Rohde&Schwarz SMBVB-K44, SMBVB-K66, SMBVB-K94, SMBVB-K97, SMBVB-K98 User Manual

...
Satellite Navigation R&S®SMBVB-K44/-K66/-K94/-K97/-
K98/-K106/-K107/-K108/-K109/­K122/-K132/-K133/-K134/-K135/­K136/-K137 User Manual
(;Üì32)
1178940302 Version 07
This document describes the following software options:
R&S®SMBVB-K44 GPS (1423.7753.xx)
R&S®SMBVB-K66 Galileo (1423.7882.xx)
R&S®SMBVB-K94 GLONASS (1423.7953.xx)
R&S®SMBVB-K97 NavIC (1423.8708.xx)
R&S®SMBVB-K98 Modernized GPS (1423.7960.xx)
R&S®SMBVB-K106 SBAS/QZSS (1423.7982.xx)
R&S®SMBVB-K107 BeiDou (1423.7999.xx)
R&S®SMBVB-K108 Real world simulation (1423.8008.xx)
R&S®SMBVB-K109 Real-time interfaces (HIL) (1423.8014.xx)
R&S®SMBVB-K122 RTK virtual reference station (1423.8914.xx)
R&S®SMBVB-K132 Modernized BeiDou (1423.8789.xx)
R&S®SMBVB-K133 Single-Satellite GNSS (1423.8743.xx)
R&S®SMBVB-K134 Upgrade to Dual-Frequency (1423.8750.xx)
R&S®SMBVB-K135 Upgrade to Triple-Frequency (1423.8766.xx)
R&S®SMBVB-K136 Add 6 GNSS Channels (1423.8772.xx)
R&S®SMBVB-K137 Add 12 GNSS Channels (1423.8795.xx)
This manual describes firmware version FW 5.00.044.xx and later of the R&S®SMBV100B.
© 2021 Rohde & Schwarz GmbH & Co. KG Mühldorfstr. 15, 81671 München, Germany Phone: +49 89 41 29 - 0 Email: info@rohde-schwarz.com Internet: www.rohde-schwarz.com Subject to change – data without tolerance limits is not binding. R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG. Trade names are trademarks of the owners.
1178.9403.02 | Version 07 | Satellite Navigation
The following abbreviations are used throughout this manual: R&S®SMBV100B is abbreviated as R&S SMBVB, R&S®WinIQSIM2 is abbreviated as R&S WinIQSIM2; the license types 02/03/07/11/12/13/16 are abbreviated as xx.
TM
ContentsSatellite Navigation

Contents

1 Welcome to the GNSS options............................................................. 9
1.1 Key features...................................................................................................................9
1.2 Accessing the GNSS dialog....................................................................................... 11
1.3 What's new...................................................................................................................11
1.4 Documentation overview............................................................................................11
1.4.1 Getting started manual.................................................................................................. 11
1.4.2 User manuals and help................................................................................................. 12
1.4.3 Service manual............................................................................................................. 12
1.4.4 Instrument security procedures.....................................................................................12
1.4.5 Printed safety instructions............................................................................................. 12
1.4.6 Data sheets and brochures........................................................................................... 12
1.4.7 Release notes and open source acknowledgment (OSA)............................................ 13
1.4.8 Application notes, application cards, white papers, etc.................................................13
1.5 Scope........................................................................................................................... 13
1.6 Notes on screenshots.................................................................................................13
2 About the GNSS options..................................................................... 15
2.1 Required options.........................................................................................................15
2.2 GNSS overview............................................................................................................17
2.3 SBAS overview............................................................................................................21
2.4 GNSS components overview..................................................................................... 21
2.5 How are the GNSS components simulated?............................................................ 23
3 Getting started......................................................................................25
3.1 Trying out the GNSS simulator..................................................................................25
3.2 General settings.......................................................................................................... 30
3.3 Simulation monitor..................................................................................................... 33
4 Simulation time.................................................................................... 42
4.1 Time configuration settings....................................................................................... 42
5 Receiver type and position................................................................. 48
5.1 Receiver type...............................................................................................................48
5.2 Static receiver..............................................................................................................50
3User Manual 1178.9403.02 ─ 07
ContentsSatellite Navigation
5.3 Moving receiver...........................................................................................................54
5.3.1 How to define a moving receiver...................................................................................54
5.3.2 Moving receiver settings............................................................................................... 57
6 Satellite constellation.......................................................................... 63
6.1 Systems and signals settings....................................................................................64
6.2 Satellites settings........................................................................................................68
7 Space vehicle configuration............................................................... 75
7.1 Power settings.............................................................................................................76
7.2 Modulation control settings....................................................................................... 81
7.3 Simulated orbit and orbit perturbation settings.......................................................86
7.4 Simulated clock settings............................................................................................ 95
8 Tracking mode......................................................................................98
8.1 Signal dynamics settings........................................................................................... 98
8.2 Related settings........................................................................................................ 102
9 Production tester............................................................................... 104
9.1 Required options.......................................................................................................104
9.2 Related settings........................................................................................................ 105
9.3 Real-time information............................................................................................... 106
10 Real-world environment.................................................................... 108
10.1 Required options.......................................................................................................109
10.2 Spinning and attitude simulation............................................................................ 109
10.3 Antenna pattern and body mask..............................................................................110
10.4 Supported environment models.............................................................................. 112
10.5 Supported multipath models....................................................................................115
10.6 Simulating real-world effects................................................................................... 116
10.6.1 Creating and modifying antenna patterns and body masks........................................ 116
10.6.2 Visualizing the effect of an antenna pattern................................................................ 121
10.6.3 Creating multipath environment scenarios..................................................................124
10.7 Antenna configuration settings............................................................................... 126
10.8 Environment configuration settings....................................................................... 130
10.8.1 Environment model and configuration.........................................................................131
10.8.2 Vertical obstacles........................................................................................................ 131
4User Manual 1178.9403.02 ─ 07
ContentsSatellite Navigation
10.8.3 Roadside planes......................................................................................................... 135
10.8.4 Ground/sea reflection..................................................................................................140
10.8.5 Full obscuration...........................................................................................................142
10.8.6 Static multipath............................................................................................................146
11 Real-time kinematics......................................................................... 150
11.1 Required options.......................................................................................................151
11.2 RTK configuration.....................................................................................................152
11.3 RTK protocol configuration......................................................................................153
11.4 RTK position configuration......................................................................................154
11.5 RTK antenna configuration......................................................................................157
12 Perturbations and errors simulation................................................ 162
12.1 About noise and CW interferer................................................................................ 162
12.2 Noise and CW interferer settings............................................................................ 162
12.3 About error sources..................................................................................................167
12.3.1 About the atmospheric effects.....................................................................................168
12.3.2 About orbit and orbit perturbation parameters and errors........................................... 169
12.3.3 About clock and time conversion parameters and errors............................................170
12.3.4 Simulating errors......................................................................................................... 171
12.3.5 Errors compensation................................................................................................... 171
12.4 Atmospheric effects and ionospheric errors settings...........................................172
12.5 Pseudorange errors settings................................................................................... 181
12.6 Orbit and orbit perturbation errors settings...........................................................184
12.7 Clock errors settings................................................................................................ 193
12.8 Time conversion errors settings..............................................................................197
12.9 System errors settings............................................................................................. 201
13 SBAS corrections...............................................................................208
13.1 About SBAS...............................................................................................................208
13.2 About errors correction............................................................................................209
13.3 How to generate SBAS corrections.........................................................................211
13.4 SBAS settings........................................................................................................... 213
13.4.1 Error correction mode................................................................................................. 213
13.4.2 GEO ranging information............................................................................................ 215
5User Manual 1178.9403.02 ─ 07
ContentsSatellite Navigation
13.4.3 Differential corrections.................................................................................................220
13.4.4 Additional SBAS system parameters.......................................................................... 231
14 Data logging....................................................................................... 237
14.1 Data logging general settings..................................................................................239
14.2 Configure logging settings...................................................................................... 242
15 Assistance data generation.............................................................. 246
16 Loading historical data......................................................................253
16.1 Import GNSS constellation and navigation message data settings.....................255
16.2 Import SBAS constellation and correction data settings......................................257
17 Hardware in the loop (HIL)................................................................ 259
17.1 Tips for best results..................................................................................................260
17.1.1 Synchronization...........................................................................................................260
17.1.2 System latency............................................................................................................261
17.1.3 Latency calibration...................................................................................................... 261
17.1.4 Adding a constant delay to compensate for command jitter....................................... 263
17.1.5 Interpolation................................................................................................................ 265
17.1.6 Trajectory prediction....................................................................................................265
17.2 HIL settings................................................................................................................266
17.3 UDP position data..................................................................................................... 270
17.4 SCPI position data.................................................................................................... 271
17.5 Remote-control commands......................................................................................271
18 Signal generation control..................................................................280
18.1 Trigger settings......................................................................................................... 280
18.2 Marker settings..........................................................................................................284
18.3 Clock settings............................................................................................................288
18.4 Global connectors settings......................................................................................288
19 How to perform signal generation tasks with the GNSS options..290
19.1 General workflow for signal generation tasks....................................................... 290
19.2 How to generate GNSS signals for simple receiver tests..................................... 292
19.3 How to simulate real-world effects..........................................................................292
19.4 How to add noise or CW interferer.......................................................................... 292
6User Manual 1178.9403.02 ─ 07
ContentsSatellite Navigation
19.5 How to load historical data...................................................................................... 292
20 Remote-control commands...............................................................293
20.1 General commands...................................................................................................296
20.2 System and signal commands.................................................................................300
20.3 Time conversion configuration................................................................................305
20.4 Receiver positioning configuration commands.....................................................319
20.5 Antenna pattern and body mask............................................................................. 327
20.6 Real-time kinematics (RTK) commands..................................................................330
20.7 Environment configuration commands.................................................................. 334
20.8 Static multipath configuration................................................................................. 346
20.9 Atmospheric configuration commands.................................................................. 359
20.10 AWGN configuration.................................................................................................365
20.11 Satellites constellation............................................................................................. 369
20.12 Signals and power configuration per satellite....................................................... 378
20.13 SBAS corrections......................................................................................................401
20.14 Navigation message commands............................................................................. 412
20.14.1 Simulated orbit, orbit perturbation and clock commands............................................ 414
20.14.2 Pseudorange commands............................................................................................ 425
20.14.3 Orbit, clock, system, time conversion and ionospheric errors.....................................434
20.15 Signal dynamics........................................................................................................502
20.16 Assistance data settings.......................................................................................... 512
20.17 Monitoring and real-time commands...................................................................... 523
20.17.1 Monitoring commands.................................................................................................526
20.17.2 Real-time commands.................................................................................................. 531
20.18 Data logging.............................................................................................................. 541
20.19 Trigger commands....................................................................................................548
20.20 Marker commands.................................................................................................... 552
20.21 Clock commands...................................................................................................... 555
Annex.................................................................................................. 556
A User environment files...................................................................... 556
A.1 Movement or motion files.........................................................................................556
A.1.1 Waypoint file format.....................................................................................................556
7User Manual 1178.9403.02 ─ 07
ContentsSatellite Navigation
A.1.2 Vector trajectory file format......................................................................................... 559
A.1.3 NMEA files as source for movement information........................................................ 562
A.1.4 Trajectory description files...........................................................................................562
A.1.5 Resampling principle...................................................................................................566
A.1.6 Calculating the maximum time duration of a movement file........................................567
A.2 Vehicle description files (used for smoothening)..................................................568
A.3 Antenna pattern and body mask files..................................................................... 569
B RINEX files..........................................................................................572
B.1 RINEX format description.........................................................................................572
B.2 Example of a RINEX file............................................................................................573
C NMEA scenarios.................................................................................575
D QZSS navigation message scheduling............................................577
E List of predefined test scenarios......................................................578
F Ionospheric grid file format...............................................................584
G Channel budget..................................................................................585
G.1 Hardware resources..................................................................................................585
G.2 Instrument setups..................................................................................................... 587
H List of predefined files.......................................................................590
Glossary: List of publications with further or reference information
............................................................................................................. 592
List of commands.............................................................................. 594
Index....................................................................................................638
8User Manual 1178.9403.02 ─ 07
Welcome to the GNSS optionsSatellite Navigation
Key features

1 Welcome to the GNSS options

The R&S SMBV100B-K44/-K66/-K94/-K97/-K98/-K106/-K107/-K108/-K109/-K122/­K132/-K133/-K134/-K135/-K136/-K137 are firmware applications that add functionality to generate signals in accordance with GPS, Galileo, GLONASS, NavIC, QZSS and COMPASS/BeiDou navigation systems and SBAS augmentation systems.
This user manual contains a description of the functionality that the application pro­vides, including remote control operation.
All functions not discussed in this manual are the same as in the base unit and are described in the R&S SMBV100B user manual. The latest version is available at:
www.rohde-schwarz.com/manual/SMBV100B
Installation
You can find detailed installation instructions in the delivery of the option or in the R&S SMBV100B service manual.
Key features..............................................................................................................9
Accessing the GNSS dialog.................................................................................... 11
What's new..............................................................................................................11
Documentation overview.........................................................................................11
Scope......................................................................................................................13
Notes on screenshots............................................................................................. 13

1.1 Key features

The global navigation satellite system (GNSS) solution for the R&S SMBV100B is suit­able for R&D lab tests or production tests. Supported are all possible scenarios, from simple setups with individual satellites all the way to flexible scenarios generated in real time.
Real-time scenarios offer simulation of up to several hundred satellites for navigation systems GPS, Galileo, GLONASS, BeiDou, NavIC and QZSS depending on the instal­led options.
Key features
The GNSS options key features are:
Support of multiple GNSS and regional navigation satellite systems (RNSS) and signals including mixed constellations (Table 1-1)
Support of satellite-based augmentation systems (SBAS) and signals including mixed constellations (Table 1-2)
Configuring the state of a particular signal component individually
Real-time simulation of realistic mixed constellations and unlimited simulation time
Flexible scenario generation including moving scenarios, dynamic power control and atmospheric modeling
9User Manual 1178.9403.02 ─ 07
Welcome to the GNSS optionsSatellite Navigation
Key features
Configuration of realistic user environments, including obscuration and multipath, antenna characteristics and vehicle attitude
Navigation test mode for satellite constellation simulation, position fixing and time to first fix (TTFF) testing
Tracking test mode for signal acquisition and tracking tests
Single satellite per system test mode for production tests
Simulation of orbit perturbations and pseudorange errors
Support of ranging, correction and integrity services for SBAS
Configuration suitable for basic receiver testing using signals with zero, constant or varying Doppler profiles
Common configuration of multi-frequency GNSS scenarios
Support of assisted GNSS test scenarios, including generation of assistance data for GPS, Galileo, GLONASS and BeiDou
Logging of user motion and satellite-related parameters
Real-time external trajectory feed for hardware in the loop (HIL) applications
High signal dynamics, simulation of spinning vehicles to support aerospace and defense applications
Table 1-1: Supported GNSS/RNSS, frequency bands and signals
GNSS/RNSS L1 band L2 band L5 band
GPS C/A, P C/A, P, L2C L5
Galileo E1 E6 E5a, E5b
GLONASS C/A C/A -
BeiDou B1I, B1C B3I B2I, B2a
QZSS C/A L2C L5
NavIC - - SPS
Table 1-2: Supported SBAS, frequency bands and signals
SBAS L1 band L2 band L5 band
EGNOS C/A -
WAAS C/A -
MSAS C/A - -
GAGAN C/A - -
1)
SBAS "Exp L5" signals are for experimental use only and do not comply with SBAS
Exp L5
Exp L5
1)
1)
interface control document (ICD) specifications, see also Table 2-10.
10User Manual 1178.9403.02 ─ 07

1.2 Accessing the GNSS dialog

To open the dialog with GNSS settings
► In the block diagram of the R&S SMBV100B, select "Baseband > GNSS".
A dialog box opens that displays the provided general settings.
The signal generation is not started immediately. To start signal generation with the default settings, select "State > On".

1.3 What's new

This manual describes firmware version FW 5.00.044.xx and later of the R&S®SMBV100B.
Compared to the previous version, it provides the new features listed below:
Real-time kinematics (RTK) simulation of one GNSS receiver and up to two RTK reference stations, see Chapter 11, "Real-time kinematics", on page 150.
GPS L1C signal generation, see "Signals" on page 66.
Additional file extensions added for RINEX 3.x navigation file format, see
Table 15-2.
Additional file extensions for satellites constellation files, see Table 20-1.
Antenna position top view and side view added, see "To add an antenna and dis-
play the antenna pattern on a 3D view" on page 117.
Welcome to the GNSS optionsSatellite Navigation
Documentation overview

1.4 Documentation overview

This section provides an overview of the R&S SMBV100B user documentation. Unless specified otherwise, you find the documents on the R&S SMBV100B product page at:
www.rohde-schwarz.com/manual/smbv100b

1.4.1 Getting started manual

Introduces the R&S SMBV100B and describes how to set up and start working with the product. Includes basic operations, typical measurement examples, and general infor­mation, e.g. safety instructions, etc. A printed version is delivered with the instrument.
11User Manual 1178.9403.02 ─ 07

1.4.2 User manuals and help

Separate manuals for the base unit and the software options are provided for down­load:
Base unit manual Contains the description of all instrument modes and functions. It also provides an introduction to remote control, a complete description of the remote control com­mands with programming examples, and information on maintenance, instrument interfaces and error messages. Includes the contents of the getting started manual.
Software option manual Contains the description of the specific functions of an option. Basic information on operating the R&S SMBV100B is not included.
The contents of the user manuals are available as help in the R&S SMBV100B. The help offers quick, context-sensitive access to the complete information for the base unit and the software options.
All user manuals are also available for download or for immediate display on the Inter­net.
Welcome to the GNSS optionsSatellite Navigation
Documentation overview

1.4.3 Service manual

Describes the performance test for checking compliance with rated specifications, firm­ware update, troubleshooting, adjustments, installing options and maintenance.
The service manual is available for registered users on the global Rohde & Schwarz information system (GLORIS):
https://gloris.rohde-schwarz.com

1.4.4 Instrument security procedures

Deals with security issues when working with the R&S SMBV100B in secure areas. It is available for download on the Internet.

1.4.5 Printed safety instructions

Provides safety information in many languages. The printed document is delivered with the product.

1.4.6 Data sheets and brochures

The data sheet contains the technical specifications of the R&S SMBV100B. It also lists the options and their order numbers and optional accessories.
The brochure provides an overview of the instrument and deals with the specific char­acteristics.
12User Manual 1178.9403.02 ─ 07
Welcome to the GNSS optionsSatellite Navigation
Notes on screenshots
See www.rohde-schwarz.com/brochure-datasheet/smbv100b

1.4.7 Release notes and open source acknowledgment (OSA)

The release notes list new features, improvements and known issues of the current firmware version, and describe the firmware installation.
The open-source acknowledgment document provides verbatim license texts of the used open source software.
See www.rohde-schwarz.com/firmware/smbv100b

1.4.8 Application notes, application cards, white papers, etc.

These documents deal with special applications or background information on particu­lar topics.
See www.rohde-schwarz.com/application/smbv100b

1.5 Scope

Tasks (in manual or remote operation) that are also performed in the base unit in the same way are not described here.
In particular, it includes:
Managing settings and data lists, like saving and loading settings, creating and accessing data lists, or accessing files in a particular directory.
Information on regular trigger, marker and clock signals and filter settings, if appro­priate.
General instrument configuration, such as checking the system configuration, con­figuring networks and remote operation
Using the common status registers
For a description of such tasks, see the R&S SMBV100B user manual.

