ROHM BAΟΟST, BAΟΟSFP Technical data

查询BA00ASFP供应商
BAΟΟST / BAΟΟSFP series
Regulator ICs
Regulator, low drop-out type with ON/OFF switch
ΟΟ
ΟΟ
BA
The BAΟΟST and BAΟΟSFP series are variable, fixed output low drop-out type voltage regulators with an ON/OFF switch. These regulators are used to provide a stabilized output voltage from a fluctuating DC input voltage. Fixed output voltages are 3.3V, 5V, 6V(SFP), 7V, 8V, 9V, 10V(ST), 12V(ST). The maximum current capacity is 1 A for each of the above voltages.
!Application
Constant voltage power supply
ST / BA
ΟΟΟΟ
ΟΟ
ΟΟ
ΟΟΟΟ
!!!!
Features
1) Built-in overvoltage protection circuit, overcurrent protection circuit and thermal shutdown circuit
2) TO220FP-5, TO252-5 standard packages can be accomodated in wide application.
3) 0µA (design value) circuit current when switch is off
4) Richly diverse lineup.
5) Low minimum I/O voltage differential.
!!!!
Product codes
Output voltage (V) Product No. Output voltage (V) Product No.
Variable
3.3 BA033ST / SFP
5.0 BA05ST / SFP
6.0 BA06SFP
7.0 BA07ST / SFP
!!!!Absolute maximum ratings (Ta=25°C)
Parameter Symbol Limits Unit
Power supply voltage V Power dissipation Pd
Operating temperature Topr -40~+85 ˚C Storage temperature Tstg -55~+150 ˚C Peak applied voltage Vsurge 50
*1 Reduced by 16mW for each increase in Ta of 1˚C over 25˚C. *2 Reduced by 8mW for each increase in Ta of 1˚C over 25˚C. *3 Voltage application time : 200 msec. or less
BA00AST / ASFP 8.0 BA08ST / SFP
9.0 BA09ST / SFP
10.0 BA10ST
12.0 BA12ST
CC
TO220FP-5 TO252-5
35 V
*1
2000
*2
1000
*3
mW
V
Regulator ICs
!!!!Block diagram
V
CTL
GND
BAΟΟST / BAΟΟSFP series
CC
2
1
3
REFERENCE
VOLTAGE
Variable output type (BA00AST / ASFP)
+
OUT
4
5
+
C
CC
V
CTL
GND
2
1
3
REFERENCE
VOLTAGE
!!!!Pin descriptions
Pin No. Function
1 CTL Output ON/OFF 2V 3 GND 4 OUT
5
Pin name
CC
C
N.C.
Power supply input Ground Output Reference power supply pin for setting voltage with
BA00AST/ASFP.
the In the BAOOST/SFP Series, these are NC pins,
except for the
BA00AST/ASFP.
Fixed output type
+
OUT
4
+
BAΟΟST / BAΟΟSFP series
Regulator ICs
!!!!Recommended operating conditions
BA00AST / ASFP BA08ST / SFP
Parameter Symbol Min.
V
Input voltage Output current
CC
I
O
4
-1
BA033ST / SFP BA09ST / SFP
Parameter Symbol Min. Input voltage Output current
V
CC
4.3
I
O
-
BA05ST / SFP BA10ST
Parameter Symbol Min.
Input voltage Output current
V
6
CC
-
I
O
BA06SFP BA12ST
Parameter Symbol Min. Input voltage Output current
V
CC
725
I
O
-
Max.
25
Max.
25 V
1
Max.
25
1
Max.
1
Unit
V A
Unit
A
Unit
V A
Unit
V A
Parameter Symbol Min. Max. Input voltage Output current
Parameter Symbol Min. Input voltage Output current
Parameter Symbol Min. Max. Unit
Input voltage Output current
Parameter Symbol Min. Input voltage Output current
Unit
CC
V
V
V
925
I
O
-1
10
CC
-
I
O
11
CC
-1A
I
O
Max.
25
1
25
V A
Unit
V A
V
Max. Unit
13
-
25 V
1A
CC
V
I
O
BA07ST / SFP
Parameter Symbol Min. Max.
V
Input voltage Output current
!!!!
