge Resister at OFF ROFF1 - 1.0 1.5 k
Regulator (LDO2)
Output Voltage Vo2
Output Current Io2 - - 150 mA Vo=2.5V
Dropout Voltage Vsat2 - 0.2 0.3 V VBAT=2.5V, Io=150mA, Vo=2.8V
Load Stability Δvo21 - 10 60 mV Io=1~150mA, Vo=2.5V
Input Voltage Stability Δvo22 - 10 60 mV VBAT=3.4~4.5V, Io=50mA, Vo=2.5V
Ripple Rejection Ratio RR2 - 65 - dB
Short Circuit Current Limit Ilim2 - 200 400 mA Vo=0V
Discharge Resister at OFF ROFF2 - 1.0 1.5 k
Min. Typ. Max.
1.164 1.20 1.236 V Io=50mA
1.261 1.30 1.339 V Io=50mA
1.455 1.50 1.545 V Io=50mA
1.552 1.60 1.648 V Io=50mA
1.746 1.80 1.854 V Io=50mA <Initial Voltage>
2.134 2.20 2.266 V Io=50mA
2.328 2.40 2.472 V Io=50mA
2.425 2.50 2.575 V Io=50mA
2.522 2.60 2.678 V Io=50mA
2.619 2.70 2.781 V Io=50mA
2.716 2.80 2.884 V Io=50mA
2.813 2.90 2.987 V Io=50mA
2.910 3.00 3.090 V Io=50mA
3.007 3.10 3.193 V Io=50mA
3.104 3.20 3.296 V Io=50mA
3.201 3.30 3.399 V Io=50mA
1.164 1.20 1.236 V Io=50mA
1.261 1.30 1.339 V Io=50mA
1.455 1.50 1.545 V Io=50mA
1.552 1.60 1.648 V Io=50mA
1.746 1.80 1.854 V Io=50mA
2.134 2.20 2.266 V Io=50mA
2.328 2.40 2.472 V Io=50mA
2.425 2.50 2.575 V Io=50mA <Initial Voltage>
2.522 2.60 2.678 V Io=50mA
2.619 2.70 2.781 V Io=50mA
2.716 2.80 2.884 V Io=50mA
2.813 2.90 2.987 V Io=50mA
2.910 3.00 3.090 V Io=50mA
3.007 3.10 3.193 V Io=50mA
3.104 3.20 3.296 V Io=50mA
3.201 3.30 3.399 V Io=50mA
Limits
Unit Condition
f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz
f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
3/45
2010.07 - Rev.
A
BD6083GUL
Electrical Characteristics (Unless otherwise specified, Ta=25, VBAT=3.6V, VIO=1.8V)
Parameter Symbol
Regulator (LDO3)
Output Voltage Vo3
Output Current Io3 - - 150 mA Vo=1.8V
Dropout Voltage Vsat3 - 0.2 0.3 V VBAT=2.5V, Io=150mA, Vo=2.8V
Load Stability ΔVo31 - 10 60 mV Io=1~150mA, Vo=1.8V
Input Voltage Stability ΔVo32 - 10 60 mV VBAT=3.4~4.5V, Io=50mA, Vo=1.8V
Ripple Rejection Ratio RR3 - 65 - dB
Short Circuit Current Limit Ilim3 - 200 400 mA Vo=0V
Discharge Resister at OFF ROFF3 - 1.0 1.5 k
Regulator (LDO4)
Output Voltage Vo4
Output Current Io4 - - 150 mA Vo=2.8V
Dropout Voltage Vsat4 - 0.2 0.3 V VBAT=2.5V, Io=150mA, Vo=2.8V
Load Stability ΔVo41 - 10 60 mV Io=1~150mA, Vo=2.8V
Input Voltage Stability ΔVo42 - 10 60 mV VBAT=3.4~4.5V, Io=50mA, Vo=2.8V
Ripple Rejection Ratio RR4 - 65 - dB
Short Circuit Current Limit Ilim4 - 200 400 mA Vo=0V
Discharge Resister at OFF ROFF4 - 1.0 1.5 k
Min. Typ. Max.