1.6 Notes on screenshots

When describing the functions of the product, we use sample screenshots. These screenshots are meant to illustrate as many as possible of the provided functions and possible interdependencies between parameters. The shown values may not represent realistic usage scenarios.
13User Manual 1178.9403.02 ─ 07
Welcome to the GNSS optionsSatellite Navigation
Notes on screenshots
The screenshots usually show a fully equipped product, that is: with all options instal­led. Thus, some functions shown in the screenshots may not be available in your par­ticular product configuration.
14User Manual 1178.9403.02 ─ 07
About the GNSS optionsSatellite Navigation
Required options

2 About the GNSS options

Global navigation satellite system (GNSS) employs the radio signals of several naviga­tion standards, like GPS, Galileo, GLONASS and BeiDou and NavIC. For several years, GPS used to be the only standard available for civilian navigation through its C/A civilian code.
Nowadays, the GNSS signals and systems are undergoing fast development, some systems are getting modernized and some are new. In the foreseeable future, several more GNSS satellites utilizing more signals and new frequencies are available.
The GNSS implementation in the R&S SMBV100B enables you to generate composite signals of GNSS satellites, depending on the installed options. Signal generation is performed in real time and thus not limited to a certain time period.
The following chapters provide background information on required options, basic terms and principles in the context of GNSS signal generation. For detailed information on the GNSS standards, see the corresponding specifications.

2.1 Required options

The basic equipment layout for generating GNSS signals includes:
Base unit
Baseband real-time extension (R&S SMBVB-K520)
At least one basic or modernized GNSS option, see Table 2-1. The modernized GNSS options do not require a basic GNSS option. For production testing, use the option Single-Satellite GNSS instead of a GNSS option, see Table 2-3.
Optional enhanced simulation capability options, see Table 2-2.
Optional enhanced simulation capacity options, see Table 2-3.
Table 2-1: GNSS system options
Option Designation Remark
R&S SMBVB-K44 GPS C/A and P signals in L1 and L2 bands
R&S SMBVB-K66 Galileo E1 OS, E6, E5a and E5b signals in L1, L2 and L5 bands
R&S SMBVB-K94 GLONASS C/A signal in L1 and L2 bands
R&S SMBVB-K97 NavIC/IRNSS SPS signal in L5 band
R&S SMBVB-K98 Modernized GPS L1C, L2C and L5 signals in L1, L2 and L5 bands
R&S SMBVB-K107 BeiDou/COMPASS B1I signal in L5 band
R&S SMBVB-K132 Modernized BeiDou B1C, B3I and B2a signals in L1, L2 and L5 bands
15User Manual 1178.9403.02 ─ 07
About the GNSS optionsSatellite Navigation
Required options
Table 2-2: GNSS simulation capability options
Option Designation Remark
R&S SMBVB-K106 SBAS/QZSS Requires R&S SMBVB-K44.
Augmentation system option using satellite-based and regional navigation signals.
R&S SMBVB-K108 Real world simulation Simulates real-world environments: Signal obscurations,
echoed and multipath effects, receiver antenna patterns and body masks.
R&S SMBVB-K109 Real-time interfaces Emulates a realistic environment of the DUT in real time
via the Hardware in the Loop test mode.
R&S SMBVB-K122 Real-time kinematics
(RTK)
Table 2-3: GNSS simulation capacity options
Option Designation Remark
R&S SMBVB-K133 Single-Satellite GNSS Requires no GNSS system option.
R&S SMBVB-K134 Dual-frequency GNSS Simulation of 2 RF band signals
R&S SMBVB-K135 Triple-frequency GNSS Requires R&S SMBVB-K134.
R&S SMBVB-K136 Add 6 GNSS channels Installable up to 8 times
R&S SMBVB-K137 Add 12 GNSS chan-
nels
Requires R&S SMBVB-K520. Simulates RTK kinematics for up to two RTK reference
stations and one GNSS receiver.
Single satellite signal of a GNSS system suitable for pro­duction testing.
Simulation of 3 RF band signals
Installable up to 8 times
There is a limitation on the maximum number of satellite signals that can be simulated simultaneously. For more information, see Chapter G, "Channel budget", on page 585.
To find out installed GNSS options
► Select "System Config > Setup > Instrument Assembly > Versions / Options > Soft-
ware Options".
The column "Licenses" lists the number of installed options.
To play back GNSS waveforms
You can generate signals via play-back of waveform files at the signal generator. To create the waveform file using R&S WinIQSIM2, you do not need a specific option.
To play back the waveform file at the signal generator, you have two options:
Install the R&S WinIQSIM2 option of the digital standard, e.g. R&S SMBVB-K255 for playing LTE waveforms
If supported, install the real-time option of the digital standard, e.g. R&S SMBVB­K55 for playing LTE waveforms
16User Manual 1178.9403.02 ─ 07
For more information, see data sheet.

2.2 GNSS overview

This section provides an overiew on the GNSS including the following:
Power spectral density and center frequencies
Characteristics of the satellite constellation
Signal plan for each GNSS
The number of deployed satellites increases constantly. For the current deployment status, see the official information of the GNSS providers.
The GNSS simulation capacity depends on installed options and the visibility state of the individual satellite. For the number of satellites that can be present in the satellite constellation, see Table 6-1.
About the GNSS optionsSatellite Navigation
GNSS overview
Figure 2-1: Power spectral density and center frequencies of most important GNSS signals
Red = GPS L1, L2 and L5 signals, details in GPS signal plan Blue = Galileo E1, E5 and E6 signals, details in Galileo signal plan Green = GLONASS G1, G2 and G3 signals, details in GLONASS signal plan Yellow = BeiDou B1, B2 and B3 signals, details in BeiDou signal plan
GPS
The Global Positioning System (GPS) consists of several satellites circling the earth in low orbits. The satellites transmit permanently information that can be used by the receivers to calculate their current position (ephemeris) and about the orbits of all sat­ellites (almanac). The 3D position of a receiver on the earth can be determined by car­rying out delay measurements of at least four signals emitted by different satellites.
Being transmitted on a single carrier frequency, the signals of the individual satellites can be distinguished by correlation (gold) codes. These ranging codes are used as spreading codes for the navigation message which is transmitted at a rate of 50 bauds. The C/A codes are used to provide standard positioning service (SPS), the P(Y) codes to provide precise positioning service (PPS).
17User Manual 1178.9403.02 ─ 07
Table 2-4: GPS signal plan
Service name C/A P(Y) L1C L2C
About the GNSS optionsSatellite Navigation
GNSS overview
1)
MCode
L5I, L5Q
Frequency band L1 L1
L2
Center frequency, MHz
Modulation BPSK(1) BPSK(10) TMBOC
1)
M code signals are not supported with the GNSS firmware.
1575.42 1575.42
1227.6
L1 L2 L1
L2
1575.42 1227.6 1575.42
1227.6
BPSK(1) BOC(10,5) QPSK(10)
(6,1,1/11)
L5
1176.45
Galileo
Galileo is the European global navigation satellite system that provides global position­ing service under civilian control. It is planed to be inter-operable with GPS and GLO­NASS and other global satellite navigation systems.
The fully deployed Galileo system consists of operational and spare satellites. Three independent CDMA signals, named E5, E6 and E1, are permanently transmitted by all Galileo satellites. The E5 signal is further subdivided into two signals denoted E5a and E5b (see Figure 2-1). The Galileo system provides open service (OS), public regulated service (PRS) to authorized, commercial service (CS) and search and rescue (SAR) service.
Table 2-5: Galileo signal plan
Service name E1 OS
PRS
1)
E5a OS E5b OS E6 CS
Frequency band E1 E1 E6 E5
Center frequency, MHz
Modulation CBOC
1)
Galileo E1 PRS signal is not supported with the GNSS firmware.
1575.42 1575.42 1278.75 1176.45 1207.14 1278.75
(6,1,1/11)
BOC (15,2.5)
BOC(10,5) AltBOC
(15,10)
E6
BPSK(5)
GLONASS
GLONASS is the Russian global navigation satellite system that uses 24 modernized GLONASS satellites touring the globe.
Together with GPS, more GNSS satellites are provided, which improves the availability and therefore the navigation performance in high urban areas.
Table 2-6: GLONASS signal plan
Service name C/A
Frequency band G1 G2 G1 G2 G3
1)
P
G3I , G3Q
1)
18User Manual 1178.9403.02 ─ 07
About the GNSS optionsSatellite Navigation
GNSS overview
Center frequency, MHz
Modulation BPSK(0.5)
1)
G1 and G2 P code signals and G3I/Q signals are not supported in the GNSS firm-
1602 ± k*0.5625
1246 ±
2)
k*0.5625
1602 ±
2)
k*0.5625
BPSK(5)
1246 ±
2)
k*0.5625
1202.025
2)
QPSK(10)
ware.
2)
k is the frequency number (FDMA) with -7 k 13.
BeiDou
The fully deployed BeiDou navigation satellite system (BDS) is a Chinese satellite navi­gation system. This navigation system is also referred as BeiDou-2.
The BDS is a global satellite navigation system with a constellation of satellites (COM­PASS satellites) to cover the globe. The constellation includes geostationary orbit sat­ellites (GEO) and non-geostationary satellites. The non-geostationary satllites com­prise medium earth orbit satellites (MEO) and inclined geosynchronous orbit (IGSO).
The BDS uses frequency allocated in the B1, B2 and B3 bands providing open service (OS) and authorized service (AS).
Table 2-7: BeiDou signal plan
Signal B1C B1I B2a B2I B3I
Frequency band
Center fre­quency, MHz
Modulation BOC(1,1)
B1 B1 B2 B2 B3
1575.42 1561.098 1176.45 1207.14 1268.52
QMBOC(6, 1, 4/33)
BPSK(2) BPSK(10)
BPSK(10)
BPSK(2) BPSK(10)
BeiDou B1Q, B2Q and B3Q AS signals are not supported in the GNSS firmware.
QZSS
The Quasi-Zenith satellite system (QZSS) is a regional space-based positioning sys­tem deployed in 2013.
In its final deployment stage, the QZSS uses a total number of three regional non-geo­stationary and highly inclined satellites and one geostationary orbit (GEO) satellite. The QZSS does not aim to cover the globe but to increase the availability of GPS in Japan, especially in the larger towns.
The QZSS uses signals that are similar to the GPS public signals.
Table 2-8: QZSS signal plan
Service name C/A
L1C
1)
SAIF
1)
L2CM, L2CL
L5I, L5Q
LEX
1)
Frequency band L1 L1 L1 L2 L5 E6
19User Manual 1178.9403.02 ─ 07
About the GNSS optionsSatellite Navigation
GNSS overview
Center frequency, MHz
Modulation BPSK(1) BOC(1,1) BPSK(1) BPSK(1) BPSK(10) BPSK(5)
1575.42 1575.42 1575.42 1227.6 1176.45 1278.75
QZSS L1C, SAIF and E6 LEX signals are not supported in the GNSS firmware.
NavIC
NavIC (Navigation Indian Constellation) is the indian navigation satellite system, for­merly denoted IRNSS (Indian Regional Navigational Satellite System).
NavIC is a regional satellite navigation system with a constellation of satellites to cover an area of 1500 km surrounding India (2016). The constellation includes geostationary orbit (GEO) satellites and inclined geosynchronous orbit (IGSO) satellites.
The NavIC system uses frequencies allocated in the L5 and S bands providing special positioning service (SPS) and precision service (PS).
Table 2-9: NavIC signal plan
Signal SPS
Frequency band L5 S
Center frequency, MHz 1176.45 2491.75
Modulation BPSK(1) N/A
PS
1)
1)
NavIC PS signal is not supported in the GNSS firmware.
Assisted GNSS (A-GNSS)
Assisted GNSS (A-GNSS) was introduced to different mobile communication stand­ards to reduce the time to first fix (TTFF) of a user equipment (UE) containing a GNSS receiver. The reduction is achieved by transmitting information (assistance data) mainly about the satellites directly from a base station to the UE.
For example, a standalone GPS receiver needs about 30 to 60 seconds for a first fix and up to 12.5 minutes to get all information (almanac).
In A-GNSS "UE-based mode", the base station assists the UE by providing the com­plete navigation message along with a list of visible satellites and ephemeris data. In addition to this information, the UE gets the location and the current time at the base station. That speeds up both acquisition and navigation processes of the GPS receiver and reduces TTFF to a few seconds.
In A-GNSS "UE assisted mode", the base station is even responsible for the calcula­tion of the UE's exact location. The base station takes over the navigation based on the raw measurements provided by the UE. Since the acquisition assistance data provided by the base station already serves speeding up the acquisition process, the UE only has to track the code and carrier phase.
20User Manual 1178.9403.02 ─ 07

2.3 SBAS overview

Satellite-based augmentation systems (SBAS) use geostationary satellites (GEO) to broadcast GNSS coarse integrity and wide area correction data (error estimations), and ranging signal to augment the GNSS.
SBAS broadcast augmentation data in the GPS frequency band L1 using the C/A code of GPS. For experimental use, the R&S SMBV100B provides modulation of SBAS L1 navigation message data in the GPS L5 band for SBAS systems EGNOS and WAAS. Thus, the signal "Exp L5" is a pure copy of L1 data and does not comply with SBAS interface control document (ICD) specifications.
Table 2-10: SBAS signal plan
Signal C/A Exp L5
Frequency band L1 L5
Center frequency, MHz 1575.42 1176.45
Modulation BPSK(1) N/A
About the GNSS optionsSatellite Navigation
GNSS components overview
The SBAS provides data for a maximum of 51 satellites. In the SBAS, the term pseudo random number (PRN) is used instead of the term space vehicle (SV). There are 90 PRN numbers reserved for SBAS, where the numbering starts at 120.
Several SBAS systems are still in their development phase, like, for example, the SDCM in Russia Federation, and GAGAN in India.
SBAS systems that are currently in operation argument the US GPS satellite naviga­tion system, so that they are suitable, for example, for civil aviation navigation safety needs. The following SBAS systems are supported by R&S SMBV100B:
EGNOS
EGNOS (European geostationary navigation overlay service) EGNOS is the Euro­pean SBAS system
WAAS
WAAS (wide area augmentation system) is the SBAS system in United States
MSAS
MSAS (multi-functional satellite augmentation system ) is the SBAS system work­ing in Japan. It uses the multi-functional transport satellites (MTSAT) and supports differential GPS.
GAGAN
GAGAN (GPS aided geo augmented navigation system) is the SBAS implementa­tion by the Indian government.

2.4 GNSS components overview

The GNSS system comprises of three main components: the space segment, the ground segment and the user segment.
21User Manual 1178.9403.02 ─ 07
About the GNSS optionsSatellite Navigation
GNSS components overview
Figure 2-2: GNSS system components (simplified)
1 = Space segment or satellites 2 = Ground segment or ground stations 3 = User segment or receivers 4 = Ephemeris (broadcasted satellites orbit and clock) 5 = Broadcasted navigation message
Space segment
The space segment consists of the satellites that orbit the earth on their individual orbits. Satellites broadcast signals at specific frequency in the L band and spread by predefined codes. For the GPS satellites using L1 frequency band, for instance, the predefined codes are the coarse/acquisition (C/A) or the precision (P) codes.
The transmitted signal carries the navigation message, on which each satellite broad­casts its major characteristics, its clock offsets and precise orbit description, where the latter is called ephemeris. The navigation message contains also satellites status information, ionospheric and time-related parameters, UTC information and orbit data with reduced accuracy for all other satellites, commonly referred as almanac.
Ground segment
The ground segment is a network of ground stations whose primary goal is to mea­sure constantly the satellites’ location, altitude and velocity, and the satellites signals. The ground stations also estimate the influence of the ionosphere. They calculate the precise orbit (and orbit perturbation) parameters and clock drifts parameters of each satellite. This corrected highly accurate information is regularly broadcasted back to the satellites so that their navigation messages can be updated.
22User Manual 1178.9403.02 ─ 07
About the GNSS optionsSatellite Navigation
How are the GNSS components simulated?
User segment
Finally, the receiver decodes the navigation message (ephemeris and almanac) broadcasted by the GNSS satellites, obtains information regarding the satellites orbit, clock, health etc. and calculates the satellites coordinates. The receiver also measures the signal propagation time (i.e. the pseudorange) of at least four satellites and esti­mates its own position.

2.5 How are the GNSS components simulated?

In real life, the true satellite orbit can differ from the orbit information that the satellite broadcasts.
In this implementation, the simulated orbit is the true orbit. Thus, the satellites motion along their orbits, the clock they use and the current distance to each of them are refer­red to as simulated orbit, clock and pseudorange. They are set as retrieved from the constellation data source and can be configured on a per satellite basis.
The navigation message of each of the satellites is per default identical to the simula­ted one. It is referred to as broadcasted navigation message, since it represents the broadcasted satellite’s signal, see Figure 2-2. Per default, the broadcasted and the simulated orbit and clock parameters match. Obviously, if the parameters in any of those two groups are changed, a deviation between the sets is simulated.
The receiver is the device under test (DUT). In the simulation, the receiver is represen­ted by its position, antenna configuration, environment, etc. The receiver is tested with the GNSS it would receive in a real-world situation if placed in the specified conditions.
Simulation date, time and location
The R&S SMBV100B generates the signal for any simulation date and time, in the past or in the future. The generated signal represents any location, on the earth or in the space, for a static or moving receiver.
You have full control over the satellites’ constellation, the satellites signals and the nav­igation message of each satellite. Repeat measurement scenarios with same precondi­tions and vary the complexity or replay simulation events from the past.
For details, see:
Chapter 4, "Simulation time", on page 42
Chapter 5, "Receiver type and position", on page 48
Chapter 6, "Satellite constellation", on page 63
Chapter 7, "Space vehicle configuration", on page 75
Real-world scenarios through environmental effects
You can also simulate various different environmental conditions, like the effect of the receiver’s antenna characteristic, vehicle movement, vehicle body mask, multipath propagation, obstacles or the atmosphere.
For details, see Chapter 10, "Real-world environment", on page 108.
23User Manual 1178.9403.02 ─ 07
About the GNSS optionsSatellite Navigation
How are the GNSS components simulated?
Ionospheric effects
You can also simulate the effect of the atmospheric (ionospheric and tropospheric) errors on the positioning accuracy.
For details, see "Tropospheric and ionospheric models" on page 168.
GNSS errors sources
Additional to the real-world and the ionosphere effects, you can simulate signal errors by manipulating the navigation messages of the satellites. Signal errors have a direct impact on the receiver’s positioning accuracy.
You can observe the effect of the following common error sources:
Orbit and orbit perturbation errors (ephemeris errors)
Satellite clock and time conversion errors
Pseudorange errors
For details, see Chapter 12, "Perturbations and errors simulation", on page 162.
Historical constellations and navigation data
You can also replay historical satellite constellations, by loading constellation files and navigation data files for all GNSS systems supported in the GNSS firmware.
For details, see:
"Constellation data and navigation message file formats" on page 253
Chapter 16.1, "Import GNSS constellation and navigation message data settings",
on page 255
Correction data
You can also correct navigation data by loading SBAS corrections.
For details, see:
Chapter 13, "SBAS corrections", on page 208
Chapter 16.2, "Import SBAS constellation and correction data settings",
on page 257
24User Manual 1178.9403.02 ─ 07
Getting startedSatellite Navigation
Trying out the GNSS simulator