Electrical characteristics
CC
I
O
8
-
Unit
25
V
1A
BA00AST / ASFP (unless otherwise noted, Ta=25°C, Vcc=10V, Io=500mA)
Parameter Symbol Min. Typ. Max. Unit Conditions
Reference voltage Power save current Output voltage Input stability Ripple rejection ratio Load regulation Temperature coefficient of output voltage Minimum I/O voltage differential Bias current Peak output current Output short-circuit current ON mode voltage OFF mode voltage Input high level current
V
ref
1.200 1.225 1.250 V
Ist - 0 10 µA
O
Reg.I - 20 100 mV Fig.1
R.R. 45 55 - dB
Reg.L - 50 150 mV I
CVO - ±0.01 - % / ˚CI
T
V
I
b
O-P
I
OS - 0.4 - A VCC=25V
I Vth1 2.0 - - V Output Active mode, I Vth2 - - 0.8 V Output OFF mode, I
IN 100 200 300 µA CTL=5V, IO=0mA Fig.6
I
- 5.0 - V
d
- 0.3 0.5 V Fig.3
- 2.5 5.0 mA IO=0mA Fig.4
1.0 1.5 - A Tj=25˚C Fig.1
Measurement
CC=625V
V
e
IN
=1Vrms, f=120Hz, IO=100mA Fig.2
=5mA1A Fig.1
O
O
=5mA, Tj=0~125˚C Fig.1
CC=0.95V
V
O
O=0mA Fig.6
O=0mA Fig.6
circuit
Fig.1
Fig.4OFF mode
Fig.1V
Fig.5
Regulator ICs
BA033ST / SFP (unless otherwise noted, Ta=25°C, Vcc=8 V, Io=500 mA)
Parameter Symbol Min. Typ. Max. Unit Conditions
Power save current Output voltage Input stability Ripple rejection ratio Load regulation Temperature coefficient of output voltage Minimum I/O voltage differential Bias current Peak output current
Output short-circuit current
ON mode voltage OFF mode voltage Input high level current
BA05ST / SFP (unless otherwise noted, Ta=25°C, Vcc=10 V, Io=500 mA)
Parameter Symbol Min. Typ. Max. Unit Conditions
Power save current Output voltage Input stability Ripple rejection ratio Load regulation Temperature coefficient of output voltage Minimum I/O voltage differential Bias current Peak output current
Output short-circuit current
ON mode voltage OFF mode voltage Input high level current
I
ST
V
O1
-010µA Fig.4
3.13 3.3 3.47 V Fig.1
Reg.I - 20 100 mV Fig.1
R.R. 45 55 - dB
Reg.L - 50 150 mV I
CVO
T
V
I
b
I
O-P
OS
I
-
±
d
- 0.3 0.5 V
0.02 -
% / ˚C
- 2.5 5.0 mA IO=0mA Fig.4
1.0 1.5 - A Tj=25
- 0.4 - A VCC=25V Fig.5 Vth1 2.0 - - V Vth2 - - 0.8 V
I
IN
100 200 300 µA CTL=5V, IO=0mA Fig.6
I
ST
O1
V
-010
4.75 5.0 5.25 V Fig.1
Reg.I - 20 100 mV Fig.1
R.R. 45 55 - dB
Reg.L - 50 150 mV I
CVO
T
d
V
b
I
I
O-P
OS
I
-
±
0.02 -
% / ˚C
- 0.3 0.5 V VCC=4.75V Fig.3
- 2.5 5.0 mA IO=0mA Fig.4
1.0 1.5 - A Tj=25
- 0.4
-
Vth1 2.0 - - V Output Active mode, I Vth2 - - 0.8 V Output OFF mode, I
I
IN
100 200 300 µA CTL=5V, IO=0mA Fig.6
BAΟΟST / BAΟΟSFP series
Measurement
OFF mode
CC
=4=.3→25V
V
e
IN
=1Vrms, f=120Hz, IO=100mA Fig.2
=5mA→1A Fig.1
O
IO=5mA, Tj=0~125
V
CC
=
0.95V
˚C
O
˚C
Output Active mode, Output OFF mode,
OFF mode
µA Fig.4
CC
=6→2=5V
V
e
IN
=1Vrms, f=120Hz, IO=100mA Fig.2
O
=5mA→1A Fig.1
IO=5mA, Tj=0~125
IO=0mA Fig.6
IO=0mA Fig.6
˚C
˚C
AVCC=25V Fig.5
O
=0mA Fig.6
O
=0mA Fig.6
circuit
Fig.1 Fig.3
Fig.1
Measurement
circuit
Fig.1
Fig.1
BA06SFP ( unless otherwise noted, Ta=25°C, Vcc=11 V, Io=500 mA)
