Rohde & Schwarz 1066.3010.20, 1065.6000.20, 1066.3010.25, FSEM20, 1066.3010.35 Operating Manual

...
Page 1
Complimentary Reference Material
This PDF has been made available as a complimentary service for you to assist in evaluating this model for your testing requirements.
TMG offers a wide range of test equipment solutions, from renting short to long term, buying refurbished and purchasing new. Financing options, such as Financial Rental, and Leasing are also available on application.
TMG will assist if you are unsure whether this model will suit your requirements.
Call TMG if you need to organise repair and/or calibrate your unit.
If you click on the Click-to-Call logo below, you can all us for FREE!
TMG Corporate Website TMG Products Website
Disclaimer:
All trademarks appearing within this PDF are trademarks of their respective owners.
Form 080/01
Page 2
Test and Measurement Division
Operating Manual
SPECTRUM ANALYZER
FSEA20/30
1065.6000.20/.25/35
FSEB20/30
1066.3010.20/.25/35
FSEM20/30
1080.1505.20/.21/.25
1079.8500.30/.31/.35
FSEK20/30
1088.1491.20/.21/.25
1088.3494.30/.31/.35
Volume 2 Operating manual consists of 2 volumes
Printed in the Federal Republic of Germany
1065.6016.12-14- II 10/01
Page 3
Page 4
FSE Tabbed Divider Overview
Tabbed Divider Overview
Volume 1
Data Sheet
Safety Instructi ons Certificate of quality EC Certificate of Conformity Support Center List of R & S Representatives
Manuals for Signal Analyzer FSE
Tabbed Divider
1 Chapter 1: Putting into Operation
2 Chapter 2: Getting Started
3 Chapter 3: Operation
4 Chapter 4: Functional Description
10 Index
Volume 2
Safety Instructi ons Manuals for Signal Analyzer FSE
Tabbed Divider
5 Chapter 5: Remote Control – Basics
6 Chapter 6: Remote Control – Commands
7 Chapter 7: Remote Control – Program Examples
8 Chapter 8: Maintenance and Hardware Interfaces
9 Chapter 9: Error Messages
10 Index
1065.6016.12 RE E-2
Page 5
Page 6
Before putting the product into operation for
the first time, make sure to read the following
Safety Instructions
Rohde & Schwarz makes every effort to keep the safety standard of its products up to date and to offer its customers the highest possible degree of safety. Our products and the auxiliary equipment required for them are designed and tested in accordance with the relevant safety standards. Compliance with these standards is continuously monitored by our quality assurance system. This product has been designed and tested in accordance with the EC Certificate of Conformity and has left the manufacturer’s plant in a condition fully complying with safety standards. To maintain this condition and to ensure safe operation, observe all instructions and warnings provided in this manual. If you have any questions regarding these safety instructions, Rohde & Schwarz will be happy to answer them.
Furthermore, it is your responsibility to use the product in an appropriate manner. This product is designed for use solely in industrial and laboratory environments or in the field and must not be used in any way that may cause personal injury or property damage. You are responsible if the product is used for an intention other than its designated purpose or in disregard of the manufacturer's instructions. The manufacturer shall assume no responsibility for such use of the product.
The product is used for its designated purpose if it is used in accordance with its operating manual and within its performance limits (see data sheet, documentation, the following safety instructions). Using the products requires technical skills and knowledge of English. It is therefore essential that the products be used exclusively by skilled and specialized staff or thoroughly trained personnel with the required skills. If personal safety gear is required for using Rohde & Schwarz products, this will be indicated at the appropriate place in the product documentation.
Observe operating instructions
Supply voltage ON/OFF
Weight indication for units >18 kg
Standby indication
Symbols and safety labels
Danger of electric shock
Direct current (DC)
Warning! Hot surface
PE terminal Ground
Alternating current (AC)
Direct/alternating current (DC/AC)
Ground terminal
Device fully protected by double/reinforced insulation
Attention! Electrostatic sensitive devices
1171.0000.42-02.00 Sheet 1
Page 7
Safety Instructions
Observing the safety instructions will help prevent personal injury or damage of any kind caused by dangerous situations. Therefore, carefully read through and adhere to the following safety instructions before putting the product into operation. It is also absolutely essential to observe the additional safety instructions on personal safety that appear in other parts of the documentation. In these safety instructions, the word "product" refers to all merchandise sold and distributed by Rohde & Schwarz, including instruments, systems and all accessories.