3 Getting started

In its default configuration, the software generates GNSS signal that is sufficient for a receiver to get a position fix. The simulated GNSS depends on the installed options. For example, if R&S SMBV100B-K44 is installed, it is GPS C/A signal in the L1 band.
For all GNSS, the simulation starts on 19.02.2014 at 6 am UTC time and the satellite constellation corresponds to a constellation, that is visible for a static receiver located in Munich.
To simulate a defined configuration, you can load predefined assistance GNSS scenar­ios or load a user-defined scenario. The software applies the configuration automati­cally, you can change related settings afterwards. For example, try out the receiver templates and configure a receiver, moving in a circle in New York.
Trying out the GNSS simulator............................................................................... 25
General settings......................................................................................................30
Simulation monitor.................................................................................................. 33

3.1 Trying out the GNSS simulator

The following simple examples can help you get familiar with the basic functions of the software:
"To generate a GNSS signal for simple receiver tests (default configuration)"
on page 25
"To use predefined scenarios" on page 26
"To generate a multi-constellation GNSS signal" on page 28
To generate a GNSS signal for simple receiver tests (default configuration)
1. Select "Baseband > Satellite Navigation > GNSS".
2. Select "General > State > On".
The summary information confirms that a single GNSS system signal is generated. The used frequency band is indicated, too.
25User Manual 1178.9403.02 ─ 07
Getting startedSatellite Navigation
Trying out the GNSS simulator
3. To observe current satellite constellation, select "GNSS > Simulation Monitor".
4. In the block diagram, select "RF > On".
The signal generation starts. The frequency and level of the generated RF signal are configured automatically. Further settings are not required.
For description of the related settings, see:
Chapter 3.2, "General settings", on page 30
Chapter 3.3, "Simulation monitor", on page 33
To use predefined scenarios
1. Select "Baseband > Satellite Navigation > GNSS".
2. Select, e.g., "General > Predefined Scenarios > Assisted GNSS > 3GPP2 > 3GPP2C.S0036 2.1.2 Moving". See also Chapter E, "List of predefined test scenarios", on page 578.
3. Select "General > State > On".
26User Manual 1178.9403.02 ─ 07
Getting startedSatellite Navigation
Trying out the GNSS simulator
The summary information confirms the used scenario. Configured is a single GPS system signal in the L1 frequency band.
4. To observe current satellite constellation and the trajectory of the moving receiver, select "Simulation Monitor > Display > Receiver > Map View".
The "Simulation Monitor" shows the trajectory of the moving receiver.
5. To observe the preconfigured receiver settings, select "Simulation Monitor > Con­fig".
6. In the "Simulation Configuration > Receiver" dialog, select "Position Configuration". Observe the configuration.
27User Manual 1178.9403.02 ─ 07
7. In the block diagram, select "RF > On".
Getting startedSatellite Navigation
Trying out the GNSS simulator
The signal generation starts. The frequency and level of the generated RF signal are configured automatically. Further settings are not required.
For description of the related settings, see:
Chapter 3.2, "General settings", on page 30
Chapter 3.3, "Simulation monitor", on page 33
Chapter 5, "Receiver type and position", on page 48
To generate a multi-constellation GNSS signal
1. Select "Baseband > Satellite Navigation > GNSS".
2. Select "Simulation Configuration > Systems&Signals"
28User Manual 1178.9403.02 ─ 07
Getting startedSatellite Navigation
Trying out the GNSS simulator
3. Select the frequency band, e.g. set "L1 > On".
4. Enable the global, regional and augmentation GNSS systems to be simulated, e.g. "GPS > On", "Galileo > On", "GLONASS > On".
5. Define the signals per GNSS system, e.g. "GPS > C/A > On", "GPS > P > Off".
6. To observe current satellite constellation, select "GNSS > Simulation Monitor".
7. To reconfigure the satellites constellation, select "Simulation Monitor > Config".
8. In the block diagram, select "RF > On".
The signal generation starts. The frequency and level of the generated RF signal are configured automatically. Further settings are not required.
For description of the related settings, see:
Chapter 3.2, "General settings", on page 30
Chapter 3.3, "Simulation monitor", on page 33
Chapter 6, "Satellite constellation", on page 63
29User Manual 1178.9403.02 ─ 07

3.2 General settings

Access:
► Select "Baseband > Satellite Navigation > GNSS".
Getting startedSatellite Navigation
General settings
This dialog provides standard general settings. The remote commands required to define these settings are described in Chap-
ter 20.1, "General commands", on page 296.
Settings:
State..............................................................................................................................30
Set to Default................................................................................................................ 30
Save/Recall Scenario....................................................................................................31
Predefined Scenario......................................................................................................31
Scenario........................................................................................................................31
Test Mode......................................................................................................................32
GNSS Configuration......................................................................................................32
Simulation Monitor/Monitor........................................................................................... 33
Data Generation............................................................................................................33
RTK Configuration.........................................................................................................33
State
Activates the standard and deactivates all the other digital standards and digital modu­lation modes in the same path.
Remote command:
[:SOURce<hw>]:BB:GNSS:STATe on page 297
Set to Default
Calls the default settings. The values of the main parameters are listed in the following table.
30User Manual 1178.9403.02 ─ 07
Getting startedSatellite Navigation
General settings
Parameter Value
"State" Not affected by "Set to default"
"Scenario" "None"
"Test Mode" "Navigation"
"Logging" "Off"
Remote command:
[:SOURce<hw>]:BB:GNSS:PRESet on page 297
Save/Recall Scenario
Accesses the "Save/Recall" dialog, that is the standard instrument function for saving and recalling the complete dialog-related settings in a file. The provided navigation possibilities in the dialog are self-explanatory.
The settings are saved in a file with predefined extension. You can define the filename and the directory, in that you want to save the file.
See also, chapter "File and Data Management" in the R&S SMBV100B user manual. To ensure repeatable test situation, the save/recall file contains all settings and
includes all files used in the simulation, like for example waypoints files or vehicle description files.
When a save/recall file is loaded, the instrument checks the installed options and the used system configuration. If there is a mismatch, the file is loaded, settings adapted as far as possible and a warning message is displayed to indicate this situation.
Remote command:
[:SOURce<hw>]:BB:GNSS:SETTing:CATalog? on page 298 [:SOURce<hw>]:BB:GNSS:SETTing:STORe on page 298 [:SOURce<hw>]:BB:GNSS:SETTing:LOAD on page 299 [:SOURce<hw>]:BB:GNSS:SETTing:DELete on page 299
Predefined Scenario
Accesses the standard "File Select" dialog and allows you to select a predefined sce­nario.
The available test scenarios depend on the installed software options. For an overview, see Chapter E, "List of predefined test scenarios", on page 578.
Once a scenario is selected, all parameters (simulated position, satellite configuration, navigation data, etc.) are configured automatically. The scenario name is indicated, see "Scenario" on page 31.
Remote command:
[:SOURce<hw>]:BB:GNSS:SETTing:CATalog:PREDefined? on page 299 [:SOURce<hw>]:BB:GNSS:SETTing:LOAD:PREDefined on page 299
Scenario
Displays one of the following:
"None": preset (default) configuration, see Set to Default.
Scenario name: a predefined scenario is selected, see Predefined Scenario.
31User Manual 1178.9403.02 ─ 07
Getting startedSatellite Navigation
General settings
Filename: a saved scenario is loaded, see Save/Recall Scenario.
"User-defined": At least one parameter is changed after a configuration or prede­fined scenario is loaded.
Remote command:
[:SOURce<hw>]:BB:GNSS:SCENario? on page 297
Test Mode
Set the test mode to match the operation mode in that the DUT works. Irrespectively of the selected mode, initial satellites constellations are defined by the
predefined or imported constellation data. Also, the number of active satellites with their initial position and messages are retrieved from constellation data. You can edit the satellite constellation and signals in both modes.
Switching from one test mode to the other presets all satellites parameters to their default values. The modes differ in terms of signal content and scenario complexity:
"Navigation"
"Tracking"
"Single Satellite per System"
Remote command:
[:SOURce<hw>]:BB:GNSS:TMODe on page 298
The satellite signals are configured to correspond to the signal at a particular location ("Receiver > Location"). The generated signal corresponds to a realistic scenario. The DUT can achieve position fix, since the satellite constellation comprises of at least three satellites. The signal is suitable for signal acquisition and TTFF tests.
Generated is signal without positioning data. Receiver configuration is not required. Navigation and acquiring of position fix is not possible. The signal is, however, sufficient to test the ability of the DUT to find the channel and to decode the signal. It is also sufficient for sensitivity testing. Use this mode if high signal dynamics are required, for example for the simulation of spinning vehicles and precision code (P code) such as in some aerospace and defense applications. For more information, see Chapter 8, "Tracking mode", on page 98.
Requires R&S SMBVB-K133. The mode simulates one satellite for each GNSS system GPS, Gali­leo, GLONASS, COMPASS/BeiDou and NavIC. Use this mode for production tests. Navigation and acquiring of position fix is not possible. The signal is, however, sufficient to test the ability of the DUT to find the channel and to decode the signal. It is also sufficient for sensitivity testing. For more information, see Chapter 9, "Production tester", on page 104.
GNSS Configuration
Accesses the "GNSS Configuration" dialog for defining active navigation system, used RF bands and signals. Also, the dialog provides further settings to configure satellites.
See:
Chapter 6.1, "Systems and signals settings", on page 64
32User Manual 1178.9403.02 ─ 07
Getting startedSatellite Navigation
Simulation monitor
Chapter 4.1, "Time configuration settings", on page 42
Chapter 5.1, "Receiver type", on page 48
Chapter 6.2, "Satellites settings", on page 68
Chapter 12.4, "Atmospheric effects and ionospheric errors settings", on page 172
Simulation Monitor/Monitor
Accesses the "Simulation Monitor" dialog for real-time display of the major parameters, like current satellite constellation with SV states and position, receiver position or movement trajectory, or received satellite power.
See Chapter 3.3, "Simulation monitor", on page 33.
Data Generation
Accesses the "Data Generation" dialog for enabling and configuring data logging, assistance data generation and generating files by converting. Also, the button dis­plays logging state ("Logging > On/Off").
See:
Chapter 14, "Data logging", on page 237
Chapter 15, "Assistance data generation", on page 246
RTK Configuration
Requires R&S SMBVB-K122. Accesses the "RTK Configuration" dialog for enabling and configuring real-time kine-
matics (RTK) simulation. Also, the button displays the RTK state ("RTK > On/Off"). See Chapter 11, "Real-time kinematics", on page 150.

3.3 Simulation monitor

The simulation monitor visualizes the real-world situation of disappearance and reap­pearance of satellites in real time. The simulation monitor is also a dynamic display of several parameters like HDOP, PDOP, receiver's location, elapsed time and the trajec­tory of a moving receiver.
Access:
1. You have two options for accessing the functionality:
Select "GNSS > General > Simulation Monitor".
Select "GNSS > General > GNSS Configuration".
In the "Simulation Configuration" dialog, proceed as follows:
a) Select "GNSS > General > GNSS Configuration > Monitor". b) Select "GNSS > General > GNSS Configuration > Receiver/Satellites/Atmos-
phere > Monitor".
The dialog displays the view that fits best to the settings in the origin dialog.
33User Manual 1178.9403.02 ─ 07
Getting startedSatellite Navigation
Simulation monitor
2. To access the related configurations settings or return back to the origin, select "GNSS Configuration > Simulation Config...".
The "Simulation Monitor" is a dynamic display that provides real-time information on:
Current satellite's constellation
Receiver position
Current simulation time
Power levels of the active satellites
HDOP, PDOP.
In the following, the different views are explained in detail. Related remote control com­mands (SCPIs) are listed, too.
Settings:
Display.......................................................................................................................... 35
Simulation Configuration...............................................................................................39
Real-time information....................................................................................................39
P, V, T..............................................................................................................39
SV, HDOP, PDOP........................................................................................... 39
Speed..............................................................................................................39
Attitude............................................................................................................40
Legend.......................................................................................................................... 40
Expand left/right............................................................................................................ 40
Power View > View Settings......................................................................................... 40
Show Echoes..................................................................................................40
Ground Track > Show Tracks........................................................................................40
Map View > Axis............................................................................................................41
Elevation/Azimuth > System, SV-ID..............................................................................41
HW Channels > Channels x/y....................................................................................... 41
HW Channels table....................................................................................................... 41
34User Manual 1178.9403.02 ─ 07
Display
Switches between the available views. "Sky View"
Displays the current position and state (active or inactive) of the satel­lites in the current satellites constellation. In this display, you can, for example, observe the situation of disappearance and reappearance of satellites.
Getting startedSatellite Navigation
Simulation monitor
"Power View"
Figure 3-1: Simulation Monitor: Example of a hybrid satellite's constellation with
obscured satellites in a moving scenario
For instruments equipped with option R&S SMBV100B-K108, the "Sky View" indicates also the obscured satellites, the satellites with echoes, etc. For example, the satellites which signal is not visible from the current receivers position because there is an obstacle between the receiver and the satellite, are displayed in gray color.
Displays the current power levels of the signals of the active satellites and their echoes.
Figure 3-2: Simulation Monitor: Example of a hybrid satellite's constellation with
obscured satellites and the influence of the echoes on the power level per satellite
35User Manual 1178.9403.02 ─ 07
"Ground Track"
Getting startedSatellite Navigation
Simulation monitor
Displays an aggregated plot of the trajectories of all satellites projec­ted on the world map. To observe the tracks of the individual satellites, select "GNSS sys­tem > SV ID# > SV Config > Simulated Orbit" > Ground Track.
36User Manual 1178.9403.02 ─ 07
Getting startedSatellite Navigation
Simulation monitor
"Map View"
Displays the trajectory of a moving receiver or the position of a static one. The blue trajectory displays the last 50 receiver positions, the orange trajectory displays the receiver positions from the last three hours or the expected movement from a waypoint file. If the receiver position reaches the limits of the axes, the scaling is adapted auto­matically.
1
= Receiver position 2 = Blue trajectory displaying the last 50 receiver positions 3 = Orange trajectory displaying receiver positions of the last three hours or the expec-
ted movement from a waypoint file
If you analyze the generated GNSS signal with a GNSS receiver soft­ware, you can notice a slight difference in the receiver position. The receiver position displayed on the "Map View" and the position dis­played on the receiver software can deviate at the beginning of a sim­ulation. The accuracy of the "Map View" display is progressively increasing with the time elapsed and after the first satellite handover the deviation completely disappears.
37User Manual 1178.9403.02 ─ 07
Getting startedSatellite Navigation
Simulation monitor
"Attitude View"
"Elevation/Azimuth"
Displays a compass showing the geographic direction of a moving receiver, typically an airplane. It also displays an attitude indicator showing the orientation of this airplane relative to earth's horizon.
The displayed attitude indicator is known from the flight simulators. The yellow sign in the middle represents the airplane with its nose and wings. The brown part of the display is the earth, whereas the sky is displayed in blue; the line between the two parts is the horizon.
The "Attitude View" changes in real time:
Displays the time variation of the azimuth and the satellite's elevation over 24 hours UTC time. The start time is hour 00:00:00 of the simu­lated day. The vertical dotted green line indicates the current simula­tion time and updates in real time. Crossing midnight ("24") triggers a refresh of the two plots.
If the yellow circle, i.e. the nose of the airplane, is on the blue background, then the airplane is nose up. If a spinning and roll is enabled, the attitude indicator also visual­izes pitch and roll (i.e. bank or side-to-side tilt).
38User Manual 1178.9403.02 ─ 07
"HW Channels"
Lists the channel information, number of active channels and alloca­ted channels of the composite GNSS signal.
See also:
"HW Channels > Channels x/y" on page 41
"HW Channels table" on page 41
Remote command:
[:SOURce<hw>]:BB:GNSS:MONitor<ch>:DISPlay on page 527
Getting startedSatellite Navigation
Simulation monitor
Simulation Configuration
Accesses the dialogs with corresponding settings:
For "Display > Satellites", see Chapter 6.2, "Satellites settings", on page 68.
For "Display > Receiver", see Chapter 5, "Receiver type and position", on page 48.
Real-time information
You find dynamic information on several parameters in most of the views. Monitored are the following parameters:
P, V, T ← Real-time information
Summary information on the real-time parameters:
P: receiver position (latitude [deg], longitude [deg], altitude [m])
V: velocity (meter per second)
T: date and time in UTC format (DD.MM.YYY HH:MM:SS)
SV, HDOP, PDOP ← Real-time information
Displays the current HDOP and PDOP value of the selected satellite constellation and the SV these values apply to.
The HDOP and PDOP can be used as an indication of 2D and 3D positioning quality. The general rule here is that the smaller the HDOP and PDOP are, the better the preci­sion of the position fix.
Speed ← Real-time information
Indicates the speed of a moving receiver. Applies for moving receivers with specified velocity value in the movement description
file.
39User Manual 1178.9403.02 ─ 07
Getting startedSatellite Navigation
Simulation monitor
Attitude ← Real-time information
Displays the receiver attitude parameters yaw/heading (Y), pitch/elevation (P), roll/ bank (R) in degrees.
The initial receiver attitude parameters are selected in the "Localization Data" dialog.
Legend
Explains the meaning of the colors used in the Display > "Power View" display.
Expand left/right
Expands the view selected in "Display" to the full width of the dialog. ">>" "<<"
Power View > View Settings
Defines the signals to be visualized on the "Power View" graph.
Expands the left view to the right. Expands the right view to the left.
Useful in hybrid configurations and for limiting the displayed information to, for exam­ple, one GNSS system.
Remote command:
[:SOURce<hw>]:BB:GNSS:MONitor<ch>:DISPlay:POWer:SYSTem:GPS: SIGNal:L1Band:CA on page 530
(etc. for the other GNSS systems)
Show Echoes ← Power View > View Settings
If enabled, the "Power View" indicates also the echoes per SV. Echoes are generated if static multipath with at least one echo is enabled, see Chap-
ter 10.8.6, "Static multipath", on page 146.
See also Figure 7-3. Remote command:
[:SOURce<hw>]:BB:GNSS:MONitor<ch>:DISPlay:POWer:ECHoes on page 528
Ground Track > Show Tracks
If enabled, the "Ground Track" view indicates both, the current satellite positions and their orbits.
40User Manual 1178.9403.02 ─ 07
Getting startedSatellite Navigation
Simulation monitor
Remote command:
[:SOURce<hw>]:BB:GNSS:MONitor<ch>:DISPlay:TRACks:SHOW on page 527
Map View > Axis
Changes the axis type in the Display > "Map View" display. Remote command:
[:SOURce<hw>]:BB:GNSS:MONitor<ch>:DISPlay:MAP:AXIS on page 527
Elevation/Azimuth > System, SV-ID
Selects the GNSS system and the SV ID for that the Display > "Elevation/Azimuth" var­iation over 24 hours is displayed.
Remote command:
[:SOURce<hw>]:BB:GNSS:MONitor<ch>:DISPlay:TRAJectory:SYSTem
on page 528
[:SOURce<hw>]:BB:GNSS:MONitor<ch>:DISPlay:TRAJectory:SVID
on page 528
HW Channels > Channels x/y
Displays the number of active GNSS channels ("x") and allocated GNSS channels ("y"). The number of active channels is automatically configured depending on the number of active GNSS systems, signals, satellites, vehicles and antennas. The num­ber of allocated channels is also the maximum number of channels.
A GNSS channel refers to a hardware unit that is required to process and generate a GNSS signal. GNSS channels are uniquely composed of the following configuration elements: One vehicle/receiver, one antenna, one RF band and one signal of a single satellite.
The maximum number of channels depends on the installed options. See Chapter G,
"Channel budget", on page 585.
Remote command:
[:SOURce<hw>]:BB:GNSS:MONitor<ch>:DISPlay:CHANnels:USED?
on page 530
[:SOURce<hw>]:BB:GNSS:MONitor<ch>:DISPlay:CHANnels:ALLocated?
on page 530
HW Channels table
Lists channel information in a table.
Table 3-1: HW channels: Understanding the displayed information
Parameters Description
"Ant" Antenna number
"SV" Space vehicle with GNSS system and number
"Signal" Frequency band and signal
"Path" Type of signal: Line-of-sight (LOS) and echoes
"Power/dBm" Channel power
41User Manual 1178.9403.02 ─ 07
Simulation timeSatellite Navigation
Time configuration settings