Parameter Symbol Min. Typ. Max. Unit Conditions
I
Power save current Output voltage Input stability Ripple rejection ratio Load regulation Temperature coefficient of output voltage Minimum I/O voltage differential Bias current Peak output current
Output short-circuit current
ON mode voltage OFF mode voltage Input high level current
ST
O1
V
Reg.I - 20 100 mV Fig.1
R.R. 45 55 - dB
Reg.L - 50 150 mV I
T
CVO
V
I
b
I
O-P
I
OS
Vth1 2.0 - - V Output Active mode, I Vth2 - - 0.8 V Output OFF mode, I
I
IN
-010
5.7 6.0 6.3 V Fig.1
-
±
0.02 -
d
- 0.3 0.5 V VCC=5.7V Fig.3
- 2.5 5.0 mA IO=0mA Fig.4
1.0 1.5 - A Tj=25
- 0.4
-
100 200 300 µA CTL=5V, IO=0mA Fig.6
Measurement
OFF mode
µA Fig.4
CC
=7→25V
V
e
IN
=1Vrms, f=120Hz, IO=100mA Fig.2
O
=5mA→1A Fig.1
% / ˚C
IO=5mA, Tj=0~125
˚C
˚C
AVCC=25V Fig.5
O
=0mA Fig.6
O
=0mA Fig.6
circuit
Fig.1
Fig.1
BAΟΟST / BAΟΟSFP series
Regulator ICs
BA07ST / SFP (unless otherwise noted, Ta=25°C, Vcc=12 V, Io=500 mA) (under development)
Parameter Symbol Min. Typ. Max. Unit Conditions
Power save current Output voltage Input stability Ripple rejection ratio Load regulation Temperature coefficient of output voltage Minimum I/O voltage differential Bias current Peak output current
Output short-circuit current
ON mode voltage OFF mode voltage Input high level current
I
ST
O1
V
-010
6.65 7.0 7.35 V Fig.1
Reg.I - 20 100 mV Fig.1
R.R. 45 55 - dB
Reg.L - 50 150 mV I
CVO
T
V
b
I
O-P
I
OS
I
-
±
0.02 -
d
- 0.3 0.5 V V
- 2.5 5.0 mA I
1.0 1.5 - A Tj=25
- 0.4 - A V Vth1 2.0 - - V Output Active mode, I Vth2 - - 0.8 V Output OFF mode, I
IN
100 200 300 µA CTL=5V, I
I
BA08ST / SFP (unless otherwise noted, Ta=25°C, Vcc=13 V, Io=500 mA)
Parameter Symbol Min. Typ. Max. Unit Conditions
Power save current Output voltage Input stability Ripple rejection ratio Load regulation Temperature coefficient of output voltage Minimum I/O voltage differential Bias current Peak output current
Output short-circuit current
ON mode voltage OFF mode voltage Input high level current
I
ST
V
O1
-010
7.6 8.0 8.4 V Fig.1
Reg.I - 20 100 mV Fig.1
R.R. 45 55 - dB
Reg.L - 50 150 mV I
T
CVO
V
d
I
b
I
O-P
I
OS
-
±
0.02 -
% / ˚C
- 0.3 0.5 V
- 2.5 5.0 mA IO=0mA Fig.4
1.0 1.5 - A Tj=25
- 0.4 - A VCC=25V Fig.5 Vth1 2.0 - - V Output Active mode Vth2 - - 0.8 V Output OFF mode
I
IN
100 200 300 µA CTL=5V
OFF mode
µA Fig.4
V
CC
=
8→25V
e
IN
=
1Vrms, f=120Hz, I
=
5mA→1A Fig.1
O
% / ˚C
I
=
5mA, Tj=0~125
O
CC
=
6.65V Fig.3
O
=
0mA Fig.4
˚C
CC
=
25V Fig.5
O
=
0mA Fig.6
OFF mode
µA
CC
9→25V
V
e
IN
=1Vrms, f=120Hz, IO=100mA Fig.2
=5mA→1A Fig.1
O
IO=5mA, Tj=0~125
VCC=0.95V
˚C
O
˚C
, IO=0mA
, IO=0mA
, IO=0mA
O
=
100mA Fig.2
˚C
O
=
0mA Fig.6
O
=
0mA Fig.6
Measurement
Measurement
circuit
Fig.1
Fig.1
circuit
Fig.4
Fig.1 Fig.3
Fig.1
Fig.6 Fig.6 Fig.6
BA09ST / SFP (unless otherwise noted, Ta=25°C, Vcc=14 V, Io=500 mA)
Parameter Symbol Min. Typ. Max. Unit Conditions