Tags and their meaning
DANGER
WARNING
CAUTION This tag indicates a safety hazard with a low potential of risk for the user
ATTENTION
NOTE
These tags are in accordance with the standard definition for civil applications in the European Economic Area. Definitions that deviate from the standard definition may also exist. It is therefore essential to make sure that the tags described here are always used only in connection with the associated documentation and the associated product. The use of tags in connection with unassociated products or unassociated documentation can result in misinterpretations and thus contribute to personal injury or material damage.
This tag indicates a safety hazard with a high potential of risk for the user that can result in death or serious injuries.
This tag indicates a safety hazard with a medium potential of risk for the user that can result in death or serious injuries.
that can result in slight or minor injuries.
This tag indicates the possibility of incorrect use that can cause damage to the product.
This tag indicates a situation where the user should pay special attention to operating the product but which does not lead to damage.
Basic safety instructions
1. The product may be operated only under the operating conditions and in the positions specified by the manufacturer. Its ventilation must not be obstructed during operation. Unless otherwise specified, the following requirements apply to Rohde & Schwarz products: prescribed operating position is always with the housing floor facing down, IP protection 2X, pollution severity 2, overvoltage category 2, use only in enclosed spaces, max. operation altitude max. 2000 m. Unless specified otherwise in the data sheet, a tolerance of ±10% shall apply to the nominal voltage and of ±5% to the nominal frequency.
2. Applicable local or national safety regulations and rules for the prevention of accidents must be observed in all work performed. The product may be opened only by authorized, specially trained personnel. Prior to performing any work on the product or opening the product, the
product must be disconnected from the supply network. Any adjustments, replacements of parts, maintenance or repair must be carried out only by technical personnel authorized by Rohde & Schwarz. Only original parts may be used for replacing parts relevant to safety (e.g. power switches, power transformers, fuses). A safety test must always be performed after parts relevant to safety have been replaced (visual inspection, PE conductor test, insulation resistance measurement, leakage current measurement, functional test).
3. As with all industrially manufactured goods, the use of substances that induce an allergic reaction (allergens, e.g. nickel) such as aluminum cannot be generally excluded. If you develop an allergic reaction (such as a skin rash, frequent sneezing, red eyes or respiratory difficulties), consult a physician immediately to determine the cause.
1171.0000.42-02.00 Sheet 2
Page 8
Safety Instructions
4. If products/components are mechanically and/or thermically processed in a manner that goes beyond their intended use, hazardous substances (heavy-metal dust such as lead, beryllium, nickel) may be released. For this reason, the product may only be disassembled, e.g. for disposal purposes, by specially trained personnel. Improper disassembly may be hazardous to your health. National waste disposal regulations must be observed.
5. If handling the product yields hazardous substances or fuels that must be disposed of in a special way, e.g. coolants or engine oils that must be replenished regularly, the safety instructions of the manufacturer of the hazardous substances or fuels and the applicable regional waste disposal regulations must be observed. Also observe the relevant safety instructions in the product documentation.
6. Depending on the function, certain products such as RF radio equipment can produce an elevated level of electromagnetic radiation. Considering that unborn life requires increased protection, pregnant women should be protected by appropriate measures. Persons with pacemakers may also be endangered by electromagnetic radiation. The employer is required to assess workplaces where there is a special risk of exposure to radiation and, if necessary, take measures to avert the danger.
7. Operating the products requires special training and intense concentration. Make certain that persons who use the products are physically, mentally and emotionally fit enough to handle operating the products; otherwise injuries or material damage may occur. It is the responsibility of the employer to select suitable personnel for operating the products.
8. Prior to switching on the product, it must be ensured that the nominal voltage setting on the product matches the nominal voltage of the AC supply network. If a different voltage is to be set, the power fuse of the product may have to be changed accordingly.
9. In the case of products of safety class I with movable power cord and connector, operation is permitted only on sockets with earthing contact and protective earth connection.