4 Simulation time

The default system time in this simulation is given in the UTC (Universal Time Coordi­nates) time base. The simulation start time is thus defined as date and time and is set to 19.02.2014 at 06:00:00 am.
Simulation start time
You can change the simulation start time as you can change the time basis at any time. The time is then automatically recalculated and displayed in the selected time format.
The satellite constellation can comprise SVs from different navigation systems. You can observe the current simulation time converted into the time basis of each of the enabled GNSS systems at a glance.
If the satellite constellation comprises SVs from different navigation standards, the time conversion between the time bases in these navigation standards has to be defined. With other words, the time conversion settings are necessary for switching from one timebase to another.
Time conversion parameters and leap second
Time conversion parameters are zero and first order system clock drift parameters and the current leap second.
The leap second describes the difference between the GPS, Galileo, GLONASS, Bei­Dou or NavIC system time and UTC system time. Correct the time difference by speci­fying the leap second transition date, the leap second before transition and the leap second after transition.
How to: Example "Configuring leap second transition" on page 45
Simulating time conversion errors
Per default, the time conversion between the time basis excludes conversion errors and drifts between the time basis of the GNSS systems. We recommend that you use the default configuration, without system time offset or time drift.
If you aim to simulate deliberate errors and change the time conversion settings, see:
"Additional UTC Parameters" on page 46
Chapter 12.8, "Time conversion errors settings", on page 197

4.1 Time configuration settings

Access:
1. Select "GNSS > Simulation Configuration > Time".
42User Manual 1178.9403.02 ─ 07
2. Select "Additional UTC Parameters".
Simulation timeSatellite Navigation
Time configuration settings
These dialogs contain the settings required to configure the time conversion from a navigation standard, for example GPS to UTC. The conversion settings are neces­sary for switching from one timebase to another.
Settings
Simulation Start.............................................................................................................44
Set Current Time...........................................................................................................44
Leap Second Configuration...........................................................................................45
Auto Configure Leap Second (Ref. 1980).......................................................45
Leap Second Transition Date......................................................................... 45
Leap Second before Transition - ΔtLS............................................................. 45
Leap Second after Transition - Δt
...............................................................45
LSF
Date / Week, Time / Time of Week /s, UTC Offset /s....................................................46
Additional UTC Parameters.......................................................................................... 46
Reference Week/Date, Reference Time of Week........................................... 46
43User Manual 1178.9403.02 ─ 07
Simulation timeSatellite Navigation
Time configuration settings
UTC-UTC(SU).................................................................................................46
Integer Offset.................................................................................................. 46
Fractional Offset A0, Drift A1.......................................................................... 46
Simulation Start
Sets the simulation start data and time in the selected format. "Format"
Remote command:
[:SOURce<hw>]:BB:GNSS:TIME:STARt:TBASis on page 309
"Date [dd.mm.yyyy], Time [hh:mm:ss.xxx]"
Remote command:
[:SOURce<hw>]:BB:GNSS:TIME:STARt:DATE on page 309 [:SOURce<hw>]:BB:GNSS:TIME:STARt:TIME on page 310
Per default, the UTC format used. If different format is selected, the time is automatically recalculated.
Note: Use the Additional UTC Parameters dialog to configure the parameters, necessary for time conversion between the proprietary time of the navigation standard and the UTC.
Enters the date for the simulation in DD.MM.YYYY format of the Gre­gorian calendar and the exact simulation start time in UTC time for­mat.
"Week Number, Time of Week (TOW)"
The satellite clocks in the GPS and Galileo navigation systems are not synchronized to the UTC. They use a proprietary time, the GPS and the Galileo system time. The format used for these systems is week number (WN) and time of week (TOW), that is the simulation start time within this week. TOW is expressed in number of seconds and covers an entire week. The value is reset to zero at the end of each week.
The weeks are numbered starting from a reference time point (WN_REF=0), that depends on the navigation standard:
GPS reference point: January 6, 1980 (00:00:00 UTC)
GALILEO reference point: August 22, 1999
BeiDou reference point: January 01, 2006
NavIC reference point: August 22, 1999
Remote command:
[:SOURce<hw>]:BB:GNSS:TIME:STARt:WNUMber on page 310 [:SOURce<hw>]:BB:GNSS:TIME:STARt:TOWeek on page 310
Set Current Time
Applies date and time settings of the operating system to the simulation start time. Access the operating system time settings via "System Config > Setup > Maintenance
> Date / Time". Remote command:
[:SOURce<hw>]:BB:GNSS:TIME:STARt:SCTime on page 309
44User Manual 1178.9403.02 ─ 07
Simulation timeSatellite Navigation
Time configuration settings
Leap Second Configuration
Configure leap second transitions for time corrections between UTC system time and the individual GNSS time.
Example: Configuring leap second transition
The examples below comprise leap second transitions before/after the set transition date. Also, the functionality allows you to configure no leap second transition at an arbitrary transition date.
Leap second transition in the future: Simulation start "Date > 19.02.2014", "Leap Second Transition Date > 30.06.2015", "Leap Second before Transition - ΔtLS > 16", "Leap Second after Transition - Δt
LSF
> 17"
Leap second transition in the past, no other transition event announced: Simulation start "Date > 10.12.2019", "Leap Second Transition Date > 31.12.2016", "Leap Second before Transition - ΔtLS > 17", "Leap Second after Transition - Δt
LSF
> 18"
No leap second transition at an arbitrary transition date: Simulation start "Date > 10.12.2019", "Leap Second Transition Date > dd.mm.yyyy", "Leap Second before Transition - ΔtLS > 17", "Leap Second after
Transition - Δt
LSF
> 17"
Auto Configure Leap Second (Ref. 1980) ← Leap Second Configuration
Sets the leap second value according to the simulation time. Remote command:
[:SOURce<hw>]:BB:GNSS:TIME:CONVersion:LEAP:AUTO on page 311
Leap Second Transition Date ← Leap Second Configuration
Editing the parameter requires "Auto Configure Leap Second (Ref. 1980) > Off". Defines the date of the next UTC time correction. You can transit leap seconds by add-
ing or subtracting one second to the leap second value before transition. Remote command:
[:SOURce<hw>]:BB:GNSS:TIME:CONVersion:LEAP:DATE on page 312
Leap Second before Transition - ΔtLS ← Leap Second Configuration
Editing the parameter requires "Auto Configure Leap Second (Ref. 1980) > Off". Specifies the leap second value ΔtLS before the leap second transition.
Remote command:
[:SOURce<hw>]:BB:GNSS:TIME:CONVersion:LEAP:SEConds:BEFore
on page 311
Leap Second after Transition - Δt
← Leap Second Configuration
LSF
Editing the parameter requires "Auto Configure Leap Second (Ref. 1980) > Off". Specifies the leap second value Δt
after the leap second transition.
LSF
Remote command:
[:SOURce<hw>]:BB:GNSS:TIME:CONVersion:LEAP:SEConds:AFTer
on page 311
45User Manual 1178.9403.02 ─ 07
Simulation timeSatellite Navigation
Time configuration settings
Date / Week, Time / Time of Week /s, UTC Offset /s
Displays overview information on the parameters used for the time conversion between the different navigation standards.
The basis for the time conversion is the UTC. The parameters of each of the navigation standards are set as an offset to the UTC.
For in-depth configuration, use the "Additional UTC Parameters" on page 46 dialog. Remote command:
[:SOURce<hw>]:BB:GNSS:TIME:STARt:UTC:DATE? on page 312 [:SOURce<hw>]:BB:GNSS:TIME:STARt:UTC:TIME? on page 312 [:SOURce<hw>]:BB:GNSS:TIME:STARt:UTC:OFFSet? on page 314 [:SOURce<hw>]:BB:GNSS:TIME:STARt:GPS:WNUMber? on page 313 [:SOURce<hw>]:BB:GNSS:TIME:STARt:GPS:TOWeek? on page 313 [:SOURce<hw>]:BB:GNSS:TIME:STARt:GPS:OFFSet? on page 314
(etc. for the other GNSS systems)
Additional UTC Parameters
Sets the time conversion parameters required for switching from one timebase to another, for example GPS to UTC. The time conversion is performed according to the following equation:
t
= (tE - delta_t
UTC
delta_t
tE = t
= delta_tLS+A0+A1 (tE-Tot+604800(WN-WNot))
UTC
or t
GPS
) modulo 86400, where:
UTC
Galileo
Reference Week/Date, Reference Time of Week ← Additional UTC Parameters
Sets the reference data and time per navigation standard. Remote command:
[:SOURce<hw>]:BB:GNSS:TIME:CONVersion:GPS:UTC:WNOT on page 314 [:SOURce<hw>]:BB:GNSS:TIME:CONVersion:GPS:UTC:TOT on page 316 [:SOURce<hw>]:BB:GNSS:TIME:CONVersion:GPS:UTC:TOT:UNSCaled
on page 316 (etc. for the other GNSS systems)
UTC-UTC(SU) ← Additional UTC Parameters
For GLONASS satellites, indicates the UTC-UTC (SU) time conversion reference date. Remote command:
[:SOURce<hw>]:BB:GNSS:TIME:CONVersion:UTCSu:UTC:DATE? on page 315
Integer Offset ← Additional UTC Parameters
Indicates the integer offset. Remote command:
[:SOURce<hw>]:BB:GNSS:TIME:CONVersion:GPS:UTC:IOFFset? on page 316
(etc. for the other GNSS systems)
Fractional Offset A0, Drift A1 ← Additional UTC Parameters
Sets the time parameters constant term of polynomial, A0 and 1st order term of polyno­mial, A1.
46User Manual 1178.9403.02 ─ 07
Simulation timeSatellite Navigation
Time configuration settings
Remote command:
[:SOURce<hw>]:BB:GNSS:TIME:CONVersion:GPS:UTC:AZERo on page 317 [:SOURce<hw>]:BB:GNSS:TIME:CONVersion:GPS:UTC:AZERo:UNSCaled
on page 317
[:SOURce<hw>]:BB:GNSS:TIME:CONVersion:GPS:UTC:AONE on page 318 [:SOURce<hw>]:BB:GNSS:TIME:CONVersion:GPS:UTC:AONE:UNSCaled
on page 318 (etc. for the other GNSS systems)
47User Manual 1178.9403.02 ─ 07
Receiver type and positionSatellite Navigation
Receiver type

5 Receiver type and position

Throughout this description, receiver is a term describing a summary of conditions. The conditions comprise receiver coordinates and movement, including the description of the used vehicle, the number and characteristics of used antennas, surrounding envi­ronment or environment effects.
This section focuses on the receiver type and position. For description of the environ­mental effects and the antenna characteristics, see Chapter 10, "Real-world environ-
ment", on page 108
The following receiver types can be simulated:
Static receiver A receiver with fixed coordinated, given as ECEF WGS84 or PZ-90.11 coordinates. You can select form a subset of predefined positions or define a specific one. Regardless of the used coordination system, the latitude, longitude and the altitude can be set in DEG:MIN:SEC format or as decimal degrees.
Moving receiver A receiver with varying coordinates, defined in waypoints, NMEA and KML files. You can select from a subset of predefined files or load custom-specific files. More­over, waypoint smoothing can be activated if vehicle description files are used.
Looped receiver A receiver is looped with the R&S SMBV100B and a control application. The R&S SMBV100B is remotely controlled by the control application, which processes position, motion and attitude data sent by the receiver. The receiver receives a GNSS signal from the R&S SMBV100B based on the remote control data of a con­trol application. You can select from a subset of predefined HIL position files or load custom-spe­cific files. Moreover, waypoint smoothing can be activated based on real-time data received from the control application.
For more information on the supported file formats, see:
Chapter A.1, "Movement or motion files", on page 556
Chapter A.2, "Vehicle description files (used for smoothening)", on page 568

5.1 Receiver type

Access:
1. Select "GNSS > Simulation Configuration" > "Receiver".
48User Manual 1178.9403.02 ─ 07
Receiver type and positionSatellite Navigation
Receiver type
2. Configure the settings as required.
3. Select "Monitor" to observe current configuration.
Settings:
Position......................................................................................................................... 49
Position Configuration...................................................................................................49
Number of Antennas..................................................................................................... 49
Antenna Configuration.................................................................................................. 50
Position
Determines what kind of receiver is simulated. "Static"
"Moving"
"Remote Control (HIL)"
Remote command:
[:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:POSition on page 321
Position Configuration
Accesses further configuration, depending on the selected receiver type. See:
Chapter 5.2, "Static receiver", on page 50
Chapter 5.3, "Moving receiver", on page 54
Chapter 17.2, "HIL settings", on page 266
Receiver at one of the predefined or at a user-defined position. See Chapter 5.2, "Static receiver", on page 50.
Receiver that is moving according to a trajectory as described in a file. Can be used to simulate pedestrians, cars, ships, or airplanes. See Chapter 5.3, "Moving receiver", on page 54.
Option: R&S SMBVB-K109 Special mode in that the R&S SMBV100B is controlled by an external simulation software. For details, see Chapter 17.2, "HIL settings", on page 266.
Number of Antennas
Defines the number of configurable antennas.
49User Manual 1178.9403.02 ─ 07
You can create a pool of up to four antenna and body masks and switch between them. To define which antenna is simulated, set "A#" > "Active".
Note: Switching between the active antenna restarts the simulation. Remote command:
[:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:ANTenna:COUNt on page 328
Antenna Configuration
Accesses the antenna configuration dialog, see Chapter 10.7, "Antenna configuration
settings", on page 126.

5.2 Static receiver

Access:
1. Select "GNSS > Simulation Configuration > Receiver".
Receiver type and positionSatellite Navigation
Static receiver
2. Select "Positioning" > "Static".
3. Select "Positioning Configuration".
Settings:
Location, Initial Position................................................................................................ 50
Reference Frame.......................................................................................................... 52
Location Coordinates, Position Format.........................................................................52
Attitude Behaviour, More...............................................................................................53
Attitude Configuration....................................................................................................53
Yaw/Heading, Pitch/Elevation, (Start) Roll/Bank.............................................54
Spinning Rate................................................................................................. 54
Location, Initial Position
Selects the location or initial position depending on the simulated object:
Static GNSS receiver ("Position > Static"): Selects the geographic location of the GNSS receiver.
50User Manual 1178.9403.02 ─ 07
Receiver type and positionSatellite Navigation
Static receiver
Hardware in the loop (HIL) GNSS receiver ("Position > From Remote"): Selects the initial position of the GNSS receiver.
The representation of the coordinates depends on the selected "Reference Frame" and "Position Format".
"User Defined"
Sets the receiver position in terms of "Latitude", "Longitude" and "Alti­tude"
"City"
Selects a predefined fixed geographic location, see Table 5-1 for an overview. The parameters "Latitude", "Longitude" and "Altitude" are set auto­matically.
Table 5-1: Coordinates of the simulated predefined positions
Continent City Latitude [deg] Longitude [deg] Altitude [m]
Europe London 51.500625 -0.1246219 22
America New York 40.714667 -74.0063889 1
Asia Beijing 39.9055556 116.3913889 60
Africa Cairo 30.0444419 31.2357117 23
Moscow 55.7522222 37.6155556 200
Munich 48.15 11.5833333 508
Paris 48.8584 2.2946278 66
San Francisco 37.8194389 -122.4784939 35
Anchorage 61.2166667 -149.8833333 115
Mexico City 19.4510539 -99.1255189 2310
Sao Paulo -23.5337731 -46.62529 760
Santiago de Chile -33.4474869 -70.6736758 522
New Delhi 28.6138889 77.2088889 77
Seoul 37.5514997 126.9877939 265
Singapore 1.3113108 103.8268528 110
Taipei 25.0223439 121.5147581 10
Tokyo 35.6838611 139.7450581 45
Australia Sydney -33.8833333 151.2166667 3
Dakar 14.7166769 -17.4676858 22
Cape Town -33.9188611 18.4233 6
Perth -31.9535119 115.8570481 2
Remote command:
[:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:LOCation:CATalog
on page 321
[:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:LOCation[:SELect]
on page 321
51User Manual 1178.9403.02 ─ 07
Receiver type and positionSatellite Navigation
Static receiver
Reference Frame
Selects the reference frame used to define the receiver coordinates. The transforma­tion between the reference frames is performed automatically.
The following applies:
X
Y
Z
= (1 - 0.008*10-6)*X
WGS84
= (1 - 0.008*10-6)*Y
WGS84
= (1 - 0.008*10-6)*Z
WGS84
- 0.2041*10-7*Y
PZ 90
- 0.2041*10-7*X
PZ 90
- 0.1716*10-7*X
PZ 90
+ 0.1716*10-7*Z
PZ 90
+ 0.1115*10-7*Z
PZ 90
- 0.1115*10-7*Y
PZ 90
PZ 90
PZ 90
PZ 90
- 0.013
+ 0.106
+ 0.022 Both reference frames are ECEF frames with a set of associated parameters. "WGS-84"
The World Geodetic System WGS-84 is the reference frame used by GPS.
"PZ 90.11 (GLONASS)"
Parametry Zemli PZ (Parameters of the Earth) is the reference frame used by GLONASS.
Remote command:
[:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:LOCation:COORdinates: RFRame on page 321
Location Coordinates, Position Format
In the ECEF coordinate system, a geographic location is identified by three coordi­nates, the altitude, latitude and longitude. The last two can be displayed in decimal or DMS format. The display format is determined by the parameter "Position Format".
Parameter Description
"Position Format" Sets the format in which the Latitude and Longitude are displayed.
"Altitude" Sets the altitude of the reference location. The altitude value is the height
"Latitude" Sets the latitude of the reference location.
"Longitude" Sets the longitude of the reference location.
"DEG:MIN:SEC" The display format is Degree:Minute:Second and Direction, i.e. XX°XX'XX.XX" Direction, where direction can be North/South and East/West.
"Decimal Degree" The display format is decimal degree, i.e. +/-XX.XXXXX°, where "+" indicates North and East and "-" indicates South and West.
above the ellipsoid (HAE), that is the reference ellipsoid (WGS84 or PZ90).
Altitude, latitude and longitude are configurable, if "Location, Initial Position > User Defined".
Remote command:
[:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:LOCation:COORdinates: FORMat on page 322
To enter the coordinates in "Position Format > DEG:MIN:SEC"
[:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:LOCation:COORdinates:DMS: PZ on page 323 [:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:LOCation:COORdinates: DMS[:WGS] on page 323
To enter the coordinates in "Position Format > Decimal Degrees"
52User Manual 1178.9403.02 ─ 07
Receiver type and positionSatellite Navigation
Static receiver
[:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:LOCation:COORdinates: DECimal:PZ on page 322 [:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:LOCation:COORdinates: DECimal[:WGS] on page 322
Attitude Behaviour, More
Defines how the attitude information is defined. To define the attitude parameters in all cases, select "More", see Attitude Configura-
tion.
"Constant"
"Spinning"
"From Waypoint File/Align to Motion"
"From Remote"
Remote command:
[:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:ATTitude[:BEHaviour]
on page 324
Option: R&S SMBVB-K108 Receiver's attitude is set as the combination of the "Yaw/Heading", "Pitch/Elevation", "Roll/Bank" values. The resulting attitude is a constant value.
Enables a constant rate of change of the roll, as set with the parame­ter Spinning Rate.
Option: R&S SMBVB-K108 For "Receiver > Position > Moving", the attitude parameters are extracted from the selected waypoint file. Further settings are not required. This forces the attitude parameters to motion direction even if the waypoint has attitude information, like, for example, in a *.xtd file with <property waypointformat="position_attitude">. For specific applications like automotive, it is realistic to set the yaw and pitch to vehicle’s motion direction. This is because the usual body axes angles of a car are in the direction of the velocity vector. For other applications, however, like aeronautics with a landing plane, this parameter is not useful. AS an example, the nose of the plane is in an upward direction at the time when the plane is moving down­wards. To visualize the effect, select "Receiver > Monitor > Attitude View", see "Display" on page 35.
Option: R&S SMBVB-K109 For "Receiver > Position > Remote Control (HIL)", the attitude param­eters are set by the received HIL commands. The selection is sus­pended.
Attitude Configuration
Option: R&S SMBVB-K108
53User Manual 1178.9403.02 ─ 07
Receiver type and positionSatellite Navigation
Moving receiver
Yaw/Heading, Pitch/Elevation, (Start) Roll/Bank ← Attitude Configuration
Option: R&S SMBVB-K108 Sets the angles of rotation in the corresponding direction, i.e. the rotation around the
respective yaw, pitch and roll axes. "Yaw/Heading, Pitch/Elevation, Roll/Bank" are defined relative to the local horizon.
Remote command:
[:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:ATTitude:YAW on page 324 [:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:ATTitude:PITCh on page 324 [:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:ATTitude:ROLL on page 324
Spinning Rate ← Attitude Configuration
Option: R&S SMBVB-K108 Simulates a constant rate of change of the roll, defined with the parameter "Start Roll". Remote command:
[:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:ATTitude:SPIN:RATE
on page 324