1.164 1.20 1.236 V Io=50mA
1.261 1.30 1.339 V Io=50mA
1.455 1.50 1.545 V Io=50mA
1.552 1.60 1.648 V Io=50mA
1.746 1.80 1.854 V Io=50mA <Initial Voltage>
2.134 2.20 2.266 V Io=50mA
2.328 2.40 2.472 V Io=50mA
2.425 2.50 2.575 V Io=50mA
2.522 2.60 2.678 V Io=50mA
2.619 2.70 2.781 V Io=50mA
2.716 2.80 2.884 V Io=50mA
2.813 2.90 2.987 V Io=50mA
2.910 3.00 3.090 V Io=50mA
3.007 3.10 3.193 V Io=50mA
3.104 3.20 3.296 V Io=50mA
3.201 3.30 3.399 V Io=50mA
1.164 1.20 1.236 V Io=50mA
1.261 1.30 1.339 V Io=50mA
1.455 1.50 1.545 V Io=50mA
1.552 1.60 1.648 V Io=50mA
1.746 1.80 1.854 V Io=50mA
2.134 2.20 2.266 V Io=50mA
2.328 2.40 2.472 V Io=50mA
2.425 2.50 2.575 V Io=50mA
2.522 2.60 2.678 V Io=50mA
2.619 2.70 2.781 V Io=50mA
2.716 2.80 2.884 V Io=50mA <Initial Voltage>
2.813 2.90 2.987 V Io=50mA
2.910 3.00 3.090 V Io=50mA
3.007 3.10 3.193 V Io=50mA
3.104 3.20 3.296 V Io=50mA
3.201 3.30 3.399 V Io=50mA
Limits
Unit Condition
f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz
f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz
Technical Note
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
4/45
2010.07 - Rev.
A
BD6083GUL
Technical Note
Electrical Characteristics (Unless otherwise specified, Ta=25, VBAT=3.6V, VIO=1.8V)
Parameter Symbol
Min. Typ. Max.
Limits
Unit Condition
SDA, SCL (I2C Interface)
L Level Input Voltage VILI -0.3 - 0.25 ×VIO V
H Level Input Voltage VIHI 0.75 ×VIO - VBAT+0.3 V
Hysteresis of Schmitt trigger Input
VhysI 0.05 ×VIO - - V
L Level Output Voltage VOLI 0 - 0.3 V SDA Pin, IOL=3 mA
Input Current linI - - 1 μA Input Voltage= 0.1×VIO ~ 0.9×VIO
RESETB (CMOS Input Pin)
L Level Input Voltage VILR -0.3 - 0.25 ×VIO V
H Level Input Voltage VIHR 0.75 ×VIO - VBAT+0.3 V
Input Current IinR - - 1 μA Input Voltage = 0.1×VIO ~ 0.9×VIO
WPWMIN (NMOS Input Pin)
L Level Input Voltage VILA -0.3 - 0.3 V
H Level Input Voltage VIHA 1.4 - VBAT+0.3 V
Input Current IinA - 3.6 10 μA Input Voltage = 1.8V
PWM Input Minimum High Pulse Width
PWmin 250 - - μs WPWMIN Pin
GC1, GC2 (Sensor Gain Control CMOS Output Pin)
L Level Output Voltage VOLS - - 0.2 V IOL=1mA
H Level Output Voltage VOHS VoS-0.2 - - V IOH=1mA
Power Dissipation (On the ROHM’s standard board)
1.6
1.4
1280mW
1.2
W)
1.0
0.8
0.6
0.4
Power Dissipation Pd
0.2
0.0 0 25 50 75 100 125 150
Ta(℃)
Information of the ROHM’s standard board
Material: glass-epoxy Size : 50mm×58mm×1.75mm(8
th
layer)
Wiring pattern figure Refer to after page.
Fig.1 Power Dissipation
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
5/45
2010.07 - Rev.