Power save current Output voltage Input stability Ripple rejection ratio Load regulation Temperature coefficient of output voltage Minimum I/O voltage differential Bias current Peak output current
Output short-circuit current
ON mode voltage OFF mode voltage Input high level current
I
ST
O1
V
-010
µA Fig.4
8.55 9.0 9.45 V Fig.1
Reg.I - 20 100 mV Fig.1
R.R. 45 55 - dB
Reg.L - 50 150 mV I
T
CVO
V
I
b
I
O-P
I
OS
-
±
0.02 -
d
- 0.3 0.5 V
- 2.5 5.0 mA I
1.0 1.5 - A Tj=25
- 0.4 - A V
% / ˚C
Vth1 2.0 - - V Output Active mode Vth2 - - 0.8 V Output OFF mode
I
IN
100 200 300 µA CTL=5V
Measurement
OFF mode
CC
=
10→25V
V
e
IN
=
1Vrms, f=120Hz, I
O
=
5mA→1A Fig.1
O
I
=
5mA, Tj=0~125
V
CC
=
0.95V
O
O
=
0mA Fig.4
O
=
100mA Fig.2
˚C
˚C
CC
=
25V Fig.5
, I
O
=
0mA
, I
O
=
0mA
, I
O
=
0mA
circuit
Fig.1 Fig.3
Fig.1
Fig.6 Fig.6 Fig.6
Regulator ICs
BA10ST (unless otherwise noted, Ta=25°C, Vcc=15 V, Io=500 mA)
Parameter Symbol Min. Typ. Max. Unit Conditions
Power save current Output voltage Input stability Ripple rejection ratio Load regulation Temperature coefficient of output voltage Minimum I/O voltage differential Bias current Peak output current
Output short-circuit current
ON mode voltage OFF mode voltage Input high level current
BA12ST (unless otherwise noted, Ta=25°C, Vcc=17 V, Io=500 mA)
Parameter Symbol Min. Typ. Max. Unit Conditions
Power save current Output voltage Input stability Ripple rejection ratio Load regulation Temperature coefficient of output voltage Minimum I/O voltage differential Bias current Peak output current
Output short-circuit current
ON mode voltage OFF mode voltage Input high level current
I
ST
V
O1
-010
9.5 10 10.5 V Fig.1
Reg.I - 20 100 mV Fig.1
R.R. 45 55 - dB
Reg.L - 50 150 mV I
T
CVO
V
I
b
I
O-P
I
OS
-
±
0.02 -
d
- 0.3 0.5 V V
- 2.5 5.0 mA I
1.0 1.5 - A Tj=25
- 0.4 Vth1 2.0 - - V Output Active mode, I Vth2 - - 0.8 V Output OFF mode, I
I
IN
100 200 300
I
ST
V
O1
-010
11.4 12 12.6 V Fig.1
Reg.I - 20 100 mV Fig.1
R.R. 45 55 - dB
Reg.L - 50 150 mV I
T
CVO
V
d
I
b
I
O-P
I
OS
-
±
0.02 -
- 0.3 0.5 V V
- 2.5 5.0 mA I
1.0 1.5 - A Tj=25
- 0.4 - A V Vth1 2.0 - - V Output Active mode, I Vth2 - - 0.8 V Output OFF mode, I
I
IN
100 200 300
BAΟΟST / BAΟΟSFP series
OFF mode
µA Fig.4
CC
=
11→25V
V
e
IN
=
1Vrms, f=120Hz, I
=
5mA→1A Fig.1
O
% / ˚C
I
=
5mA, Tj=0~125
O
CC
=
0.95V
O
O
=
0mA Fig.4
˚C
-
AV
CC
=
25V Fig.5
µ
A CTL=5V, I
OFF mode
µA Fig.4
V
e
O
O
% / ˚C
I
O
O
=
CC
=
13→25V
IN
=
1Vrms, f=120Hz, I
=
5mA→1A Fig.1
=
5mA, Tj=0~125
CC
=
0.95V
O
=
0mA Fig.4
˚C
CC
=
25V Fig.5
µ
A CTL=5V, I
O
=
0mA Fig.6
O
=
100mA Fig.2
˚C
O
=
0mA Fig.6
O
=
0mA Fig.6
0mA Fig.6
O
=
100mA Fig.2
˚C
O
=
0mA Fig.6
O
=
0mA Fig.6
Measurement
circuit
Fig.1 Fig.3
Fig.1
Measurement
circuit
Fig.1 Fig.3
Fig.1
BAΟΟST / BAΟΟSFP series
Regulator ICs
!!!!Measurement circuits
( The C pin only exists on the BA00AST / ASFP, for the BA00AST / ASFP, place a 6.8k resistor between the OUT and C pins, and a 2.2k resisitor between the C and pins.)