5.3 Moving receiver

5.3.1 How to define a moving receiver

This section provides step-by-step procedures to define a moving receiver. It covers the following topics:
"To access moving receiver settings" on page 54
"To load and play a waypoint file" on page 54
"To monitor receiver movement characteristics" on page 55
"To export a predefined waypoint file" on page 56
To access moving receiver settings
► See Chapter 5.3.2, "Moving receiver settings", on page 57.
To load and play a waypoint file
1. In the "Position Configuration" dialog, click "Waypoint File".
54User Manual 1178.9403.02 ─ 07
Receiver type and positionSatellite Navigation
Moving receiver
A standard file-select dialog opens, where you can select predefined waypoint files or user-defined waypoint files.
2. Select, e.g., the predefined waypoint file Munich_Car_Motion.xtd.
The file is loaded to the "Waypoint File" selection. The trajectory duration is read­out from the file automatically. The parameters "Latitude", "Longitude" and "Alti­tude" are set according to the first simulated position. A world map indicates the initial position of the receiver. Also, the trajectory of the receiver movement is displayed in graph with east coordinates (x-axis) and north coordinates (y-axis).
To monitor receiver movement characteristics
After loading and playing a waypoint file, e.g. the file Munich_Car_Motion.xtd, you can monitor movement characteristics in real time and more detailed.
1. Select "Receiver > Monitor".
The "Simulation Monitor" dialog opens. Per default, it displays the "Ground Track" view including the receiver position and the "Map View" displaying the current receiver movement along a defined trajectory. The blue trajectory displays the last 50 receiver positions, the orange trajectory dis­plays the expected movement from a waypoint file.
55User Manual 1178.9403.02 ─ 07
Receiver type and positionSatellite Navigation
Moving receiver
2. To monitor further characteristics due to receiver movement, try out the following:
Select "Display > Sky View" to monitor changes in the satellite constellation.
Select "Display > Attitude View" to monitor the geographic direction of the receiver. Also monitor the attitude indicator showing the orientation of the receiver relative to earth's horizon.
Select "Display > Elevation/Azimuth", to monitor the time variation of the azi­muth and the satellite's elevation over 24 hours.
See also "Display" on page 35.
To export a predefined waypoint file
Export a predefined waypoint file to modify it, e.g. the waypoints defining the trajectory.
1. Open the "Select Waypoint File > Predefined Files" dialog as in step 1 of "To load
and play a waypoint file" on page 54.
2. Select a file, e.g., Munich_Car_Motion.xtd.
3. Click "Export".
The "User Files" tab opens displaying the exported file in the directory /var/user. The file name is modified by adding _exported to the original file name, e.g. Munich_Car_Motion_exported.xtd, to distinguish the exported file from the predefined file.
56User Manual 1178.9403.02 ─ 07
Receiver type and positionSatellite Navigation
Moving receiver
4. To modify the exported file, open the file in the directory /var/user.
You can use a standard text editor.
5. Save the modified file using the same file extension *.xtd to ensure correct exe­cution of the file.
If you need to choose another file extension, waypoint files with file extensions *.txt, *.nmea, *.kml or *.xtd are executable on the R&S SMBV100B.

5.3.2 Moving receiver settings

Access:
1. Select "GNSS > Simulation Configuration > Receiver".
2. Select "Position" > "Moving".
3. Select "Position Configuration".
57User Manual 1178.9403.02 ─ 07
Receiver type and positionSatellite Navigation
Moving receiver
Settings:
Waypoints File...............................................................................................................58
Trajectory Length / Duration..........................................................................................58
Readout Mode...............................................................................................................58
Reference Frame.......................................................................................................... 59
Motion Behaviour, Smoothing, More.............................................................................59
Motion Configuration > Vehicle Description.................................................................. 60
Attitude Behaviour, More...............................................................................................61
Attitude Configuration....................................................................................................61
Yaw/Heading, Pitch/Elevation, (Start) Roll/Bank.............................................62
Spinning Rate................................................................................................. 62
Waypoints File
Selects a predefined or user-defined waypoint files to simulate a moving scenario. A waypoint file is a description of a moving scenario with possibly attitude coordinates
that can have different forms, like, for example, a sequence of positions or vector arc movement. A waypoint file must have the extension *.txt, *.nmea, *.kml or *.xtd.
See also Chapter A.1, "Movement or motion files", on page 556 for detailed description of the waypoint file formats.
Note: Simulating high dynamic moving scenarios. Dynamic waypoint files simulate moving scenarios with velocities lower than 600 m/s and require option R&S SMBVB­K520.
How to: Chapter 5.3.1, "How to define a moving receiver", on page 54 Remote command:
[:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:LOCation:WAYPoints:FILE
on page 325
Trajectory Length / Duration
Displays the trajectory length (in kilometers) and the duration (in seconds) of the way­point file.
Remote command:
[:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:LOCation:WAYPoints: LENGth? on page 325 [:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:LOCation:WAYPoints: DURation? on page 325
Readout Mode
Defines the way the waypoint/attitude file is processed. If *.xtd files are used, the "Readout Mode" is retrieved from the file
(<endbehaviour>) and cannot be changed, see Chapter A.1.4, "Trajectory descrip-
tion files", on page 562.
58User Manual 1178.9403.02 ─ 07
Receiver type and positionSatellite Navigation
Moving receiver
"Cyclic"
The waypoint file is processed cyclically. Once the last waypoint is reached, file processing starts again from the beginning.
Using this mode is only recommended if the waypoint file describes on of the following:
A circle moving scenario
A moving scenario in which the start and the end point are close to each other.
"One Way"
The file is processed once. By reaching the end of the file, the last described position is assumed to be a static one.
"Round Trip"
By reaching the end of the file, the file is processed backwards.
Remote command:
[:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:LOCation:WAYPoints:ROMode
on page 326
Reference Frame
Selects the reference frame used to define the receiver coordinates. The transforma­tion between the reference frames is performed automatically.
The following applies:
X
Y
Z
= (1 - 0.008*10-6)*X
WGS84
= (1 - 0.008*10-6)*Y
WGS84
= (1 - 0.008*10-6)*Z
WGS84
- 0.2041*10-7*Y
PZ 90
- 0.2041*10-7*X
PZ 90
- 0.1716*10-7*X
PZ 90
+ 0.1716*10-7*Z
PZ 90
+ 0.1115*10-7*Z
PZ 90
- 0.1115*10-7*Y
PZ 90
PZ 90
PZ 90
PZ 90
- 0.013
+ 0.106
+ 0.022 Both reference frames are ECEF frames with a set of associated parameters. "WGS-84"
The World Geodetic System WGS-84 is the reference frame used by GPS.
"PZ 90.11 (GLONASS)"
Parametry Zemli PZ (Parameters of the Earth) is the reference frame used by GLONASS.
Remote command:
[:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:LOCation:COORdinates: RFRame on page 321
Motion Behaviour, Smoothing, More
Option: R&S SMBVB-K108
59User Manual 1178.9403.02 ─ 07
Receiver type and positionSatellite Navigation
Moving receiver
The discrete positions (waypoints) defined in the waypoints file can cause abrupt changes in the movement direction.
The R&S SMBV100B provides an internal interpolating algorithm that smooths the movement or the trajectory. This algorithm evaluates the dedicated vehicle description (*.xvd) file, retrieves the velocity vector and the <proximity> value, and inserts waypoints to smooth the trajectory. The resulting movement is more realistic.
To use the algorithm, enable "Smoothing" and select "More" > Motion Configuration >
Vehicle Description to load a *.xvd file.
There are some predefined files provided. Note: An error message is displayed, if the difference between the predicted and the
original waypoint for a given time point exceeds the proximity value. If there is an error:
Check the speed and acceleration values in the used *.xvd file.
Check whether these values fit to the flight simulator and the flight scenario.
See also:
Chapter A.1, "Movement or motion files", on page 556
Chapter A.2, "Vehicle description files (used for smoothening)", on page 568
Chapter H, "List of predefined files", on page 590
Remote command:
[:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:LOCation:SMOVement
on page 326
Motion Configuration > Vehicle Description
Selects a predefined or user-defined vehicle description (*.xvd) file, see Chapter A.2,
"Vehicle description files (used for smoothening)", on page 568.
60User Manual 1178.9403.02 ─ 07
Receiver type and positionSatellite Navigation
Moving receiver
Remote command:
[:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:LOCation:VEHicle:FILE
on page 327
[:SOURce<hw>]:BB:GNSS:VEHicle:CATalog:PREDefined? on page 326 [:SOURce<hw>]:BB:GNSS:VEHicle:CATalog:USER? on page 326
Attitude Behaviour, More
Defines how the attitude information is defined. To define the attitude parameters in all cases, select "More", see Attitude Configura-
tion.
"Constant"
"Spinning"
"From Waypoint File/Align to Motion"
"From Remote"
Remote command:
[:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:ATTitude[:BEHaviour]
on page 324
Option: R&S SMBVB-K108 Receiver's attitude is set as the combination of the "Yaw/Heading", "Pitch/Elevation", "Roll/Bank" values. The resulting attitude is a constant value.
Enables a constant rate of change of the roll, as set with the parame­ter Spinning Rate.
Option: R&S SMBVB-K108 For "Receiver > Position > Moving", the attitude parameters are extracted from the selected waypoint file. Further settings are not required. This forces the attitude parameters to motion direction even if the waypoint has attitude information, like, for example, in a *.xtd file with <property waypointformat="position_attitude">. For specific applications like automotive, it is realistic to set the yaw and pitch to vehicle’s motion direction. This is because the usual body axes angles of a car are in the direction of the velocity vector. For other applications, however, like aeronautics with a landing plane, this parameter is not useful. AS an example, the nose of the plane is in an upward direction at the time when the plane is moving down­wards. To visualize the effect, select "Receiver > Monitor > Attitude View", see "Display" on page 35.
Option: R&S SMBVB-K109 For "Receiver > Position > Remote Control (HIL)", the attitude param­eters are set by the received HIL commands. The selection is sus­pended.
Attitude Configuration
Option: R&S SMBVB-K108
61User Manual 1178.9403.02 ─ 07
Receiver type and positionSatellite Navigation
Moving receiver
Yaw/Heading, Pitch/Elevation, (Start) Roll/Bank ← Attitude Configuration
Option: R&S SMBVB-K108 Sets the angles of rotation in the corresponding direction, i.e. the rotation around the
respective yaw, pitch and roll axes. "Yaw/Heading, Pitch/Elevation, Roll/Bank" are defined relative to the local horizon.
Remote command:
[:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:ATTitude:YAW on page 324 [:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:ATTitude:PITCh on page 324 [:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:ATTitude:ROLL on page 324
Spinning Rate ← Attitude Configuration
Option: R&S SMBVB-K108 Simulates a constant rate of change of the roll, defined with the parameter "Start Roll". Remote command:
[:SOURce<hw>]:BB:GNSS:RECeiver[:V<st>]:ATTitude:SPIN:RATE
on page 324
62User Manual 1178.9403.02 ─ 07
Satellite constellationSatellite Navigation

6 Satellite constellation

This section addresses basic satellite constellation characteristics including multi-satel­lite signals, multi-GNSS signals and satellite selection criteria.
Single-satellite GNSS signal
The R&S SMBV100B simulates a single satellite GNSS signal, where static satellites with constant Doppler shifts are provided for simple receiver tests, like receiver sensi­tivity, acquisition, tracking and production tests. Selection and configuration localization data is also enabled.
Multi-satellite GNSS signal
The default multi-satellite single GNSS system constellation is the realistic constella­tion in a theoretical unobscured environment of a static receiver at a specific location. It includes all visible GNSS satellites, where a line-of-sight (LOS) situation is assumed.
Example: Single GNSS satellite constellations for fully equipped R&S SMBV100B
For a fully equipped R&S SMBV100B, Table 6-1 provides an overview on the default satellite constellation comprising visible, present and excluded satellites.
Table 6-1: Single GNSS satellite default constellations: Visible, present and excluded satellites
GNSS/SBAS Visible Present Excluded Present (max.)
GPS 11 31 6 37
Galileo 8 29 7 36
GLONASS 9 24 0 24
BeiDou 12 34 29 63
QZSS 0 3 4 7
NavIC 3 6 8 14
EGNOS 2 2 4 6
WAAS 0 3 2 5
MSAS 0 2 0 2
GAGAN 1 2 0 2
Multi-GNSS signal
The default single GNSS system configuration can be extended to support receiver tests with complex test signal. You can generate mixed signal comprising satellites of different GNSS systems or signals spread with different codes, possibly also modula­ted on the other frequency.
See Chapter 6.1, "Systems and signals settings", on page 64.
63User Manual 1178.9403.02 ─ 07
Satellite constellationSatellite Navigation
Systems and signals settings
Satellites selection criteria
If your test case requires a mixed GNSS signal with predefined minimum and maxi­mum number of satellites per GNSS system, you can set these limits per GNSS sys­tem, too.
Moreover, you can adjust the SV handover criteria and thus define when the satellite's constellation is updated and satellites are exchanged. Satellites exchange is optimized to fulfill the selected criteria; considered are all available satellites, regardless of the GNSS system but obeying the limits for maximum and minimum number of satellites.
Visible satellites can be deactivated or reactivated on-the-fly. Current constellation and an overview of the number of active satellites per GNSS system are displayed.
See Chapter 6.2, "Satellites settings", on page 68.
Dynamic monitor
You can observe the real-world situation of disappearance and reappearance of satel­lites in real time on the build-in simulation monitor. The monitor is also a dynamic dis­play of several parameters like HDOP and the PDOP.
See Chapter 3.3, "Simulation monitor", on page 33.

6.1 Systems and signals settings

Access:
1. Select "GNSS > Simulation Configuration > Systems & Signals"
2. In the dialog, activate frequency bands, global, regional and augmentation GNSS
systems and their signals.
64User Manual 1178.9403.02 ─ 07
Satellite constellationSatellite Navigation
Systems and signals settings
The figure displays the configuration for an R&S SMBV100B, equipped with triple­frequency option. In this dialog you can activate signals of L1, L2 and L3 bands simultaneously. See also "System" on page 65.
Settings:
System.......................................................................................................................... 65
L# Band.........................................................................................................................65
Signals.......................................................................................................................... 66
System
Defines the navigation systems, that are part of the system configuration, see Chap-
ter 6.2, "Satellites settings", on page 68.
The available global, regional and satellite-based navigation and augmentation sys­tems depend on the installed options.
Note: At least one system is always enabled. Switching off a single enabled GNSS is not possible, a warning message is displayed to indicate the situation.
Remote command:
[:SOURce<hw>]:BB:GNSS:SYSTem:GPS[:STATe] on page 303
(etc. for the other GNSS systems)
L# Band
Defines the used frequency band "L1/2/5 Band". The satellite signals are modulated on the carrier frequencies as defined for the corresponding frequency band and system.
Table 6-2: Carrier frequencies
System RF band Carrier frequency, MHz Required option
GPS L1
L2 L5
GALILEO L1 (E1)
L2 (E6) L5 (E5a) L5 (E5b)
GLONASS L1
L2
BeiDou L1 (B1I)
L1 (B1C) L2 (B3I) L5 (B2I) L5 (B2a)
1575.42
1227.6
1176.45
1575.42
1278.75
1176.45
1207.14
1602 1246
1561.098
1575.42
1268.52
1207.14
1176.45
R&S SMBVB-K44 R&S SMBVB-K98 R&S SMBVB-K98
R&S SMBVB-K66 R&S SMBVB-K66 R&S SMBVB-K66 R&S SMBVB-K66
R&S SMBVB-K94 R&S SMBVB-K94
R&S SMBVB-K107 R&S SMBVB-K132 R&S SMBVB-K132 R&S SMBVB-K107 R&S SMBVB-K132
QZSS L1
L2 L5
1575.42
1227.6
1176.45
R&S SMBVB-K106 R&S SMBVB-K106 R&S SMBVB-K106
65User Manual 1178.9403.02 ─ 07
Satellite constellationSatellite Navigation
Systems and signals settings
System RF band Carrier frequency, MHz Required option
NavIC L5 (SPS) 1176.45 R&S SMBVB-K97
SBAS L1
L5
1575.42
1176.45
R&S SMBVB-K106 R&S SMBVB-K106
Note: At least one frequency band is always enabled. Switching off a single enabled frequency band is not possible, a warning message is displayed to indicate the situa­tion. Assuming more than one frequency band and GNSS system enabled: If switching off a GNSS system implies, that an enabled frequency band carries no signals, this fre­quency band is switched off automatically.
Single-satellite operation: Requires R&S SMBVB-K135 Only one frequency band can be enabled. Switching from L1 to L2 or to L5 disables
the systems defined only for the L1 band. Switching the other way around does not activate the systems that have been enabled before in the L1 band. For any frequency band, activated per default is the first supported and available system in the list of GNSS systems.
Dual-frequency operation: Requires R&S SMBVB-K136 Two frequency bands can be enabled. Enabling a third band causes a warning. To
enable the band, first, disable a previously enabled band. Triple-frequency operation: Requires R&S SMBVB-K137 All three frequency bands can be enabled. There is no restriction for en-/disabling sig-
nals for the basic GNSS systems. Remote command:
[:SOURce<hw>]:BB:GNSS:L1Band[:STATe] on page 302 [:SOURce<hw>]:BB:GNSS:L2Band[:STATe] on page 302 [:SOURce<hw>]:BB:GNSS:L5Band[:STATe] on page 302
Signals
Enables the signals per system. The enabled signals are activated automatically for each SV belonging to the GNSS
system. To redefine the signals used by a particular satellite (SV), select "Simulation Configuration > Satellites > GNSS System > SV ID# > SV Config > Signal" > Signal
State.
Note: At least one signal is always enabled for active frequency bands and GNSS sys-
tems . If switching off the only enabled signal, a warning message is displayed to indi-
cate the situation. "None"
All signals of a GNSS system are disabled assuming, that the GNSS system itself is disabled. All parameters of the GNSS system are dis­abled, too. "Signals = None" implies System > "State = Off".
66User Manual 1178.9403.02 ─ 07
Satellite constellationSatellite Navigation
Systems and signals settings
"C/A, P, L1C, E1 OS, B1I, B1C, L2C, E6, B3I, L5, E5a, E5b, B2I, B2a, SPS, Exp L5"
Table 6-3: Overview of the supported signals
Band System Signal Minimum required option
L1 GPS C/A, P
L1C
L2 GPS C/A
L5 GPS L5 R&S SMBVB-K98
Galileo E1 OS R&S SMBVB-K66
GLONASS C/A R&S SMBVB-K94
BeiDou B1I
B1C
QZSS C/A R&S SMBVB-K106
SBAS C/A R&S SMBVB-K106
P, L2C
Galileo E6 R&S SMBVB-K66
GLONASS C/A R&S SMBVB-K94
BeiDou B3I R&S SMBVB-K132
QZSS L2C R&S SMBVB-K106
Galileo E5a, E5b R&S SMBVB-K66
BeiDou B2I
B2a
R&S SMBVB-K44 R&S SMBVB-K98
R&S SMBVB-K107 R&S SMBVB-K132
R&S SMBVB-K44 R&S SMBVB-K98
R&S SMBVB-K107 R&S SMBVB-K132
1)
SBAS "Exp L5" signals are for experimental use only and do not
QZSS L5 R&S SMBVB-K106
NavIC SPS R&S SMBVB-K97
SBAS
Exp L5
1)
R&S SMBVB-K106
comply with SBAS interface control document (ICD) specifications, see also Table 2-10.
Remote command:
[:SOURce<hw>]:BB:GNSS:SYSTem:GPS:SIGNal:L1Band:CA[:STATe]
on page 304
[:SOURce<hw>]:BB:GNSS:SYSTem:GPS:SIGNal:L1Band:P[:STATe]
on page 304 (etc. for the other GNSS systems)
67User Manual 1178.9403.02 ─ 07