10. Intentionally breaking the protective earth connection either in the feed line or in the product itself is not permitted. Doing so can result in the danger of an electric shock from the product. If extension cords or connector strips are implemented, they must be checked on a regular basis to ensure that they are safe to use.
11. If the product has no power switch for disconnection from the AC supply, the plug of the connecting cable is regarded as the disconnecting device. In such cases, it must be ensured that the power plug is easily reachable and accessible at all times (length of connecting cable approx. 2 m). Functional or electronic switches are not suitable for providing disconnection from the AC supply. If products without power switches are integrated in racks or systems, a disconnecting device must be provided at the system level.
12. Never use the product if the power cable is damaged. By taking appropriate safety measures and carefully laying the power cable, ensure that the cable cannot be damaged and that no one can be hurt by e.g. tripping over the cable or suffering an electric shock.
13. The product may be operated only from TN/TT supply networks fused with max. 16 A.
14. Do not insert the plug into sockets that are dusty or dirty. Insert the plug firmly and all the way into the socket. Otherwise this can result in sparks, fire and/or injuries.
15. Do not overload any sockets, extension cords or connector strips; doing so can cause fire or electric shocks.
16. For measurements in circuits with voltages V
> 30 V, suitable measures (e.g.
rms
appropriate measuring equipment, fusing, current limiting, electrical separation, insulation) should be taken to avoid any hazards.
17. Ensure that the connections with information technology equipment comply with IEC 950/EN 60950.
18. Never remove the cover or part of the housing while you are operating the product. This will expose circuits and components and can lead to injuries, fire or damage to the product.
1171.0000.42-02.00 Sheet 3
Page 9
Safety Instructions
19. If a product is to be permanently installed, the connection between the PE terminal on site and the product's PE conductor must be made first before any other connection is made. The product may be installed and connected only by a skilled electrician.
20. For permanently installed equipment without built-in fuses, circuit breakers or similar protective devices, the supply circuit must be fused in such a way that suitable protection is provided for users and products.
21. Do not insert any objects into the openings in the housing that are not designed for this purpose. Never pour any liquids onto or into the housing. This can cause short circuits inside the product and/or electric shocks, fire or injuries.
22. Use suitable overvoltage protection to ensure that no overvoltage (such as that caused by a thunderstorm) can reach the product. Otherwise the operating personnel will be endangered by electric shocks.
23. Rohde & Schwarz products are not protected against penetration of water, unless otherwise specified (see also safety instruction 1.). If this is not taken into account, there exists the danger of electric shock or damage to the product, which can also lead to personal injury.
24. Never use the product under conditions in which condensation has formed or can form in or on the product, e.g. if the product was moved from a cold to a warm environment.
matching Rohde & Schwarz type (see spare parts list). Batteries and storage batteries are hazardous waste. Dispose of them only in specially marked containers. Observe local regulations regarding waste disposal. Do not short-circuit batteries or storage batteries.
28. Please be aware that in the event of a fire, toxic substances (gases, liquids etc.) that may be hazardous to your health may escape from the product.
29. Please be aware of the weight of the product. Be careful when moving it; otherwise you may injure your back or other parts of your body.
30. Do not place the product on surfaces, vehicles, cabinets or tables that for reasons of weight or stability are unsuitable for this purpose. Always follow the manufacturer's installation instructions when installing the product and fastening it to objects or structures (e.g. walls and shelves).
31. Handles on the products are designed exclusively for personnel to hold or carry the product. It is therefore not permissible to use handles for fastening the product to or on means of transport such as cranes, fork lifts, wagons, etc. The user is responsible for securely fastening the products to or on the means of transport and for observing the safety regulations of the manufacturer of the means of transport. Noncompliance can result in personal injury or material damage.
25. Do not close any slots or openings on the product, since they are necessary for ventilation and prevent the product from overheating. Do not place the product on soft surfaces such as sofas or rugs or inside a closed housing, unless this is well ventilated.
26. Do not place the product on heat­generating devices such as radiators or fan heaters. The temperature of the environment must not exceed the maximum temperature specified in the data sheet.