A
BD6083GUL
A
Block Diagram / Application Circuit Example 1
6LED + ALC +PWM
1μF/10V
Technical Note
1μF/10V
C2N
OVP
C2P
TSD
CPGND
C6B5
A5
VOUT
D6
1μF/10V
LED1
A2
LED2
B1
LED3
B2
LED4
C2
LED5
D1
LED6
D2
LEDGND
C1
6LED Main Back Light
IREF
LDO1
Vo Selectable
VREF
A3
GND1
Io=150mA
LDO2
Vo Selectable
Io=150mA
LDO3
Vo Selectable
Io=150mA
LDO4
Vo Selectable
Io=150mA
LDO1O
E6
LDO2O
E5
LDO3O
E4
LDO4O
E3
1μF/6.3V
1μF/6.3V
1μF/6.3V
1μF/6.3V
From CPU
From LCM
VIO Voltage
<ALS>
GC1
BH1621FVC
GC2
VBAT
GND
VBATCP
2.2µF/10V
RESETB
WPWMIN
SBIAS
VCC
1μF/6.3V
IOUT
VBAT1
VBAT2
VIO
SCL
SD
SSENS
SGND
GC2
GC1
C1P
C1N
A4
C5
B6
F4
F5
Charge Pump Mode Control
D5
B4
C4
Level
D4
B3
F3
E1
F2
D3
E2
I/O
Sensor
I/F
Shift
A6 F1
T2
Charge Pump
x1 / x1.5 / x2
I2C interface
Digital Control
LED
control
(ALC)
A1 F6
T4
T3
T1
(Open)
(Open)
LED terminal voltage feedback
Fig.2 Block Diagram / Application Circuit Example 1
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
6/45
2010.07 - Rev.
A
BD6083GUL
A
Block Diagram / Application Circuit Example 2
5LED + ALC +PWM
1μF/10V
Technical Note
1μF/10V
From CPU
From LCM
VIO Voltage
<ALS>
GC1
BH1621FVC
GC2
VBAT
GND
VBATCP
2.2µF/10V
RESETB
WPWMIN
SBIAS
VCC
1μF/6.3V
IOUT
VBAT1
VBAT2
VIO
SCL
SD
SSENS
SGND
GC2
GC1
C2N
OVP
C2P
TSD
CPGND
C6B5
A5
VOUT
D6
1μF/10V
LED1
A2
LED2
B1
LED3
B2
LED4
C2
LED5
D1
LED6
D2
LEDGND
C1
5LED Main Back Light
IREF
LDO1
Vo Selectable
VREF
A3
GND1
Io=150mA
LDO2
Vo Selectable
Io=150mA
LDO3
Vo Selectable
Io=150mA
LDO4
Vo Selectable
Io=150mA
LDO1O
E6
LDO2O
E5
LDO3O
E4
LDO4O
E3
1μF/6.3V
1μF/6.3V
1μF/6.3V
1μF/6.3V
C1P
C1N
A4
C5
B6
F4
F5
Charge Pump Mode Control
D5
B4
C4
Level
D4
B3
F3
E1
F2
D3
E2
I/O
Sensor
I/F
Shift
A6 F1
T2
Charge Pump
x1 / x1.5 / x2
I2C interface
Digital Control
LED
control
(ALC)
A1 F6
T4
T3
T1
(Open)
(Open)
LED terminal voltage feedback
Fig.3 Block Diagram / Application Circuit Example 2
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
7/45
2010.07 - Rev.
A
BD6083GUL
A
Block Diagram / Application Circuit Example 3
4LED + 2LED + ALC +PWM
1μF/10V
Technical Note
1μF/10V
C2N
OVP
C2P
TSD
CPGND
C6B5
A5
VOUT
D6
1μF/10V
LED1
A2
LED2
B1
LED3
B2
LED4
C2
LED5
D1
LED6
D2
LEDGND
C1
6LED Main Back Light
2LED Sub Back Light or Key Back Light
IREF
LDO1
Vo Selectable
VREF
A3
GND1
Io=150mA
LDO2
Vo Selectable
Io=150mA
LDO3
Vo Selectable
Io=150mA
LDO4
Vo Selectable
Io=150mA
LDO1O
E6
LDO2O
E5
LDO3O
E4
LDO4O
E3
1μF/6.3V
1μF/6.3V
1μF/6.3V
1μF/6.3V
From CPU
From LCM
VIO Voltage
<ALS>
GC1
BH1621FVC
GC2
VBAT
GND
VBATCP
2.2µF/10V
RESETB
WPWMIN
SBIAS
VCC
1μF/6.3V
IOUT
VBAT1
VBAT2
VIO
SCL
SD
SSENS
SGND
GC2
GC1
C1P
C1N
A4
C5
B6
F4
F5
Charge Pump Mode Control
D5
B4
C4
Level
D4
B3
F3
E1
F2
D3
E2
I/O
Sensor
I/F
Shift
A6 F1
T2
Charge Pump
x1 / x1.5 / x2
I2C interface
Digital Control
LED
control
(ALC)
A1 F6
T4
T3
T1
(Open)
(Open)
LED terminal voltage feedback
Fig.4 Block Diagram / Application Circuit Example 3
.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
8/45
2010.07 - Rev.