6.2 Satellites settings

Access:
1. Select "GNSS > Simulation Configuration > Satellites".
In the "Satellites" tab, you configure the satellites (SV ID) constellation for each enabled GNSS system.
2. Select the GNSS system for that you want to configure satellites constellation.
3. To configure individual settings per SV, like power offset, used signals and the con-
tent of the navigation message each satellites transmitts, select "SV# > SV Config". For description, see Chapter 7, "Space vehicle configuration", on page 75.
In the "Satellite" dialog, you configure the satellite constellation.
Satellite constellationSatellite Navigation
Satellites settings
Figure 6-1: Satellites constellation: Understanding the displayed information
1 = Enabled GNSS systems 2 = Number of active and available SVs per GNSS system 3 = Visible and active SV, that uses reduced power level 4 = Visible and active SV, full power level 5 = Visible and inactive SV ("Satellite's Constellation, SV ID" on page 73 = Off) 6 = Not visible and inactive SV 7 = Excluded from the constellation (Present in Constellation = "Off")
The dialog consists of several tabs, one per activated GNSS System ("Sys­tems&Signals > System > On"). Active and visible satellites are indicated with blue color. The maximum number of the configurable satellites depends on the installed options and can be set, see "SV Selection Criteria" on page 69.
68User Manual 1178.9403.02 ─ 07
Satellite constellationSatellite Navigation
Satellites settings
Settings:
SV Selection Criteria.....................................................................................................69
Selection Mode............................................................................................... 69
Earth Obscuration References........................................................................70
Earth Obscuration Offset................................................................................ 71
Number of SVs > Min, Max, Current...............................................................72
Maximum Number of Channels...................................................................... 72
Reference Power.......................................................................................................... 72
Simulation Monitor/Monitor........................................................................................... 72
Satellite's Constellation, SV ID......................................................................................73
State (SV ID)...................................................................................................74
Power Offset................................................................................................... 74
SV Config........................................................................................................74
Import Constellation...................................................................................................... 74
SV Selection Criteria
Access: "GNSS > Simulation Configuration > Satellites > SV Selection Criteria" Opens the "SV Selection Criteria" dialog, where you set the minimum and maximum
number of satellites that can be activated per GNSS system and to set the satellites' handover criteria.
Selection Mode ← SV Selection Criteria
Sets the criteria used to define the initial satellite constellation and rule applied by the satellite's handover.
"Visibility Time"
Constellation consists of satellites that are likely to be visible for the longest time.
"Elevation Angle"
Selected are the satellites with the highest elevation. Elevation is defined by the Earth Obscuration References and Earth
Obscuration Offset.
69User Manual 1178.9403.02 ─ 07
Satellite constellationSatellite Navigation
Satellites settings
"Manual"
The automatic satellite's constellation configuration is deactivated. Change the state of an SV ID to change the satellite constellation manually. Any SV ID, incl. satellites that are currently invisible, can be activated. This mode is fixed and suspended for "Test Mode > Tracking" (Chap-
ter 8, "Tracking mode", on page 98).
Remote command:
[:SOURce<hw>]:BB:GNSS:SV:SELection:MODE on page 372
Earth Obscuration References ← SV Selection Criteria
Selects how the behavior of earth obscuration is defined. The behavior also defines the horizon, which is the reference line for applying the elevation mask angle, see Fig-
ure 6-2.
Figure 6-2: Impact of the Earth Obscuration References on the area of visible satellites (XY cut)
A = "Local Horizon" B = "Earth Tangent"
α
= "Earth Obscuration Offset" applied relative to the selected horizon h = "Receiver > Positioning Configuration > Altitude" r = Nadir (an imaginary vertical line that connects the location and the center of the earth) 1a = Horizon line for "Altitude = 0 m" (identical for both elevation mask types) 1b = Area of visible satellites (identical for both elevation mask types) 2a = Horizon line for "Altitude = h, km"; the horizon is parallel to the horizon with "Altitude = 0 m" 2b = Area of visible satellites 3a = Horizon lines for "Altitude = h, km"; the horizon lines are tangential to the earth surface 3b = Area of visible satellites
Use the "Signal Monitor" view to observe the current satellite constellation. This setting is not available for "Test Mode > Tracking" (Chapter 8, "Tracking mode",
on page 98). The figures in Table 6-4 show the satellite constellations as seen by receiver at an "Alti-
tude = 200 km" with "Earth Obscuration Offset = 5°". The number of active satellites changes because of the different elevation mask types.
70User Manual 1178.9403.02 ─ 07
Satellite constellationSatellite Navigation
Satellites settings
Table 6-4: Impact of the Earth Obscuration References on the visible satellites
"Earth Obscuration References > Local Horizon" "Earth Obscuration References > Earth Tangent"
"Local Horizon"
The horizon is a horizontal plane that is perpendicular to the nadir. For locations with attitudes above the sea level, the horizontal plane is parallel shifted at the selected attitude. The "Local Horizon" type is suitable, if you simulate receivers at low altitude. For example, for pedestrian and automotive application.
"Earth Tangent"
The horizon is the surface of a right circular cone, where:
The vertex of the cone is at the receiver position.
The cone axis is along the nadir.
The cone surface is made of lines that are tangential to the earth surface.
The "Earth Tangent" type is suitable, if you simulate receivers at higher altitude, where satellites with negative elevations are also visi­ble. A typical example is a GNSS receiver mounted on low earth orbit (LEO) object.
Remote command:
[:SOURce<hw>]:BB:GNSS:SV:SELection:EOBScuration:REFerence
on page 372
Earth Obscuration Offset ← SV Selection Criteria
Sets the satellite's elevation mask angle. The angle is applied relative to the selected horizon, see "Earth Obscuration References" on page 70.
Satellites that are below the elevation mask angle are obscured. They are invisible for the GNSS receiver at the selected location.
71User Manual 1178.9403.02 ─ 07
Satellite constellationSatellite Navigation
Satellites settings
Obscured satellites are displayed in the "Signal Monitor" view but not simulated. A test receiver cannot use obscured satellites for determining its position; it has to search for satellites with better visibility.
See, for example, the figures in Table 6-4. To ensure proper signal analysis, set the parameter "Earth Obscuration Offset" to the
elevation mask of the GNSS receiver under test. This setting is not available for "Test Mode > Tracking" (Chapter 8, "Tracking mode",
on page 98). Remote command:
[:SOURce<hw>]:BB:GNSS:SV:SELection:EOBScuration:ANGLe on page 373
Number of SVs > Min, Max, Current ← SV Selection Criteria
Sets the "Min" and "Max" number of satellites per GNSS system that can be included in the satellite constellation.
"Current" indicates the number of active satellites per GNSS system that are currently part of the satellite's constellation.
The displayed value resembles the overview information on the side tab of the "Satel­lites" dialog.
Remote command:
[:SOURce<hw>]:BB:GNSS:SV:SELection:GPS:MIN on page 373 [:SOURce<hw>]:BB:GNSS:SV:SELection:GPS:MAX on page 373 [:SOURce<hw>]:BB:GNSS:SV:SELection:GPS:ACTive? on page 374
see also [:SOURce<hw>]:BB:GNSS:SV:SELection:GPS:AVAilable? on page 374 (etc. for the other GNSS systems)
Maximum Number of Channels ← SV Selection Criteria
Displays the maximum number of channels. The number depends on the simulation capacity, see Chapter G, "Channel budget",
on page 585. Remote command:
[:SOURce<hw>]:BB:GNSS:SV:SELection:CHANnels:MAX on page 373
Reference Power
Sets the power level that is used as a reference for the calculation of the power level of the satellites.
See "About satellite's (SV) power calculation" on page 75. Remote command:
[:SOURce<hw>]:BB:GNSS:POWer:REFerence on page 387
Simulation Monitor/Monitor
Accesses the "Simulation Monitor" dialog for real-time display of the major parameters, like current satellite constellation with SV states and position, receiver position or movement trajectory, or received satellite power.
See Chapter 3.3, "Simulation monitor", on page 33.
72User Manual 1178.9403.02 ─ 07
Satellite constellationSatellite Navigation
Satellites settings
Satellite's Constellation, SV ID
Indicates the SV IDs included in the current constellation.
1 = Enabled GNSS systems 2 = Number of active and available SVs per GNSS system 3 = Visible and active SV, that uses reduced power level 4 = Visible and active SV, full power level 5 = Visible and inactive SV ("Satellite's Constellation, SV ID" on page 73 = Off) 6 = Not visible and inactive SV 7 = Excluded from the constellation (Present in Constellation = "Off")
The information is color-coded. Icons provide further information:
Blue: active SV ID
Gray: Inactive SV ID
Sun: Visible SV ID
Cross out: SV ID is excluded from the constellation, for example if "SV ID > SV Config" > Present in Constellation > "Off"
Power bar: Reduced height indicates that the signal of the SV ID is transmitted with less power than the value indicated as "Configurable Nav. Message". The height of the power bar reflects enabled "Power Offset", "Power Path-Loss" and "Power Offset" of the echoes.
The blocks are interactive. Select an SV ID to access further settings for changing its state, enabling power offset of configuring the orbit simulation and navigation message parameters.
Remote command:
[:SOURce<hw>]:BB:GNSS:SVID:GPS:LIST:ALL? on page 375 [:SOURce<hw>]:BB:GNSS:SVID:GPS:LIST[:VALid]? on page 375 [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:HEALthy on page 375 [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:VISibility:STATe? on page 376
(etc. for the other GNSS systems)
73User Manual 1178.9403.02 ─ 07
Satellite constellationSatellite Navigation
Satellites settings
State (SV ID) ← Satellite's Constellation, SV ID
Changes the SV ID state on-the-fly. Per default, only visible satellites can be included in the constellation. SV ID for that
Present in Constellation > "Off" cannot be activated.
Tip: Pressing the On/Off Toggle key has the same effect on the selected SV ID. To enable any SV ID, set "Satellites > SV Selection Criteria > Selection Mode > Man-
ual". Remote command:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:STATe on page 386
(etc. for the other GNSS systems)
Power Offset ← Satellite's Constellation, SV ID
Reduces the signal of the selected SV ID by the defined value. This is a global power offset parameter for a satellite. It affects the power level of all
signal components of a given satellite. See "About satellite's (SV) power calculation" on page 75. Power changes are applied
on-the-fly. Remote command:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:POWer:OFFSet on page 387
(etc. for the other GNSS systems)
SV Config ← Satellite's Constellation, SV ID
Access a dialog with further settings for configuring the orbit simulation and navigation message parameters.
See:
Chapter 7, "Space vehicle configuration", on page 75
Chapter 12, "Perturbations and errors simulation", on page 162
Import Constellation
Opens the "Import Constellation" dialog, that is a standard "File Select" dialog. You can select, e.g. almanac or RINEX files. See:
"Constellation data and navigation message file formats" on page 253.
Chapter 16.1, "Import GNSS constellation and navigation message data settings",
on page 255.
74User Manual 1178.9403.02 ─ 07
Space vehicle configurationSatellite Navigation

7 Space vehicle configuration

About satellite's (SV) power calculation
In R&S SMBV100B, you define the power level of the individual satellites or their sig­nals and the power level at the RF output is calculated automatically. All power levels are set relative to a configurable reference level. By changing this level you boost or decrease the signal power at the R&S SMBV100B outputs, while maintaining the power ratio between the satellites, their signals and, if enabled, the multi-path echoes.
Absolute SV power
The absolute SV power for a given signal P
P
= P
SV,signal
P
Ref
P
SV,offset
+ P
Ref
is the reference power level, as set with the parameter Reference Power
is the global power offset of the satellite, as set with the parameter Power
SV,offset
+ P
Signal,offset
+ P
PathLoss
is calculated as follows:
SV,signal
+ P
AntPat
, where:
Offset
P
Signal,offset
is signal-specific power offset, as set with the parameter Signal Power
Offset
The value reflects the differences between the signals and the frequency bands.
P
is the free space path-loss over the satellite to receiver distance (range),
PathLoss
included if Add Power Path-Loss > "On". See "Free space path-loss power" on page 75.
P
is the power gain of the antenna, calculated automatically, depending on the
AntPat
selected body mask See Chapter 10.7, "Antenna configuration settings", on page 126.
Free space path-loss power
P
is the free space path-loss over the satellite to receiver distance (range), cal-
PathLoss
culated as follows:
P
= 20log10(R0/R), where:
PathLoss
R0 = (R
Orbit,SV
2
- r2) R0 is the reference range, equal to the range of a receiver on the ground to an SV at 90° elevation
R is the receiver to satellite range.
0
75User Manual 1178.9403.02 ─ 07
Figure 7-1: Free space path-loss calculation
SV0= Reference space vehicle R0= Reference range SV = Space vehicle
R = Range between the SV and the receiver r = Earth's radius
Absolute multi-path echo power
Space vehicle configurationSatellite Navigation
Power settings
The absolute power of an echo for a given signal P
P
SV,echo
P
SV,signal
P
Echo,signal
= P
SV,signal
+ P
Echo,signal
is the absolute satellite's power
is the power offset per echo, as set with the parameter Power Offset.
Settings:
Power settings.........................................................................................................76
Modulation control settings..................................................................................... 81
Simulated orbit and orbit perturbation settings........................................................86
Simulated clock settings..........................................................................................95

7.1 Power settings

Access:
1. Select "GNSS > Simulation Configuration > Satellites".
2. Set the "Reference Power". All power values are set relative to the reference power.
, where:
is calculated as follows:
SV,echo
3. Select the GNSS system for that you want to change the satellite's power settings, for example GPS.
4. Select "SV# > SV Config".
5. In the "SV Configuration" dialog, select "Signals Configuration".
6. Select "Add Power Path-Loss > On" to account for the free-space attenuation.
7. Set a "Power Offset" to reduce further the signal power of the satellite.
76User Manual 1178.9403.02 ─ 07
Space vehicle configurationSatellite Navigation
Power settings
8. In dual-band or multi-signal configurations, set a "Signal Power Offset" to account for the power relation between the signals.
9. To apply the power settings of the current satellite to other SV ID, select for exam­ple "SV-ID = 11" and "Copy Power Settings To".
Figure 7-2: Power settings: understanding the displayed information
1 = Decreases the SV signal power and thus the power of all signals of this SV. SV "Power Offset" is
set relative to the Reference Power
2 = Boosts or decreases the power of the individual signal components. Power offsets are set relative to
the Reference Power + "Power Offset"
Available power settings depend on the GNSS system and selected RF band. For information on how these settings affect the SV power, see "About satellite's
(SV) power calculation" on page 75.
10. To simulate multi-path effects: For more information, see Chapter 10.8.6, "Static multipath", on page 146.
a) Select "Simulation Configuration > Receiver > Environmental Model = Static
Multipath". b) Select "Environmental Model" c) Set for example: "Number of Echoes = 1", "Echo 1 > Init. Code Phase = 300
m", "Power Offset = -10 dB".
11. Select "GNSS > Monitor > Satellites > Power View" to observe the power levels of all satellites at a glance.
77User Manual 1178.9403.02 ─ 07
Space vehicle configurationSatellite Navigation
Figure 7-3: Power View: understanding the displayed information
Power settings
R = Reference Power= -120 dB 1 = "SV ID 1 > Power Offset = -10 dB" 2 = "Signal Power Offsets", e.g. L1 C/A = 0 dB and L1 P = - 3dB; the same power relation is observed
SVs with or without power offset and for the multi-path echoes 3 = "SV ID 1 > Echo 1 > Power Offset = -10 dB" 4 = One echo per signal ("Number of Echoes = 1"); displayed if "View Settings > Echoes = On"
12. Load and enable body mask files to visualize the effect of antennas on the power. For more information, see Chapter 10.7, "Antenna configuration settings", on page 126.
The remote commands required to define these settings are described in:
Chapter 20.12, "Signals and power configuration per satellite", on page 378
Chapter 20.8, "Static multipath configuration", on page 346.
Settings:
State (SV ID).................................................................................................................78
Present in Constellation................................................................................................ 79
Healthy..........................................................................................................................79
Power Offset..................................................................................................................79
Add Power Path-Loss................................................................................................... 79
Frequency Number....................................................................................................... 80
SV signal configuration table.........................................................................................80
Signal Power Offset........................................................................................ 80
Copy Power Settings to,SV-ID......................................................................................80
State (SV ID)
Changes the SV ID state on-the-fly. Per default, only visible satellites can be included in the constellation. SV ID for that
Present in Constellation > "Off" cannot be activated.
Tip: Pressing the On/Off Toggle key has the same effect on the selected SV ID.
78User Manual 1178.9403.02 ─ 07
Space vehicle configurationSatellite Navigation
Power settings
To enable any SV ID, set "Satellites > SV Selection Criteria > Selection Mode > Man­ual".
Remote command:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:STATe on page 386
(etc. for the other GNSS systems)
Present in Constellation
If disabled, the SV ID is excluded from the currents constellation. The SV ID is auto­matically deactivated ("SV ID > State = Off").
In the "Satellites" dialog, SV IDs that are excluded from the constellation are displayed in gray color and are crossed out.
To reactivate such satellite, set "Present in Constellation > On" and activate it ("State > On")
Remote command:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:PRESent on page 386
(etc. for the other GNSS systems)
Healthy
Defines if the SV ID is healthy or not. A warning symbol indicates an unhealthy satel­lite.
The healthy state reflects the value of the corresponding healthy flag in the navigation message. The healthy flag and the healthy state are interdependent; changing one of them changes the other.
See:
GPS > Additional Data > "SV Health" and "L1/L2/L5 Health"
GLONASS > Additional Data > "SV Health"
Galileo > Additional Data > "E1B
BeiDou > Additional Data > "SV Health"
QZSS > Additional Data > "SV Health"
DVS
/E5b
/E1BHS/E5bHS"
DVS
Remote command:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:HEALthy on page 375
(etc. for the other GNSS systems)
Power Offset
Reduces the signal of the selected SV ID by the defined value. This is a global power offset parameter for a satellite. It affects the power level of all
signal components of a given satellite. See "About satellite's (SV) power calculation" on page 75. Power changes are applied
on-the-fly. Remote command:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:POWer:OFFSet on page 387
(etc. for the other GNSS systems)
Add Power Path-Loss
In "Test Mode = Navigation", enable this parameter to account for the free space attenuation and simulate real-world conditions.
79User Manual 1178.9403.02 ─ 07
Space vehicle configurationSatellite Navigation
Power settings
The power of the SV ID signals is reduced automatically. The power path-loss is calcu­lated depending on the current satellite's orbit and the distance (range) between the satellite and the receiver's position on the Earth, see "Free space path-loss power" on page 75.
To observe the effect, select the "Monitor > Display > Power View", see Chapter 3.3,
"Simulation monitor", on page 33.
Remote command:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:POWer:PLOSs on page 387
(etc. for the other GNSS systems)
Frequency Number
For GLONASS satellites, indicates the frequency number of the subcarrier used to modulate the GLONASS satellite.
If "Nav Msg Type = NAV", the frequency number is retrieved from the imported configu­ration file.
The value is configurable, if arbitrary data is used, e.g. "Nav Msg Control > Edit" and "Nav Msg Type > All 0".
Remote command:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GLONass:FNUMber on page 386
SV signal configuration table
Table with one or more rows, one row per enabled signal ("Simulation Configuration > Systems&Signals" > Signals).
Signal Power Offset ← SV signal configuration table
Adds power offset for the selected signal. If more than one signal or bands are activated, the power relation between the signals
and between the frequency bands is set automatically, as specified for the GNSS sys­tem. You can change these default values. Signal-specific power offset values are set relative to the satellites power level.
See also "About satellite's (SV) power calculation" on page 75. Remote command:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIGNal:L1Band:CA:POWer:OFFset
on page 389
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIGNal:L1Band:P:POWer:OFFset
on page 389 (etc. for the other GNSS systems)
Copy Power Settings to,SV-ID
Applies the power settings of the current satellite to the selected or to all SV-IDs of the same GNSS system.
The following settings are considered:
Power Offset
Add Power Path-Loss
Signal Power Offset
80User Manual 1178.9403.02 ─ 07
Remote command:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:POWer:COPY:SVID on page 389 [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:POWer:COPY:EXECute on page 390
(etc. for the other GNSS systems)