27. Batteries and storage batteries must not be exposed to high temperatures or fire. Keep batteries and storage batteries away from children. If batteries or storage batteries are improperly replaced, this can cause an explosion (warning: lithium cells). Replace the battery or storage battery only with the
1171.0000.42-02.00 Sheet 4
32. If you use the product in a vehicle, it is the sole responsibility of the driver to drive the vehicle safely. Adequately secure the product in the vehicle to prevent injuries or other damage in the event of an accident. Never use the product in a moving vehicle if doing so could distract the driver of the vehicle. The driver is always responsible for the safety of the vehicle; the manufacturer assumes no responsibility for accidents or collisions.
33. If a laser product (e.g. a CD/DVD drive) is integrated in a Rohde & Schwarz product, do not use any other settings or functions than those described in the documentation. Otherwise this may be hazardous to your health, since the laser beam can cause irreversible damage to your eyes. Never try to take such products apart, and never look into the laser beam.
Page 10
Por favor lea imprescindiblemente antes de la primera puesta en funcionamiento las siguientes informaciones de seguridad
Informaciones de seguridad
Es el principio de Rohde & Schwarz de tener a sus productos siempre al día con los estandards de seguridad y de ofrecer a sus clientes el máximo grado de seguridad. Nuestros productos y todos los equipos adicionales son siempre fabricados y examinados según las normas de seguridad vigentes. Nuestra sección de gestión de la seguridad de calidad controla constantemente que sean cumplidas estas normas. Este producto ha sido fabricado y examinado según el comprobante de conformidad adjunto según las normas de la CE y ha salido de nuestra planta en estado impecable según los estandards técnicos de seguridad. Para poder preservar este estado y garantizar un funcionamiento libre de peligros, deberá el usuario atenerse a todas las informaciones, informaciones de seguridad y notas de alerta. Rohde&Schwarz está siempre a su disposición en caso de que tengan preguntas referentes a estas informaciones de seguridad.
Además queda en la responsabilidad del usuario utilizar el producto en la forma debida. Este producto solamente fue elaborado para ser utilizado en la indústria y el laboratorio o para fines de campo y de ninguna manera deberá ser utilizado de modo que alguna persona/cosa pueda ser dañada. El uso del producto fuera de sus fines definidos o despreciando las informaciones de seguridad del fabricante queda en la responsabilidad del usuario. El fabricante no se hace en ninguna forma responsable de consecuencias a causa del maluso del producto.
Se parte del uso correcto del producto para los fines definidos si el producto es utilizado dentro de las instrucciones del correspondiente manual del uso y dentro del margen de rendimiento definido (ver hoja de datos, documentación, informaciones de seguridad que siguen). El uso de los productos hace necesarios conocimientos profundos y el conocimiento del idioma inglés. Por eso se deberá tener en cuenta de exclusivamente autorizar para el uso de los productos a personas péritas o debidamente minuciosamente instruidas con los conocimientos citados. Si fuera necesaria indumentaria de seguridad para el uso de productos de R&S, encontrará la información debida en la documentación del producto en el capítulo correspondiente.
Símbolos y definiciones de seguridad
Ver manual de instrucciones del uso
Informaciones para maquinaria con uns peso de > 18kg
Peligro de golpe de corriente
¡Advertencia! Superficie caliente
Conexión a conductor protector
Conexión a tierra
Conexión a masa conductora
¡Cuidado! Elementos de construción con peligro de carga electroestática
El aparato está protegido en su totalidad por un aislamiento de doble refuerzo
potencia EN MARCHA/PARADA
Indicación Stand-by
Corriente continua DC
Corriente alterna AC
Corriente continua/alterna DC/AC
1171.0000.42-02.00 página 1
Page 11
Informaciones de seguridad
Tener en cuenta las informaciones de seguridad sirve para tratar de evitar daños y peligros de toda clase. Es necesario de que se lean las siguientes informaciones de seguridad concienzudamente y se tengan en cuenta debidamente antes de la puesta en funcionamiento del producto. También deberán ser tenidas en cuenta las informaciones para la protección de personas que encontrarán en otro capítulo de esta documentación y que también son obligatorias de seguir. En las informaciones de seguridad actuales hemos juntado todos los objetos vendidos por Rohde&Schwarz bajo la denominación de „producto“, entre ellos también aparatos, instalaciones así como toda clase de accesorios.
