Analog Input / BTL Output
Class-D Speaker Amplifier
BD5413EFV
●Description
BD5413EFV is a 5W + 5W stereo class-D power amplifier specifically developed for low power consumption and low heat
generation applications like powered speakers. BD5413EFV employs the state-of-the-art BCD (Bipolar, CMOS and DMOS)
process technology to eliminate a turn-on resistance in the output power stage and an internal loss due to a wiring
resistance as much as possible, achieving a high performance of 80% (4W + 4W output with a load resistance of 8Ω). In
addition, BD5413EFV employs a compact power package which dissipates heat via the rear to achieve low power
consumption and low heat generation so that the need for connecting an external heat radiator can be eliminated up to a
total output of 12.8W. This product meets the needs for compact, thin sound generation systems and powerful, high-quality
sound reproduction.
●Features
1) Small output noise voltage capable of achieving a high S/N set
Input conversion noise voltage = 2.8μVrms A bipolar differential is used for input amplifier to eliminate 1/f noise.
2) Support of power supply voltage ranging from 6V to 10.5V
A supply voltage range is supported that matches an AC adaptor or battery cell driven set.
When a set is battery driven, its operating time can be extended by means of a high performance class-D amplifier.
3) Support of low current consumption mode
A circuit current in shut-down mode is 1μA or less.
4) Built-in soft muting function for reducing pop at shut-down ON or OFF
When a signal is present, its smooth envelope waveform is realized owing to this function.
In addition, when no signal is present, pop generation is eliminated.
A transit time can be adjusted easily through the use of an external capacitor.
5) Realization of high efficiency and low heat generation
Efficiency = 80% (4W+4W (Vcc=9V, R
A compact power package HTSSOP-B24 (7.8mm x 7.6mm) is employed.
6) Built-in function for reducing pop generation at disconnection from the outlet
7) Support of function for sampling frequency selection
An internal PWM sampling frequency can be selected from three frequencies (200kHz, 250kHz and 300kHz).
Countermeasures against interference (beat noise) due to a switching power source can be taken as needed.
8) Realization of high reliability
Countermeasures against short-circuits due to output terminals shorted to V
(support of automatic recovery).
A temperature protection circuit is incorporated (support of automatic recovery).
9) Support of ERROR pin
ERROR output takes place as a warning which indicates an error.
(short-circuits due to output terminals shorted to V
=8Ω) output can be made without using an external heat radiator.)
A circuit must be designed and evaluated not to exceed absolute maximum rating in any cases and even momentarily, to
prevent reduction in functional performances and thermal destruction of a semiconductor product and secure useful life and
reliability.
The following values assume Ta =25℃. For latest values, refer to delivery specifications.
Input voltage for signal pinVIN-0.2 to Vcc+0.2V Pin 23, 24 (Note 1)
Input voltage for control pinVCONT-0.2 to Vcc+0.2V Pin 14, 15 (Note 1)
Operating temperature rangeTopr-40 to +85℃
Storage temperature rangeTs tg-55 to +150℃
Maximum junction temperatureTjmax+150 ℃
(Note 1) A voltage that can be applied with reference to GND (pins 1, 7, 8, 13, 18 and 19)
(Note 2) Pd and Tjmax=150℃ must not be exceeded.
(Note 3) 70mm × 70mm × 1.6mm FR4 One-sided glass epoxy board (Back copper foil 0%) installed.
If used under Ta=25℃ or higher, reduce 8.8 mW for increase of every 1℃. The board is provided with thermal via.
(Note 4) 70mm × 70mm × 1.6mm FR4 Both-sided glass epoxy board (Back copper foil 100%) installed.
If used under Ta=25℃ or higher, reduce 22.4 mW for increase of every 1℃. The board is provided with thermal via.
●Operating conditions
The temperature (Ta) is 25℃. For the latest temperature, refer to the delivery specifications.
Parameter SymbolRatings Unit Conditions
Supply voltage VCC +6 to +10.5 V Pin 3, 5, 10, 12, 16, 21
Load resistance RL6 to 16 Ω (Note 5)
(Note 5) This value must not exceed Pd.
●Electrical characteristics
Unless otherwise stated, Ta=25℃, Vcc=9V, f
IN=1kHz, Rg=0Ω, RL=8Ω, SDX="H" and FC="M (OPEN)"
are assumed. For the latest values, refer to the delivery specifications.
ParameterSymbolLimits UnitConditions
Whole circuit
Circuit current 1 (sampling mode)ICC112mANo signal, no load
Circuit current 2 (mute mode)ICC21µASDX = “L”
Control
Input voltage with SDX pin set to "H"VIHSDX2.5 to 9VSampling state
Input voltage with SDX pin set to "L"VILSDX0 to 0.5VShut-down state
Input voltage with FC pin set to "H"VIHFC8.2 to 9VSetting of Fs=300kHz
Input voltage with FC pin set to "M"VIMFC3.8 to 5.2VSetting of Fs=250kHz
Input voltage with FC pin set to "L"VILFC0 to 0.8VSetting of Fs=200kHz
Audio output
Voltage gainGV30dBPO = 1W
Maximum output power 1 (Note 6)PO14WTHD+N = 10%, RL = 8Ω
Maximum output power 2 (Note 6)PO25WTHD+N = 10%, RL = 6Ω
Total harmonic distortion ratio (Note 6)THD0.2%PO = 1W, BW=20Hz to 20kHz
CrosstalkCT65dBPO = 1W, Rg = 0Ω, BW = IHF-A
Output noise voltage (sampling mode)VNO90µVrms Rg = 0Ω, BW = IHF-A
Residual noise voltage (mute mode)VNOM1µVrms Rg = 0Ω, BW = IHF-A, MUTEX = “L”
200
Internal sampling clock frequencyFS
250
kHz
300
(Note 6) The rated values of items above indicate average performances of the device, which largely depend on circuit layouts, components,
and power supplies. The reference values are those applicable to the device and components directly installed on a board specified by us.