7.2 Modulation control settings

Access:
1. Select "GNSS > Simulation Configuration > Signals&Systems".
2. Enable the GNSS system for that you want to control the signal modulation, for example:
a) "System > GLONASS > On" b) "System > Galileo > On"
3. Select "GNSS > Simulation Configuration > Satellites".
Space vehicle configurationSatellite Navigation
Modulation control settings
4. Select "GLONASS > SV# > SV Config".
5. In the "SV Configuration" dialog, select "Signals Configuration".
6. To generate a signal with list mode data, sent on the GLONASS frequency, select: a) "Primary Code > Off"
b) "Nav Msg Control > Edit" c) "Nav Msg Type > Data List" d) Load list mode data, e.g. from the file Glonass_Data.dm_iqd:
"Nav Msg Content > /var/user/Glonass_Data" e) "Meander Sequence > Off" f) "Time Sequence > Off"
7. To apply the modulation control settings of the current satellite to other SV ID, select for example "SV-ID = All" and "Copy Modulation Control To"
81User Manual 1178.9403.02 ─ 07
Space vehicle configurationSatellite Navigation
Modulation control settings
Available modulation control settings depend on the GNSS system and selected RF band. The remote commands required to define these settings are described in Chap-
ter 20.12, "Signals and power configuration per satellite", on page 378.
Settings:
SV signal configuration table.........................................................................................82
Signal State.....................................................................................................82
Signal Component.......................................................................................... 82
Primary Code..................................................................................................82
Secondary Code............................................................................................. 83
Nav Msg Control............................................................................................. 83
Nav Msg Type.................................................................................................84
Nav Msg Content............................................................................................ 85
Meander Sequence.........................................................................................85
Time Sequence...............................................................................................85
Copy Modulation Control Settings to,SV-ID..................................................................85
SV signal configuration table
Table with one or more rows, one row per enabled signal ("Simulation Configuration > Systems&Signals" > Signals).
Signal State ← SV signal configuration table
Activates the selected signal. The available signals depend on GNSS system and the configuration in the Sys-
tems&Signals dialog.
At least one signal has to be activated per satellite. Activate another signal to deacti­vate a particular signal, if it is the only one active at that moment.
Remote command:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIGNal:L1Band:CA[:STATe]
on page 391
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIGNal:L1Band:P[:STATe]
on page 391 (etc. for the other GNSS systems)
Signal Component ← SV signal configuration table
Indicates the signal content (data only or data and pilot). The information is retrieved automatically from the selected simulation data source file.
Signal components depend on the signal, the frequency band and the GNSS system. Remote command:
n.a.
Primary Code ← SV signal configuration table
Defines if the primary code is used to spread the data and pilot components. If your interference tests require the generation of a continuous wave signal send on
the same frequency as a specific SV, set "Primary Code > Off" and "Nav Msg Control > Off".
82User Manual 1178.9403.02 ─ 07
Space vehicle configurationSatellite Navigation
Modulation control settings
Remote command:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIGNal:L1Band:CA:DATA:PCODe[: STATe] on page 393 [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIGNal:L1Band:CA:PILot: PCODe[:STATe] on page 393
(etc. for the other GNSS systems)
Secondary Code ← SV signal configuration table
Enables the secondary code in the pilot and data channel of GPS, Galileo or BeiDou. Remote command:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIGNal:L1Band:L1C:PILot: SCODe[:STATe] on page 394 [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIGNal:L5Band:L5S:DATA: SCODe[:STATe] on page 394 [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIGNal:L5Band:L5S:PILot: SCODe[:STATe] on page 394
(etc. for the other GNSS systems)
Nav Msg Control ← SV signal configuration table
Defines whether the navigation message parameters can be changed or not. "Auto"
"On/Edit"
"Off"
Remote command: "Test Mode = Navigation"
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIGNal:L1Band:CA:DATA: NMESsage:CONTrol on page 395 [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIGNal:L1Band:P:DATA: NMESsage:CONTrol on page 395
"Test Mode = Tracking"
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIGNal:L1Band:CA:DATA: NMESsage[:STATe] on page 506
In Test Mode = "Navigation", the navigation message parameters are adjusted automatically.
"On" requires "Test Mode > Navigation", "Edit" requires "Test Mode > Tracking". Enables configuration of the navigation message parameters ("Nav Msg Type = xNav") or configuration of user-defined data ("Nav Msg Type xNav"). Navigation message content of the SBAS SV is set automatically. To enable the navigation message for configuration, set "Satellites" >
Error Correction Mode = "Replay Historical Data (and Sync Atmos-
phere& SV Errors)". If "Satellites" > Error Correction Mode = "Replay Historical Data and Sync Atmosphere& SV Errors", the navigation message content of all other GNSS systems than SBAS is configured automatically. Editing is not possible.
Navigation message is disabled. A pure continuous-wave (CW) signal is output.
83User Manual 1178.9403.02 ─ 07
Space vehicle configurationSatellite Navigation
Modulation control settings
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIGNal:L1Band:P:DATA: NMESsage[:STATe] on page 506
(etc. for the other GNSS systems)
Nav Msg Type ← SV signal configuration table
Sets the data source used for the generation of the navigation message. "LNAV/CNAV/FNAV/INAV/D1NAV/D2NAV/NAV"
The navigation message parameters are "real" since they are retrieved from the loaded simulation data source file, see Import Con-
stellation.
"D1NAV" denotes navigation messages belonging to BeiDou medium-altitude earth orbit (MEO) satellites (SV ID 6 to SV ID 35). "D2NAV" denotes navigation messages belonging to BeiDou geosta­tionary (GEO) satellites and inclined geostationay (IGSO) satellites (SV ID 1 to SV ID 5). Note: Galileo E6 signals carry no real navigation data. The signals are simulated using data sources "PRBSxx/Data List/Pattern/Zero NAV".
To change the automatically filled in values, select:
Nav Msg Control > "Edit"
Nav Msg Content > Config
"PRBSxx/Data List/Pattern"
Selects a configurable data source. The data symbols from the data source are transmitted in the naviga­tion message. The signal is sufficient for simple functional tests and sensitivity tests.
The following standard data sources are available:
"All 0, All 1" An internally generated sequence containing 0 data or 1 data.
"PNxx" An internally generated pseudo-random noise sequence.
"Pattern" An internally generated sequence according to a bit pattern. Use the "Pattern" box to define the bit pattern.
"Data List/Select DList" A binary data from a data list, internally or externally generated. Select "Select DList" to access the standard "Select List" dialog. – Select the "Select Data List > navigate to the list file *.dm_iqd
> Select" to select an existing data list.
Use the "New" and "Edit" functions to create internally new
data list or to edit an existing one.
Use the standard "File Manager" function to transfer external
data lists to the instrument.
See also:
Section "Modulation Data" in the R&S SMBV100B user manual.
Section "File and Data Management" in the R&S SMBV100B user manual.
Section "Data List Editor" in the R&S SMBV100B user manual
84User Manual 1178.9403.02 ─ 07
Space vehicle configurationSatellite Navigation
Modulation control settings
"Zero NAV"
Remote command:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIGNal:L1Band:CA:DATA: NMESsage:TYPE on page 396 [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIGNal:L1Band:CA:DATA: NMESsage:DSELect on page 398 [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIGNal:L1Band:CA:DATA: NMESsage:PATTern on page 399
(etc. for the other GNSS systems)
Nav Msg Content ← SV signal configuration table
Opens the "Navigation Message" dialog, where you can observe the navigation mes­sage parameter and if enabled, change them.
See Chapter 12, "Perturbations and errors simulation", on page 162.
Meander Sequence ← SV signal configuration table
Enables meandering of GLONASS satellite navigation signals, i.e. doubling the data rate.
Remote command:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GLONass:SIGNal:L1Band:CA:DATA: MEANdering[:STATe] on page 399 [:SOURce<hw>]:BB:GNSS:SVID<ch>:GLONass:SIGNal:L2Band:CA:DATA: MEANdering[:STATe] on page 399
Sets the broadcasted orbit and clock correction parameters in the navigation message to zero. Frame structure, timing and channel coding of the navigation message are retained.
Time Sequence ← SV signal configuration table
Enables the time signal component of of GLONASS satellite navigation signals. Remote command:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GLONass:SIGNal:L1Band:CA:DATA: TSEQuence[:STATe] on page 400 [:SOURce<hw>]:BB:GNSS:SVID<ch>:GLONass:SIGNal:L2Band:CA:DATA: TSEQuence[:STATe] on page 400
Copy Modulation Control Settings to,SV-ID
Applies the power settings of the current satellite to the selected or to all SV-IDs of the same GNSS system.
The following settings are considered:
Signal State
Primary Code
Secondary Code
Nav Msg Control
Nav Msg Type
Meander Sequence
Time Sequence
85User Manual 1178.9403.02 ─ 07
Space vehicle configurationSatellite Navigation
Simulated orbit and orbit perturbation settings
Remote command:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:MCONtrol:COPY:SVID on page 400 [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:MCONtrol:COPY:EXECute
on page 401 (etc. for the other GNSS systems)