Palabras de señal y su significado
PELIGRO Indica un punto de peligro con gran potencial de riesgo para el
ususario.Punto de peligro que puede llevar hasta la muerte o graves heridas.
ADVERTENCIA Indica un punto de peligro con un protencial de riesgo mediano para el
usuario. Punto de peligro que puede llevar hasta la muerte o graves heridas .
ATENCIÓN Indica un punto de peligro con un protencial de riesgo pequeño para el
usuario. Punto de peligro que puede llevar hasta heridas leves o pequeñas
CUIDADO Indica la posibilidad de utilizar mal el producto y a consecuencia
dañarlo.
INFORMACIÓN Indica una situación en la que deberían seguirse las instrucciones en el
uso del producto, pero que no consecuentemente deben de llevar a un daño del mismo.
Las palabras de señal corresponden a la definición habitual para aplicaciones civiles en el ámbito de la comunidad económica europea. Pueden existir definiciones diferentes a esta definición. Por eso se debera tener en cuenta que las palabras de señal aquí descritas sean utilizadas siempre solamente en combinación con la correspondiente documentación y solamente en combinación con el producto correspondiente. La utilización de las palabras de señal en combinación con productos o documentaciones que no les correspondan puede llevar a malinterpretaciones y tener por consecuencia daños en personas u objetos.
Informaciones de seguridad elementales
1. El producto solamente debe ser utilizado según lo indicado por el fabricante referente a la situación y posición de funcionamiento sin que se obstruya la ventilación. Si no se convino de otra manera, es para los productos R&S válido lo que sigue: como posición de funcionamiento se define principialmente la posición con el suelo de la caja para abajo , modo de protección IP 2X, grado de suciedad 2, categoría de sobrecarga eléctrica 2, utilizar solamente en estancias interiores, utilización hasta 2000 m sobre el nivel del mar. A menos que se especifique otra cosa en la hoja de datos, se aplicará una tolerancia de ±10% sobre el voltaje nominal y de ±5% sobre la frecuencia nominal.
2. En todos los trabajos deberán ser tenidas en cuenta las normas locales de seguridad de trabajo y de prevención de accidentes. El producto solamente debe de ser abierto por personal périto autorizado. Antes de efectuar trabajos en el producto o abrirlo deberá este ser desconectado de la corriente. El ajuste, el cambio de partes, la manutención y la reparación deberán ser solamente efectuadas por electricistas autorizados por R&S. Si se reponen partes con importancia para los aspectos de seguridad (por ejemplo el enchufe, los transformadores o los fusibles), solamente podrán ser sustituidos por partes originales. Despues de cada recambio de partes elementales para la seguridad deberá ser efectuado un control de
1171.0000.42-02.00 página 2
Page 12
Informaciones de seguridad
seguridad (control a primera vista, control de conductor protector, medición de resistencia de aislamiento, medición de medición de la corriente conductora, control de funcionamiento).
3. Como en todo producto de fabricación industrial no puede ser excluido en general de que se produzcan al usarlo elementos que puedan generar alergias, los llamados elementos alergénicos (por ejemplo el níquel). Si se producieran en el trato con productos R&S reacciones alérgicas, como por ejemplo urticaria, estornudos frecuentes, irritación de la conjuntiva o dificultades al respirar, se deberá consultar inmediatamente a un médico para averigurar los motivos de estas reacciones.
4. Si productos / elementos de construcción son tratados fuera del funcionamiento definido de forma mecánica o térmica, pueden generarse elementos peligrosos (polvos de sustancia de metales pesados como por ejemplo plomo, berilio, níquel). La partición elemental del producto, como por ejemplo sucede en el tratamiento de materias residuales, debe de ser efectuada solamente por personal especializado para estos tratamientos. La partición elemental efectuada inadecuadamente puede generar daños para la salud. Se deben tener en cuenta las directivas nacionales referentes al tratamiento de materias residuales.