e
IN
V
105W
100µF
CC
V
0.33µF
eIN=1V
f=120Hz
Ripple rejection ratio R.R. = 20 log
V
CC
CTL
rms
OUT
GND
*C
5V
e
IN
(
e
OUT
Fig.2 Measurement circuit for ripple rejection ratio
+
22µF
OUT
e
V
IO=100mA
)
GND
OUT
*C
22µF
+
I
O
V
CC
V
V
CC
CTL
0.33µF
5V
Fig.1 Measurement circuit for output voltage, input
stability, load regulation, and temperature coefficient of output voltage
V
GND
OUT
*C
V
0.33µF
CC=
0.95V
O
V
CC
CTL
5V
Fig.3 Measurement circuit for minimum I/O
voltage differential
GND
OUT
*C
22µF
+
I
OS
CC
0.33µF
V
CC
V
CTL
5V
Fig.5 Measurement circuit for output
short-circuit current
22µF
+ IO=500mA
A
GND
OUT
*C
22µF
+
CC
0.33µF
CC
V
V
CTL
A
Fig.4 Measurement circuit for bias current,
power save current measurement circuit
GND
OUT
+
V
22µF
*C
V
0.33µF
V
CC
CC
CTL
A
Fig.6 Measurement circuit for ON/OFF mode voltage,
input high level current
BAΟΟST / BAΟΟSFP series
Regulator ICs
!!!!Operation notes
(1) Operating power supply voltage When operating within the normal voltage range and within the ambient operating temperature range, most circuit functions are guaranteed. The rated values cannot be guaranteed for the electrical characteristics, but there are no sudden changes of the characteristics within these ranges.
(2) Power dissipation Heat attenuation characteristics are noted on a separate page and can be used as a guide in judging power dissipation. If these ICs are used in such a way that the allowable power dissipation level is exceeded, an increase in the chip temperature could cause a reduction in the current capability or could otherwise adversely affect the performance of the IC. Make sure a sufficient margin is allowed so that the allowable power dissipation value is not exceeded.
(3) Output oscillation prevention and bypass capacitor Be sure to connect a capacitor between the output pin and GND to prevent oscillation. Since fluctuations in the valve of the capacitor due to temperature changes may cause oscillations, a tantalum electrolytic capacitor with a small internal series resistance (ESR) is recommended. A 22m F capacitor is recommended; however, be aware that if an extremely large capacitance is used (1000µF or greater), then oscillations may occur at low frequencies. Therefore, be sure to perform the appropriate verifications before selecting the capacitor. Also, we recommend connecting a 0.33m F bypass capacitor as close as possible between the input pin and GND.
(4) Current overload protection circuit A current overload protection circuit is built into the outputs, to prevent IC destruction if the load is shorted. This protection circuit limits the current in the shape of a ‘7’. It is designed with a high margin, so that even if a large current suddenly flows through the large capacitor in the IC, the current is restricted and latching is prevented. However, these protection circuits are only good for pre-venting damage from sudden accidents. The design should take this into consideration, so that the protection circuit is not made to operate continuously (for instance, clamping at an output of 1V characteristics, and the design should take this into consideration.
(5) Thermal overload circuit A built-in thermal overload circuit prevents damage from overheating. When the thermal circuit is activated, the various outputs are in the OFF state. When the temperature drops back to a constant level, the circuit is restored.
(6) Internal circuits could be damaged if there are modes in which the electric potential of the application’s input (V GND are the opposite of the electric potential of the various outputs. Use of a diode or other such bypass path is recommended.
(7) Although the manufacture of this product includes rigorous quality assurance procedures, the product may be damaged if absolute maximum ratings for voltage or operating temperature are exceeded. If damage has occurred, special modes (such as short circuit mode or open circuit mode) cannot be specified. If it is possible that such special modes may be needed, please consider using a fuse or some other mechanical safety measure.