7.3 Simulated orbit and orbit perturbation settings

Access:
1. Select "GNSS > Simulation Configuration > Satellites".
2. Select the GNSS system for that you want to configure satellites constellation, for example GPS.
3. Select "SV# > SV Config".
4. In the "SV Configuration" dialog, select "Simulated Orbit > Orbit" or "Simulated Orbit > Orbit Perturbation".
Available navigation message parameters depend on the GNSS system.
Settings:
Ground Track................................................................................................................ 87
GPS SV.........................................................................................................................87
Simulated Orbit............................................................................................... 87
Orbit Perturbation............................................................................................88
Galileo SV..................................................................................................................... 88
Simulated Orbit............................................................................................... 88
Orbit Perturbation............................................................................................89
GLONASS SV...............................................................................................................89
Simulated Orbit............................................................................................... 89
86User Manual 1178.9403.02 ─ 07
Space vehicle configurationSatellite Navigation
Simulated orbit and orbit perturbation settings
BeiDou SV.....................................................................................................................90
Simulated Orbit............................................................................................... 90
Orbit Perturbation............................................................................................91
NavIC SV...................................................................................................................... 91
Simulated Orbit............................................................................................... 91
Orbit Perturbation............................................................................................92
QZSS SV.......................................................................................................................92
Simulated Orbit............................................................................................... 92
Orbit Perturbation............................................................................................93
NavIC SV........................................................................................................ 93
Simulated Orbit.....................................................................................94
Orbit Perturbation................................................................................. 94
Ground Track
Displays a plot of the trajectory of the selected satellite. To observe the aggregated ground tracks of all satellites, select "GNSS > Simulation
Monitor > Display = Satellites > Ground Track".
GPS SV
Comprises the navigation message parameters, specific to and common for all GPS satellites.
Simulated Orbit ← GPS SV
Comprises the navigation message parameters, specific to and common for all GPS satellites.
Parameter Remote command:
"Reference Week" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIMulated:
ORBit:WNOE on page 418
"Reference Time of Week" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIMulated:
ORBit:TOE on page 418
1/2
"Square Root of Semi-Major Axis - A
"Eccentricity - e" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIMulated:
"Inclination Angle - i0" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIMulated:
"Longitude of Ascending Node - Ω0" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIMulated:
"Argument of Perigee - ω" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIMulated:
"Mean Anomaly - M0" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIMulated:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIMulated:
"
ORBit:SQRA on page 419
ORBit:ECCentricity on page 420
ORBit:IZERo on page 420
ORBit:OZERo on page 421
ORBit:OMEGa on page 421
ORBit:MZERo on page 421
"Rate of Inclination Angle - i'" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIMulated:
ORBit:IDOT on page 421
87User Manual 1178.9403.02 ─ 07
Space vehicle configurationSatellite Navigation
Simulated orbit and orbit perturbation settings
Parameter Remote command:
"Rate of Right Ascension - Ω'" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIMulated:
ORBit:ODOT on page 422
"Mean Motion Difference - Δn" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIMulated:
ORBit:NDELta on page 422
Orbit Perturbation ← GPS SV
Comprises the navigation message parameters, specific to and common for all GPS satellites.
Parameter Remote command:
"Cosine Difference of Latitude - Cuc" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIMulated:
ORBit:CUC on page 422
"Sine Difference of Latitude - Cus" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIMulated:
ORBit:CUS on page 423
"Cosine Difference of Orbital Radius - Crc" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIMulated:
ORBit:CRC on page 423
"Sine Difference of Orbital Radius - Crs" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIMulated:
ORBit:CRS on page 423
"Cosine Difference of Inclination - Cic" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIMulated:
ORBit:CIC on page 424
"Sine Difference of Inclination - Cis" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIMulated:
ORBit:CIS on page 424
Galileo SV
Comprises the navigation message parameters, specific to and common for all Galileo satellites.
Simulated Orbit ← Galileo SV
Comprises the navigation message parameters, specific to and common for all Galileo satellites.
Parameter Remote command:
"Reference Week" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GALileo:
SIMulated:ORBit:WNOE on page 418
"Reference Time of Week" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GALileo:
SIMulated:ORBit:TOE on page 418
1/2
"Square Root of Semi-Major Axis - A
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GALileo:
"
SIMulated:ORBit:SQRA on page 419
"Eccentricity - e" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GALileo:
SIMulated:ORBit:ECCentricity on page 420
"Inclination Angle - i0" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GALileo:
SIMulated:ORBit:IZERo on page 420
"Longitude of Ascending Node - Ω0" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GALileo:
SIMulated:ORBit:OZERo on page 420
88User Manual 1178.9403.02 ─ 07
Space vehicle configurationSatellite Navigation
Simulated orbit and orbit perturbation settings
Parameter Remote command:
"Argument of Perigee - ω" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GALileo:
SIMulated:ORBit:OMEGa on page 421
"Mean Anomaly - M0" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GALileo:
SIMulated:ORBit:MZERo on page 421
"Rate of Inclination Angle - i'" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GALileo:
SIMulated:ORBit:IDOT on page 421
"Rate of Right Ascension - Ω'" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GALileo:
SIMulated:ORBit:ODOT on page 422
"Mean Motion Difference - Δn" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GALileo:
SIMulated:ORBit:NDELta on page 422
Orbit Perturbation ← Galileo SV
Comprises the navigation message parameters, specific to and common for all Galileo satellites.
Parameter Remote command:
"Cosine Difference of Latitude - Cuc" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GALileo:
SIMulated:ORBit:CUC on page 422
"Sine Difference of Latitude - Cus" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GALileo:
SIMulated:ORBit:CUS on page 423
"Cosine Difference of Orbital Radius - Crc" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GALileo:
SIMulated:ORBit:CRC on page 423
"Sine Difference of Orbital Radius - Crs" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GALileo:
SIMulated:ORBit:CRS on page 423
"Cosine Difference of Inclination - Cic" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GALileo:
SIMulated:ORBit:CIC on page 423
"Sine Difference of Inclination - Cis" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GALileo:
SIMulated:ORBit:CIS on page 424
GLONASS SV
Comprises the navigation message parameters, specific to and common for all GLO­NASS satellites.
Simulated Orbit ← GLONASS SV
Comprises the navigation message parameters, specific to and common for all GLO­NASS satellites.
Parameter Remote command:
"Reference Date" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GLONass:
SIMulated:ORBit:DATE on page 419
"Reference Time" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GLONass:
SIMulated:ORBit:TIME on page 419
"Xn" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GLONass:
SIMulated:ORBit:XN on page 417
89User Manual 1178.9403.02 ─ 07
Space vehicle configurationSatellite Navigation
Simulated orbit and orbit perturbation settings
Parameter Remote command:
"Yn" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GLONass:
SIMulated:ORBit:YN on page 417
"Zn" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GLONass:
SIMulated:ORBit:ZN on page 417
"X'n" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GLONass:
SIMulated:ORBit:XDN on page 417
"Y'n" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GLONass:
SIMulated:ORBit:YDN on page 417
"Z'n" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GLONass:
SIMulated:ORBit:ZDN on page 417
"X''n" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GLONass:
SIMulated:ORBit:XDDN on page 418
"Y''n" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GLONass:
SIMulated:ORBit:YDDN on page 418
"Z''n" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GLONass:
SIMulated:ORBit:ZDDN on page 418
BeiDou SV
Comprises the navigation message parameters, specific to and common for all BeiDou satellites.
Simulated Orbit ← BeiDou SV
Comprises the navigation message parameters, specific to and common for all BeiDou satellites.
Parameter Remote command:
"Reference Week" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:WNOE on page 418
"Reference Time of Week" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:TOE on page 418
1/2
"Square Root of Semi-Major Axis - A
"Eccentricity - e" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
"Inclination Angle - i0" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
"Longitude of Ascending Node - Ω0" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
"
SIMulated:ORBit:SQRA on page 419
SIMulated:ORBit:ECCentricity on page 420
SIMulated:ORBit:IZERo on page 420
SIMulated:ORBit:OZERo on page 421
"Argument of Perigee - ω" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:OMEGa on page 421
"Mean Anomaly - M0" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:MZERo on page 421
90User Manual 1178.9403.02 ─ 07
Space vehicle configurationSatellite Navigation
Simulated orbit and orbit perturbation settings
Parameter Remote command:
"Rate of Inclination Angle - i'" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:IDOT on page 421
"Rate of Right Ascension - Ω'" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:ODOT on page 422
"Mean Motion Difference - Δn" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:NDELta on page 422
Orbit Perturbation ← BeiDou SV
Comprises the navigation message parameters, specific to and common for all BeiDou satellites.
Parameter Remote command:
"Cosine Difference of Latitude - Cuc" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:CUC on page 422
"Sine Difference of Latitude - Cus" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:CUS on page 423
"Cosine Difference of Orbital Radius - Crc" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:CRC on page 423
"Sine Difference of Orbital Radius - Crs" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:CRS on page 423
"Cosine Difference of Inclination - Cic" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:CIC on page 424
"Sine Difference of Inclination - Cis" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:CIS on page 424
NavIC SV
Comprises the navigation message parameters, specific to and common for all NavIC satellites.
Simulated Orbit ← NavIC SV
Comprises the navigation message parameters, specific to and common for all BeiDou satellites.
Parameter Remote command:
"Reference Week" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:WNOE on page 418
"Reference Time of Week" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:TOE on page 418
1/2
"Square Root of Semi-Major Axis - A
"Eccentricity - e" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
"Inclination Angle - i0" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
"
SIMulated:ORBit:SQRA on page 419
SIMulated:ORBit:ECCentricity on page 420
SIMulated:ORBit:IZERo on page 420
91User Manual 1178.9403.02 ─ 07
Space vehicle configurationSatellite Navigation
Simulated orbit and orbit perturbation settings
Parameter Remote command:
"Longitude of Ascending Node - Ω0" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:OZERo on page 421
"Argument of Perigee - ω" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:OMEGa on page 421
"Mean Anomaly - M0" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:MZERo on page 421
"Rate of Inclination Angle - i'" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:IDOT on page 421
"Rate of Right Ascension - Ω'" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:ODOT on page 422
"Mean Motion Difference - Δn" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:NDELta on page 422
Orbit Perturbation ← NavIC SV
Comprises the navigation message parameters, specific to and common for all BeiDou satellites.
Parameter Remote command:
"Cosine Difference of Latitude - Cuc" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:CUC on page 422
"Sine Difference of Latitude - Cus" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:CUS on page 423
"Cosine Difference of Orbital Radius - Crc" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:CRC on page 423
"Sine Difference of Orbital Radius - Crs" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:CRS on page 423
"Cosine Difference of Inclination - Cic" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:CIC on page 424
"Sine Difference of Inclination - Cis" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:ORBit:CIS on page 424
QZSS SV
Comprises the navigation message parameters, specific to and common for all QZSS satellites.
Simulated Orbit ← QZSS SV
Comprises the navigation message parameters, specific to and common for all QZSS satellites.
Parameter Remote command:
"Reference Week" [:SOURce<hw>]:BB:GNSS:SVID<ch>:QZSS:SIMulated:
ORBit:WNOE on page 418
"Reference Time of Week" [:SOURce<hw>]:BB:GNSS:SVID<ch>:QZSS:SIMulated:
ORBit:TOE on page 418
92User Manual 1178.9403.02 ─ 07
Space vehicle configurationSatellite Navigation
Simulated orbit and orbit perturbation settings
Parameter Remote command:
1/2
"Square Root of Semi-Major Axis - A
"Eccentricity - e" [:SOURce<hw>]:BB:GNSS:SVID<ch>:QZSS:SIMulated:
"Inclination Angle - i0" [:SOURce<hw>]:BB:GNSS:SVID<ch>:QZSS:SIMulated:
"Longitude of Ascending Node - Ω0" [:SOURce<hw>]:BB:GNSS:SVID<ch>:QZSS:SIMulated:
"Argument of Perigee - ω" [:SOURce<hw>]:BB:GNSS:SVID<ch>:QZSS:SIMulated:
"Mean Anomaly - M0" [:SOURce<hw>]:BB:GNSS:SVID<ch>:QZSS:SIMulated:
"Rate of Inclination Angle - i'" [:SOURce<hw>]:BB:GNSS:SVID<ch>:QZSS:SIMulated:
"Rate of Right Ascension - Ω'" [:SOURce<hw>]:BB:GNSS:SVID<ch>:QZSS:SIMulated:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:QZSS:SIMulated:
"
ORBit:SQRA on page 419
ORBit:ECCentricity on page 420
ORBit:IZERo on page 420
ORBit:OZERo on page 420
ORBit:OMEGa on page 421
ORBit:MZERo on page 421
ORBit:IDOT on page 421
ORBit:ODOT on page 422
"Mean Motion Difference - Δn" [:SOURce<hw>]:BB:GNSS:SVID<ch>:QZSS:SIMulated:
ORBit:NDELta on page 422
Orbit Perturbation ← QZSS SV
Comprises the navigation message parameters, specific to and common for all QZSS satellites.
Parameter Remote command:
"Cosine Difference of Latitude - Cuc" [:SOURce<hw>]:BB:GNSS:SVID<ch>:QZSS:SIMulated:
ORBit:CUC on page 422
"Sine Difference of Latitude - Cus" [:SOURce<hw>]:BB:GNSS:SVID<ch>:QZSS:SIMulated:
ORBit:CUS on page 423
"Cosine Difference of Orbital Radius - Crc" [:SOURce<hw>]:BB:GNSS:SVID<ch>:QZSS:SIMulated:
ORBit:CRC on page 423
"Sine Difference of Orbital Radius - Crs" [:SOURce<hw>]:BB:GNSS:SVID<ch>:QZSS:SIMulated:
ORBit:CRS on page 423
"Cosine Difference of Inclination - Cic" [:SOURce<hw>]:BB:GNSS:SVID<ch>:QZSS:SIMulated:
ORBit:CIC on page 423
"Sine Difference of Inclination - Cis" [:SOURce<hw>]:BB:GNSS:SVID<ch>:QZSS:SIMulated:
ORBit:CIS on page 424
NavIC SV ← QZSS SV
Comprises the navigation message parameters, specific to and common for all NavIC satellites.
93User Manual 1178.9403.02 ─ 07
Space vehicle configurationSatellite Navigation
Simulated orbit and orbit perturbation settings
Simulated Orbit ← NavIC SV ← QZSS SV
Comprises the navigation message parameters, specific to and common for all NavIC satellites.
Parameter Remote command:
"Reference Week" [:SOURce<hw>]:BB:GNSS:SVID<ch>:NAVic:
SIMulated:ORBit:WNOE on page 418
"Reference Time of Week" [:SOURce<hw>]:BB:GNSS:SVID<ch>:NAVic:
SIMulated:ORBit:TOE on page 418
1/2
"Square Root of Semi-Major Axis - A
"Eccentricity - e" [:SOURce<hw>]:BB:GNSS:SVID<ch>:NAVic:
"Inclination Angle - i0" [:SOURce<hw>]:BB:GNSS:SVID<ch>:NAVic:
"Longitude of Ascending Node - Ω0" [:SOURce<hw>]:BB:GNSS:SVID<ch>:NAVic:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:NAVic:
"
SIMulated:ORBit:SQRA on page 419
SIMulated:ORBit:ECCentricity on page 420
SIMulated:ORBit:IZERo on page 420
SIMulated:ORBit:OZERo on page 420
"Argument of Perigee - ω" [:SOURce<hw>]:BB:GNSS:SVID<ch>:NAVic:
SIMulated:ORBit:OMEGa on page 421
"Mean Anomaly - M0" [:SOURce<hw>]:BB:GNSS:SVID<ch>:NAVic:
SIMulated:ORBit:MZERo on page 421
"Rate of Inclination Angle - i'" [:SOURce<hw>]:BB:GNSS:SVID<ch>:NAVic:
SIMulated:ORBit:IDOT on page 421
"Rate of Right Ascension - Ω'" [:SOURce<hw>]:BB:GNSS:SVID<ch>:NAVic:
SIMulated:ORBit:ODOT on page 422
"Mean Motion Difference - Δn" [:SOURce<hw>]:BB:GNSS:SVID<ch>:NAVic:
SIMulated:ORBit:NDELta on page 422
Orbit Perturbation ← NavIC SV ← QZSS SV
Comprises the navigation message parameters, specific to and common for all NavIC satellites.
Parameter Remote command:
"Cosine Difference of Latitude - Cuc" [:SOURce<hw>]:BB:GNSS:SVID<ch>:NAVic:
SIMulated:ORBit:CUC on page 422
"Sine Difference of Latitude - Cus" [:SOURce<hw>]:BB:GNSS:SVID<ch>:NAVic:
SIMulated:ORBit:CUS on page 423
"Cosine Difference of Orbital Radius - Crc" [:SOURce<hw>]:BB:GNSS:SVID<ch>:NAVic:
SIMulated:ORBit:CRC on page 423
"Sine Difference of Orbital Radius - Crs" [:SOURce<hw>]:BB:GNSS:SVID<ch>:NAVic:
SIMulated:ORBit:CRS on page 423
94User Manual 1178.9403.02 ─ 07
Parameter Remote command:
"Cosine Difference of Inclination - Cic" [:SOURce<hw>]:BB:GNSS:SVID<ch>:NAVic:
SIMulated:ORBit:CIC on page 423
"Sine Difference of Inclination - Cis" [:SOURce<hw>]:BB:GNSS:SVID<ch>:NAVic:
SIMulated:ORBit:CIS on page 424

7.4 Simulated clock settings

Access:
1. Select "GNSS > Simulation Configuration > Satellites".
2. Select the GNSS system for that you want to configure satellites constellation, for example GPS.
3. Select "SV# > SV Config".
Space vehicle configurationSatellite Navigation
Simulated clock settings
4. In the "SV Configuration" dialog, select "Simulated Clock".
Available navigation message parameters depend on the GNSS system.
Settings:
GPS > Simulated Clock.................................................................................................95
Galileo > Simulated Clock.............................................................................................96
GLONASS > Simulated Clock.......................................................................................96
BeiDou > Simulated Clock............................................................................................ 96
QZSS > Simulated Clock.............................................................................................. 97
NavIC > Simulated Clock.............................................................................................. 97
GPS > Simulated Clock
Comprises the navigation message parameters, specific to and common for all GPS satellites.
Parameter Remote command:
"Reference Week" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIMulated:
CLOCk:WNOC on page 424
"Reference Time of Week" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIMulated:
CLOCk:TOC on page 424
95User Manual 1178.9403.02 ─ 07
Space vehicle configurationSatellite Navigation
Simulated clock settings
Parameter Remote command:
"af0 - af2" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIMulated:
CLOCk:AF<s2us0> on page 425
"Group Delay - Tgd" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SIMulated:
CLOCk:TGD on page 425
Galileo > Simulated Clock
Comprises the navigation message parameters, specific to and common for all Galileo satellites.
Parameter Remote command:
"Reference Week" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GALileo:
SIMulated:CLOCk:WNOC on page 424
"Time of Clock - t0c (E1-E5B)" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GALileo:
SIMulated:CLOCk:TOC on page 424
"af0 (E1-E5B)" to "af2 (E1-E5B)" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GALileo:
SIMulated:CLOCk:AF<s2us0> on page 425
"Group Delay - BGD (E1-E5B)" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GALileo:
SIMulated:CLOCk:TGD on page 425
GLONASS > Simulated Clock
Comprises the navigation message parameters, specific to and common for all GLO­NASS satellites.
Parameter Remote command:
"Reference Date" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GLONass:
SIMulated:CLOCk:DATE on page 419
"Reference Time" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GLONass:
SIMulated:CLOCk:TIME on page 419
"af0" to "af2" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GLONass:
SIMulated:CLOCk:AF<s2us0> on page 425
"Group Delay - Tgd" [:SOURce<hw>]:BB:GNSS:SVID<ch>:GLONass:
SIMulated:CLOCk:TGD on page 425
BeiDou > Simulated Clock
Comprises the navigation message parameters, specific to and common for all BeiDou satellites.
Parameter Remote command:
"Reference Week" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:CLOCk:WNOC on page 424
"Reference Time of Week" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:CLOCk:TOC on page 424
96User Manual 1178.9403.02 ─ 07
Space vehicle configurationSatellite Navigation
Simulated clock settings
Parameter Remote command:
"af0" to "af2" [:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou:
SIMulated:CLOCk:AF<s2us0> on page 425
"Group Delay B1I - T
"Group Delay B2I - T
GD1
GD2
"
"
[:SOURce<hw>]:BB:GNSS:SVID<ch>:BEIDou: PRERrors:MODE on page 427
QZSS > Simulated Clock
Comprises the navigation message parameters, specific to and common for all QZSS satellites.
Parameter Remote command:
"Reference Week" [:SOURce<hw>]:BB:GNSS:SVID<ch>:QZSS:SIMulated:
CLOCk:WNOC on page 424
"Reference Time of Week" [:SOURce<hw>]:BB:GNSS:SVID<ch>:QZSS:SIMulated:
CLOCk:TOC on page 424
"af0 - af2" [:SOURce<hw>]:BB:GNSS:SVID<ch>:QZSS:SIMulated:
CLOCk:AF<s2us0> on page 425
"Group Delay - Tgd" [:SOURce<hw>]:BB:GNSS:SVID<ch>:QZSS:SIMulated:
CLOCk:TGD on page 425
NavIC > Simulated Clock
Comprises the navigation message parameters, specific to and common for all NavIC satellites.
Parameter Remote command:
"Reference Week" [:SOURce<hw>]:BB:GNSS:SVID<ch>:NAVic:
SIMulated:CLOCk:WNOC on page 424
"Reference Time of Week" [:SOURce<hw>]:BB:GNSS:SVID<ch>:NAVic:
SIMulated:CLOCk:TOC on page 424
"af0 - af2" [:SOURce<hw>]:BB:GNSS:SVID<ch>:NAVic:
SIMulated:CLOCk:AF<s2us0> on page 425
"Group Delay - Tgd" [:SOURce<hw>]:BB:GNSS:SVID<ch>:NAVic:
SIMulated:CLOCk:TGD on page 425
97User Manual 1178.9403.02 ─ 07

8 Tracking mode

Per default, the R&S SMBV100B generates a GNSS signal that is suitable for testing the receiver capabilities to acquire and track the signal and to estimate its position based.
Some receiver tests, however, focus on testing if the receiver is capable to acquire and decode the signal; navigation and thus position estimation is not necessary. For such tests or for receivers' sensitivity tests in zero Doppler conditions or under varying signal dynamics conditions, the R&S SMBV100B provides the tracking mode.
With the provided signal dynamic settings, you can enable a predefined or constant velocity profile, or define a user-specific one.

8.1 Signal dynamics settings

Tracking modeSatellite Navigation
Signal dynamics settings
Access:
1. Select "GNSS > Test Mode" > "Tracking".
2. Select "GNSS > Simulation Configuration > Satellites".
3. Select the GNSS system for that you want to configure satellites constellation, for example GPS.
4. Select "SV# > SV Config".
5. In the "SV Configuration" dialog, select "Signal Dynamics".
98User Manual 1178.9403.02 ─ 07
6. Select, for example, "Mode > High Order".
Tracking modeSatellite Navigation
Signal dynamics settings
Figure 8-1: Spinal Dynamics: Understanding the displayed information (Mode > Higher Order
1 = Velocity at the start of the profile 2 = Period of time the velocity is held constant 3 = Period of time an acceleration is applied 4 = Maximum acceleration together with the acceleration period and, if set the initial velocity, defines
the maximum velocity (7a and 7b) 5 = Defines how fast the maximum acceleration is reached 6 = Profile's duration, calculated from the selected periods of constant speed and acceleration; the
profile is repeated every 240 s. 7a = Maximum velocity = "Initial Velocity" + "Constant Acceleration Period"."Maximum Acceleration" =
500 m/s 7b = "Initial Velocity" - "Constant Acceleration Period"."Maximum Acceleration"
and Velocity Profile = User Dynamics)
Signal dynamics settings are provided for testing the receiver sensitivity under varying signal dynamics conditions. You can select a predefined or constant veloc­ity profile, or define a user-specific one. The displayed settings depend on the selected "Mode" and "Velocity Profile". Dedi­cated plots visualize the variations of the velocity, acceleration and the jerk over time.
Settings:
Mode........................................................................................................................... 100
Inital Pseudorange...................................................................................................... 100
Inital Carrier Phase..................................................................................................... 100
Velocity (Pseudorange Rate)...................................................................................... 100
High-order profile settings...........................................................................................100
Start Time Offset...........................................................................................100
Velocity Profile.............................................................................................. 101
Initial Velocity................................................................................................101
Constant Velocity Period...............................................................................101
Constant Acceleration Period....................................................................... 101
99User Manual 1178.9403.02 ─ 07
Tracking modeSatellite Navigation
Signal dynamics settings
Maximum Acceleration..................................................................................101
Maximum Jerk...............................................................................................102
Repetition Period.......................................................................................... 102
Mode
Selects the dynamics profile type. "Constant"
"High Order"
Remote command:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SDYNamics:PROFile on page 506
(etc. for the other GNSS systems)
Inital Pseudorange
Sets the pseudorange at the beginning of the simulation. Remote command:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SDYNamics:PRANge on page 507
Generates a constant velocity profile with configurable velocity, see
Velocity (Pseudorange Rate).
This mode is suitable for testing the receiver characteristics under more realistic conditions than with zero Doppler.
Enables profiles with higher-order dynamics. There are two predefined profiles and you can define your own one, see High-order profile settings.
Inital Carrier Phase
Sets the carrier phase at the beginning of the simulation. Remote command:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SDYNamics:CPHase on page 506
Velocity (Pseudorange Rate)
In "Mode = Constant", sets the velocity, i.e. the constant Doppler with that the pseudor­ange changes. The pseudorange at a give moment is calculated from the initial pseu­dorange value and the velocity.
Velocity different than zero results in variation of the Doppler shift. The velocity is constant, hence the acceleration and the jerk are zero. Observe also
the indications on the plots. Remote command:
[:SOURce<hw>]:BB:GNSS:SVID<ch>:GPS:SDYNamics:VELocity on page 507
(etc. for the other GNSS systems)
High-order profile settings
In "Mode = High Order", observe the plots indicating the variations of the velocity, acceleration and the jerk over time, see Figure 8-1.
For both predefined profiles ("Velocity Profile = Low Dynamics or High Dynamics"), the profile settings are read-only.
To change the settings, set "Velocity Profile = User Dynamics".
Start Time Offset ← High-order profile settings
Sets a time delay before the dynamics profile is applied.
100User Manual 1178.9403.02 ─ 07
Loading...