5. En el caso de que se produjeran agentes de peligro o combustibles en la aplicación del producto que debieran de ser transferidos a un tratamiento de materias residuales, como por ejemplo agentes refrigerantes que deben ser repuestos en periodos definidos, o aceites para motores, deberan ser tenidas en cuenta las prescripciones de seguridad del fabricante de estos agentes de peligro o combustibles y las regulaciones regionales para el tratamiento de materias residuales. Cuiden también de tener en cuenta en caso dado las prescripciones de seguridad especiales en la descripción del producto.
6. Ciertos productos, como por ejemplo las instalaciones de radiación HF, pueden a causa de su función natural, emitir una radiación electromagnética aumentada. En vista a la protección de la vida en desarrollo deberían ser protegidas personas embarazadas debidamente. También las personas con un bypass pueden correr
peligro a causa de la radiación electromagnética. El empresario está comprometido a valorar y señalar areas de trabajo en las que se corra un riesgo de exposición a radiaciones aumentadas de riesgo aumentado para evitar riesgos.
7. La utilización de los productos requiere instrucciones especiales y una alta concentración en el manejo. Debe de ponerse por seguro de que las personas que manejen los productos estén a la altura de los requerimientos necesarios referente a sus aptitudes físicas, psíquicas y emocionales, ya que de otra manera no se pueden excluir lesiones o daños de objetos. El empresario lleva la responsabilidad de seleccionar el personal usuario apto para el manejo de los productos.
8. Antes de la puesta en marcha del producto se deberá tener por seguro de que la tensión preseleccionada en el producto equivalga a la del la red de distribución. Si es necesario cambiar la preselección de la tensión también se deberán en caso dabo cambiar los fusibles correspondientes del prodcuto.
9. Productos de la clase de seguridad I con alimentación móvil y enchufe individual de producto solamente deberán ser conectados para el funcionamiento a tomas de corriente de contacto de seguridad y con conductor protector conectado.
10. Queda prohibida toda clase de interrupción intencionada del conductor protector, tanto en la toma de corriente como en el mismo producto ya que puede tener como consecuencia el peligro de golpe de corriente por el producto. Si se utilizaran cables o enchufes de extensión se deberá poner al seguro, que es controlado su estado técnico de seguridad.
11. Si el producto no está equipado con un interruptor para desconectarlo de la red, se deberá considerar el enchufe del cable de distribución como interruptor. En estos casos deberá asegurar de que el enchufe sea de fácil acceso y nabejo (medida del cable de distribución aproximadamente 2 m). Los interruptores de función o electrónicos no son aptos para el corte de la red eléctrica. Si los productos sin interruptor están integrados en construciones o instalaciones, se deberá instalar el interruptor al nivel de la instalación.
1171.0000.42-02.00 página 3
Page 13
Informaciones de seguridad
12. No utilice nunca el producto si está dañado el cable eléctrico. Asegure a través de las medidas de protección y de instalación adecuadas de que el cable de eléctrico no pueda ser dañado o de que nadie pueda ser dañado por él, por ejemplo al tropezar o por un golpe de corriente.
13. Solamente está permitido el funcionamiento en redes de distribución TN/TT aseguradas con fusibles de como máximo 16 A.
14. Nunca conecte el enchufe en tomas de corriente sucias o llenas de polvo. Introduzca el enchufe por completo y fuertemente en la toma de corriente. Si no tiene en consideración estas indicaciones se arriesga a que se originen chispas, fuego y/o heridas.
15. No sobrecargue las tomas de corriente, los cables de extensión o los enchufes de extensión ya que esto pudiera causar fuego o golpes de corriente.
16. En las mediciones en circuitos de corriente con una tensión de entrada de Ueff > 30 V se deberá tomar las precauciones debidas para impedir cualquier peligro (por ejemplo medios de medición adecuados, seguros, limitación de tensión, corte protector, aislamiento etc.).
17. En caso de conexión con aparatos de la técnica informática se deberá tener en cuenta que estos cumplan los requisitos de la EC950/EN60950.
18. Nunca abra la tapa o parte de ella si el producto está en funcionamiento. Esto pone a descubierto los cables y componentes eléctricos y puede causar heridas, fuego o daños en el producto.