1. About absolute maximum ratings
If an applied voltage or an operating temperature exceeds an absolute maximum rating, it may cause destruction of a
device. A result of destruction, whether it is short mode or open mode, is not predictable. Therefore, provide a physical
safety measure such as fuse, against a special mode that may violate conditions of absolute maximum ratings.
2. About power supply line
As return of current regenerated by back EMF of output coil happens, take steps such as putting capacitor between
power supply and GND as a electric pathway for the regenerated current. Be sure that there is no problem with each
property such as emptied capacity at lower temperature regarding electrolytic capacitor to decide capacity value. If the
connected power supply does not have sufficient current absorption capacity, regenerative current will cause the voltage
on the power supply line to rise, which combined with the product and its peripheral circuitry may exceed the absolute
maximum ratings. It is recommended to implement a physical safety measure such as the insertion of a voltage clamp
diode between the power supply and GND pins.
3. Potential of GND (1, 7, 8, 13, 18 and 19 pins)
Potential of the GND terminal must be the lowest under any operating conditions.
4. About thermal design
Perform thermal design with sufficient margins, in consideration of maximum power dissipation Pd under actual operating
conditions. This product has an exposed frame on the back of the package, and it is assumed that the frame is used with
measures to improve efficiency of heat dissipation. In addition to front surface of board, provide a heat dissipation pattern
as widely as possible on the back also.
A class-D power amplifier has heat dissipation efficiency far higher than that of conventional analog power amplifier and
generates less heat. However, extra attention must be paid in thermal design so that a power dissipation Pdiss should not
exceed the maximum power dissipation Pd.
Maximum power dissipation
Power dissipation
PoPd
Odiss
Ta-Tjmax
θ
ja
1
1-
〔 WPP
η
〕
W
〔
〕
Tjmax: Maximum temperature junction = 150[
Ta: Operating ambient temperature [
θja: Package thermal resistance [
Po: Output power [W]
η: Efficiency
Technical Note
℃]
℃/W]
5. About operations in strong electric field
Note that the device may malfunction in a strong electric field.
6. Thermal shutdown (TSD) circuit
This product is provided with a built-in thermal shutdown circuit. When the thermal shutdown circuit operates, the output
transistors are placed under open status. The thermal shutdown circuit is primarily intended to shut down the IC avoiding
thermal runaway under abnormal conditions with a chip temperature exceeding Tjmax = 150
℃, and is not intended to
protect and secure an electrical appliance. Accordingly, do not use this circuit function to protect a customer's electrical
appliance.
7. About shorting between pins and installation failure
Be careful about direction and displacement of an IC when installing it onto the board. Faulty installation may destroy the
IC when the device is energized. In addition, a foreign matter getting in between IC pins, pins and power supply, and
pins and GND may cause shorting and destruction of the IC.
8. About power-on or power-off sequence
Set the SDX pin (pin 14) to “L” level before initiating the power-on sequence. Similarly, set the SDX pin (pin 14) to “L”
level before initiating the power-off sequence. If such a setting is made, pop reduction is achieved at power-on or poweroff sequence. In addition, note that all power supply pins shall be made active or inactive at the same time.
9. About error output pin (pin 11)
When a high temperature protection function or VCC/GND shorting protection function is activated, an error flag is output
via an error output pin. Because the error output pin is primarily intended to indicate the state of BD5413EFV and is
available only to protect BD5413EFV, it cannot be used for any other purposes.
10. About TEST pin (pin 4)
Do not use the TEST pin. Keep this pin open or connect it to VCC for regular use.
No copying or reproduction of this document, in part or in whole, is permitted without the
consent of ROHM Co.,Ltd.
The content specied herein is subject to change for improvement without notice.
The content specied herein is for the purpose of introducing ROHM's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specications,
which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein
illustrate the standard usage and operations of the Products. The peripheral conditions must
be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specied in this document.
However, should you incur any damage arising from any inaccuracy or misprint of such
information, ROHM shall bear no responsibility for such damage.
The technical information specied herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of such technical information.
Notice
The Products specied in this document are intended to be used with general-use electronic
equipment or devices (such as audio visual equipment, ofce-automation equipment, communication devices, electronic appliances and amusement devices).
The Products specied in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a
Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard
against the possibility of physical injury, re or any other damage caused in the event of the
failure of any Product, such as derating, redundancy, re control and fail-safe designs. ROHM
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed
scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or
system which requires an extremely high level of reliability the failure or malfunction of which
may result in a direct threat to human life or create a risk of human injury (such as a medical
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any
of the Products for the above special purposes. If a Product is intended to be used for any
such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specied herein that may
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.