A
BD6083GUL
Pin Arrangement [Bottom View
F T4 SGND SBIAS VBAT1 VBAT2 T3
E SSENS GC1 LDO4O LDO3O LDO2O LDO1O
D LED5 LED6 GC2 SDA VIO VOUT
Technical Note
index
C LEDGND LED4
B LED2 LED3 WPWMIN RESETB C2N VBATCP
A T1 LED1 GND1 C1N CPGND T2
1 2 3 4 5 6
Total 35 Ball
SCL C1P C2P
Fig.5 Pin Arrangement
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
9/45
2010.07 - Rev.
A
BD6083GUL
Package Outline
VCSP50L3 CSP small package SIZE : 3.15mm x 3.15mm (A difference in public:X,Y Both ±0.05mm) Height : 0.55mm max A ball pitch : 0.5 mm
Fig.6 Package Outline
Technical Note
(Unit : mm)
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
10/45
2010.07 - Rev.
A
BD6083GUL
Pin Functions
No Ball No. Pin Name I/O
1 B6 VBATCP - - GND Battery is connected A
2 F4 VBAT1 - - GND Battery is connected A
3 F5 VBAT2 - - GND Battery is connected A
4 A1 T1 O VBAT GND Test Output Pin(Open) N
5 A6 T2 I VBAT GND Test Input Pin (short to Ground) S
6 F6 T3 O VBAT GND Test Output Pin(Open) M
7 F1 T4 I VBAT GND Test Input Pin (short to Ground) S
8 D5 VIO - VBAT GND I/O Power supply is connected C
9 B4 RESETB I VBAT GND Reset input (L: reset, H: reset cancel) H
10 D4 SDA I/O VBAT GND I2C data input / output I
11 C4 SCL I VBAT GND I2C clock input H
12 A5 CPGND - VBAT - Ground B
13 A3 GND1 - VBAT - Ground B
14 C1 LEDGND - VBAT - Ground B
15 A4 C1N I/O VBAT GND Charge Pump capacitor is connected F
16 C5 C1P I/O - GND Charge Pump capacitor is connected G
17 B5 C2N I/O VBAT GND Charge Pump capacitor is connected F
18 C6 C2P I/O - GND Charge Pump capacitor is connected G
19 D6 VOUT O - GND Charge Pump output pin A
20 A2 LED1 I - GND LED is connected 1 for LCD Back Light E
21 B1 LED2 I - GND LED is connected 2 for LCD Back Light E
22 B2 LED3 I - GND LED is connected 3 for LCD Back Light E
23 C2 LED4 I - GND LED is connected 4 for LCD Back Light E
24 D1 LED5 I - GND LED is connected 5 for LCD Back Light E
25 D2 LED6 I - GND LED is connected 6 for LCD Back Light E
26 F3 SBIAS O VBAT GND Bias output for the Ambient Light Sensor Q
27 E1 SSENS I VBAT GND Ambient Light Sensor input N
28 E2 GC1 O VBAT GND Ambient Light Sensor gain control output 1 X
29 D3 GC2 O VBAT GND Ambient Light Sensor gain control output 2 X
30 F2 SGND - VBAT - Ground B
31 B3 WPWMIN I VBAT GND External PWM input for Back Light * L
32 E6 LDO1O O VBAT GND LDO1 output pin Q
33 E5 LDO2O O VBAT GND LDO2 output pin Q
34 E4 LDO3O O VBAT GND LDO3 output pin Q
35 E3 LDO4O O VBAT GND LDO4 output pin Q
* A setup of a register is separately necessary to make it effective.