19. Si un producto es instalado fijamente en un lugar, se deberá primero conectar el conductor protector fijo con el conductor protector del aparato antes de hacer cualquier otra conexión. La instalación y la conexión deberán ser efecutadas por un electricista especializado.
20. En caso de que los productos que son instalados fijamente en un lugar sean sin protector implementado, autointerruptor o similares objetos de protección, deberá la toma de corriente estar protegida de manera que los productos o los usuarios estén suficientemente protegidos.
21. Por favor, no introduzca ningún objeto que no esté destinado a ello en los orificios de la caja del aparato. No vierta nunca ninguna clase de líquidos sobre o en la caja. Esto puede producir corto circuitos en el producto y/o puede causar golpes de corriente, fuego o heridas.
22. Asegúrese con la protección adecuada de que no pueda originarse en el producto una sobrecarga por ejemplo a causa de una tormenta. Si no se verá el personal que lo utilice expuesto al peligro de un golpe de corriente.
23. Los productos R&S no están protegidos contra el agua si no es que exista otra indicación, ver también punto 1. Si no se tiene en cuenta esto se arriesga el peligro de golpe de corriente o de daños en el producto lo cual también puede llevar al peligro de personas.
24. No utilice el producto bajo condiciones en las que pueda producirse y se hayan producido líquidos de condensación en o dentro del producto como por ejemplo cuando se desplaza el producto de un lugar frío a un lugar caliente.
25. Por favor no cierre ninguna ranura u orificio del producto, ya que estas son necesarias para la ventilación e impiden que el producto se caliente demasiado. No pongan el producto encima de materiales blandos como por ejemplo sofás o alfombras o dentro de una caja cerrada, si esta no está suficientemente ventilada.
26. No ponga el producto sobre aparatos que produzcan calor, como por ejemplo radiadores o calentadores. La temperatura ambiental no debe superar la temperatura máxima especificada en la hoja de datos.
1171.0000.42-02.00 página 4
Page 14
Informaciones de seguridad
27. Baterías y acumuladores no deben de ser expuestos a temperaturas altas o al fuego. Guardar baterías y acumuladores fuera del alcance de los niños. Si las baterías o los acumuladores no son cambiados con la debida atención existirá peligro de explosión (atención celulas de Litio). Cambiar las baterías o los acumuladores solamente por los del tipo R&S correspondiente (ver lista de piezas de recambio). Baterías y acumuladores son deshechos problemáticos. Por favor tirenlos en los recipientes especiales para este fín. Por favor tengan en cuenta las prescripciones nacionales de cada país referente al tratamiento de deshechos. Nunca sometan las baterías o acumuladores a un corto circuito.
28. Tengan en consideración de que en caso de un incendio pueden escaparse gases tóxicos del producto, que pueden causar daños a la salud.
29. Por favor tengan en cuenta que en caso de un incendio pueden desprenderse del producto agentes venenosos (gases, líquidos etc.) que pueden generar daños a la salud.
30. No sitúe el producto encima de superficies, vehículos, estantes o mesas, que por sus características de peso o de estabilidad no sean aptas para él. Siga siempre las instrucciones de instalación del fabricante cuando instale y asegure el producto en objetos o estructuras (por ejemplo paredes y estantes).
31. Las asas instaladas en los productos sirven solamente de ayuda para el manejo que solamente está previsto para personas. Por eso no está permitido utilizar las asas para la sujecion en o sobre medios de transporte como por ejemplo grúas, carretillas elevadoras de horquilla, carros etc. El usuario es responsable de que los productos sean sujetados de forma segura a los medios de transporte y de que las prescripciones de seguridad del fabricante de los medios de transporte sean tenidas en cuenta. En caso de que no se tengan en cuenta pueden causarse daños en personas y objetos.
32. Si llega a utilizar el producto dentro de un vehículo, queda en la responsabilidad absoluta del conductor que conducir el vehículo de manera segura. Asegure el producto dentro del vehículo debidamente para evitar en caso de un accidente las lesiones u otra clase de daños. No utilice nunca el producto dentro de un vehículo en movimiento si esto pudiera distraer al conductor. Siempre queda en la responsabilidad absoluta del conductor la seguridad del vehículo y el fabricante no asumirá ninguna clase de responsabilidad por accidentes o colisiones.