(8) When used within a strong magnetic field, be aware that there is a slight possibility of malfunction.
or greater; below 1VF, the short mode circuit operates). Note that the capacitor has negative temperature
F
) and
CC
BAΟΟST / BAΟΟSFP series
Regulator ICs
(9) When the connected load which contains a big inductance component in an output terminal is connected and the occurrence of a reverse electromotive force can be considered at the time of and power-output OFF at the time of starting, I ask the insertion of protection diode of you.
(Example)
(10) Although it is sure that the example of an application circuit should be recommended, in a usage, I fully ask the validation of a property of you. In addition, when you alter the circuit constant with outside and you become a usage, please see and decide sufficient margin in consideration of the dispersion in an external component and IC of our company etc. not only including the static characteristic but including a transient characteristic. This IC is monolithic IC and has P+ isolation and P substrate for an isolation between each element. A P-N junction is formed by these P layers and N layers of each element, and various kinds of parasitic elements are formed. For example, when the resistor and the transistor are connected with the pin like the example of a simple architecture,
At a resistor, it is at the time of GND > (PIN A), at a transistor (NPN), it is at the time of GND > (PIN B), A P-N junction operates as parasitism diode.
At a transistor (NPN), it is at the time of GND > (PIN B), The NPN transistor of a parasitic element operates by N layers of other elements which approach with the above­mentioned parasitism diode. A parasitic element is inevitably made according to a potential relation on the architecture of IC. When a parasitic element operates, the interference of a circuit operation is caused and the cause of a malfunction, as a result a destructive is obtained. Therefore, please be fully careful of impressing a voltage lower than GND(P substrate) to an input/output terminal etc. not to carry out usage with which a parasitic element operates.
Output pin
(Pin A)
N
P
+
Resistor
N
P substrate
(Pin A)
GND
Transistor (NPN)
(Pin B)
P
Parasitic elements
GND
Parasitic elements
The example of a simple architecture of bipolar IC
+
P
N
+
P
N
Parasitic elements
(Pin B)
Other approaching elements
C
B
E
N
P substrate
B
GND
N
P
GND
C
E
GND
+
P
N
Parasitic elements
Regulator ICs
!!!!Electrical characteristic curves
25
(1)22.0
20
15
(2)11.0
10
(3)6.5
5
POWER DISSIPATION : Pd (W)
(4)2.0
0 25 50 75 100 125 150
Fig. 7 Thermal derating curves (TO220FP-5)
(1) Infinite heat sink (2) Alumina PCB, 100×100×2 (3) Alumina PCB, 50×50×2 (4) IC alone
AMBIENT TEMPERATURE : Ta(˚C)
mm2
12.5
2
mm
(1)10.0
10
7.5
5
2.5
POWER DISSIPATION : Pd(W)
(2)1.0
0 25 50 75 100 125 150
AMBIENT TEMPERATURE : Ta (ºC)
Fig.8 Thermal derating curves (TO252-5)
BAΟΟST / BAΟΟSFP series
(1) Infinite heat sink is used θj-c=12.5 (ºC/W) (2) IC simple substance θj-a=125.0 (ºC/W)
6
BA05ST
5
(V)
OUT
4
3
2
OUTPUT VOLTAGE : V
1
0
01020304050
INPUT VOLTAGE : V
CC
(V)
Fig. 9 Current limit characteristics
6
BA05ST
5
(V)
OUT
4
3
2
OUTPUT VOLTAGE : V
1
0
01020304050
INPUT VOLTAGE : V
CC
(V)
Fig. 10 Over voltage protection characteristics
!!!!External Dimensions (Units: mm)
+0.3
10.0
0.1
+0.3
7.0
0.1
f3.2±0.1
1.8±0.2
0.2
+0.4
17.0
12.0±0.2
8.0±0.2
1.2
13.5Min.
1pin : CTL 2pin : V
CC
3pin : GND 4pin : OUT 5pin : N.C.
0.85±0.2
1
0.8
2345
1.778 0.5+0.1
TO220FP-5 TO252-5
4.5
2.85
+0.3
0.1
2.8
+0.2
0.1
6.5±0.2
5.1
7.0±0.2
5.5±0.2
2
1
0.5
2.3±0.2
+0.2
0.1
3
0.8
0.5±0.1
1.0±0.2
9.5±0.5
1.5
2.5
54
1.27
0.5±0.1
Loading...