ESD Diode
For Power For Ground
Functions
Technical Note
Equivalent
Circuit
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
11/45
2010.07 - Rev.
A
BD6083GUL
Equivalent Circuit
A VBATB E
C
VBAT
Technical Note
F
VBAT
J
Q
VBAT VBAT
G
VIO VBAT
R
VBATVBAT L
VBATVBAT
H
M
VBAT VBAT
S
VIOVBAT
VBATVBAT
I
N
U
VIO VBAT
VBAT
VBAT VBAT V
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
VBAT W
VIO
Fig.7 Equivalent Circuit
X
VoS VBAT
12/45
Y
VIO VBAT
2010.07 - Rev.
A
BD6083GUL
Technical Note
I2C BUS Format
The writing/reading operation is based on the I
2
C slave standard.
Slave address
A7 A6 A5 A4 A3 A2 A1 R/W
1 1 1 0 1 1 0 1/0
Bit Transfer
SCL transfers 1-bit data during H. SCL cannot change signal of SDA during H at the time of bit transfer. If SDA changes while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal.
SDA
SCL
SDA a state of stability
Data are effective
SDA
It can change
Fig.8
START and STOP condition
When SDA and SCL are H, data is not transferred on the I
2
C- bus. This condition indicates, if SDA changes from H to L while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL has been H, it will become STOP (P) conditions and an access end.
SDA
SCL
S P
START condition
STOP condition
Fig.9
Acknowledge
It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data, and a receiver returns the acknowledge signal by setting SDA to L.
DATA OUTPUT BY TRANSMITTER
DATA OUTPUT BY RECEIVER
SCL
START condition
S
12 89
not acknowledge
acknowledge
clock pulse for acknowledgement
Fig.10
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
13/45
2010.07 - Rev.
A
BD6083GUL
AAA
A
A
A
A
A
A
A2A1A
A
A
A
A
A
A
A
A A
A
A
A6A5A4A3A2A1A
A
A
A
A
Technical Note
Writing protocol
A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The 3rd byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register address is carried out automatically. However, when a register address turns into the last address, it is set to 00h by the next transmission. After the transmission end, the increment of the address is carried out.
*1 *1
X X X X X X X
S
7
6
R/W=0(write)
from master to slave
from slave to master
register addressslave address
5
4
3
D7D6 D5 D4 D3D2 D1 D0 D7 D6D5 D4 D3 D2 D1 D0
00
DATA
register address
increment
=acknowledge(SDA LOW)
=not acknowledge(SDA HIGH) S=START condition P=STOP condition *1: Write Timing
DATA
register address
increment
P
Fig.11
Reading protocol
It reads from the next byte after writing a slave address and R/W bit. The register to read considers as the following address accessed at the end, and the data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out.
X X X X X X X
R/W=1(read)
from master to slave
from slave to master
P
DATA
register address
increment
=acknowledge(SDA LOW)
=not acknowledge(SDA HIGH) S=START condition P=STOP condition
DATA slave address
register address
increment
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
1 S
Fig.12
Multiple reading protocols
After specifying an internal address, it reads by repeated START condition and changing the data transfer direction. The data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out.
S
slave address
R/W=0(write)
from master to slave
from slave to master
0
7
register address
D7 D6 D5 D4 D3D2D1D0 D7 D6 D5 D4 D3 D2 D1D0
DATA DATA
register address
increment
Sr 1
0X X X X X X X
X X X X X X X
slave address
=acknowledge(SDA LOW)
=not acknowledge(SDA HIGH) S=START condition P=STOP condition Sr=repeated START condition
R/W=1(read)
P
register address
increment
Fig.13
As for reading protocol and multiple reading protocols, please do A(not acknowledge) after doing the final reading operation. It stops with read when ending by A(acknowledge), and SDA stops in the state of Low when the reading data of that time is 0. However, this state returns usually when SCL is moved, data is read, and A (not acknowledge) is done.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
14/45
2010.07 - Rev.
Loading...
+ 32 hidden pages