33. Dado el caso de que esté integrado un producto de laser en un producto R&S (por ejemplo CD/DVD-ROM) no utilice otras instalaciones o funciones que las descritas en la documentación. De otra manera pondrá en peligro su salud, ya que el rayo laser puede dañar irreversiblemente sus ojos. Nunca trate de descomponer estos productos. Nunca mire dentro del rayo laser.
1171.0000.42-02.00 página 5
Page 15
FSE Manuals
Contents of Manuals for Spectrum Analyzer FSE
Operating Manual FSE
The operating manual describes the following models and options:
FSEA20/30 9kHz/20 Hz to 3,5 GHz
FSEB20/30 9kHz/20 Hz to 7 GHz
FSEM20/30 9kHz/20 Hz to 26,5 GHz
FSEK20/30 9kHz/20 Hz to 40 GHz
Option FSE-B3 TV Demodulator
Option FSE-B5 FFT Filter
Option FSE-B8/9/10/11 Tracking Generator
Option FSE-B13 1 dB Attenuator
Option FSE-B15 DOS Controller (Id.-Nr: 1073.5696.02/.03)
Option FSE-B15 Windows NT Controller (Id.-Nr.: 1073.5696.06)
Option FSE-B16 Ethernet Adapter
Option FSE-B17 Second IEC/IEEE Bus Interface
Options FSE-B7, Vector Signal Analysis, and FSE-B21, External Mixer Output, are described in se­parate manuals. The present operating manual c ontains comprehensive information about the technical data of the instrument, the setup and putting into operation of the ins tr ument, the operating concept and c ontrols as well as the operation of the FSE via the m enus and via remote control. Typical measurement tasks for the FSE ar e explained us ing the f unc tions of f er ed by the menus and a selec tion of pr ogram examples. In addition the operating manual gives information about maintenance of the instrument and about error detection listing the error messages which m ay be output by the instrument. It is subdivided into 2 volumes containing the data sheet plus 9 chapters:
Volume 1
The data sheet informs about guaranteed specifications and characteristics of the instrument. Chapter 1 describes the control elem ents and connectors on the front and rear panel as
well as all procedures required for putting the FSE into operation and integra­tion into a test system.
Chapter 2 gives an introduction to typical measurement tasks of the FSE which are ex-
plained step by step.
Chapter 3 describes the operating principles, the structure of the graphic al interface and
offers a menu overview.
Chapter 4 forms a ref erence for manual control of the F SE and contains a detailed de-
scription of all instrument functions and their application.
Chapter 10 contains an index for the operating manual.
Volume 2
Chapter 5 describes the basics for program ming the FSE, c omm and pr ocessing and the
status reporting system.
Chapter 6 lists all the remote-control com m ands def ined for the ins trum ent. At the end of
the chapter a alphabetical list of com mands and a table of softk eys with com­mand assignment is given.
Chapter 7 contains program examples for a number of typical applications of the FSE. Chapter 8 describes preventive maintenanc e and the characteristics of the instrument’s
interfaces.
Chapter 8 gives a list of error messages that the FSE may generate. Chapter 9 contains a list of error messages. Chapter 10 contains an index for the operating manual.
1065.6016.12 0.1 E-1
Page 16
Manuals FSE
Service Manual - Instrument
The service manual - instrum ent inform s on how to check c ompliance with rated spec ifications (per ­formance test) and on the self tests.
Service Manual
The service manual is not delivered with the instrument but m ay be obtained from your R&S service department using the order number 1065.6016.94.
The service manualinforms on instrument function, repair, troubleshooting and fault elimination. It contains all information required for the maintenance of FSE by exchanging modules.It contains in­formation about the individual modules of FSE. T his compr ises the test and adjustm ent of the mod­ules, fault detection within the modules and the interface description.
1065.6016.12 0.2 E-1
Page 17
Page 18
FSE Contents - Remote Control - Basics
Contents - Chapter 5 "Remote Control - "Basics"
5 Remote Control - Basics..................................................................................... 5.1
Introduction...................................................................................................................................... 5.1
Brief Instructions.............................................................................................................................5.2
Switchover to Remote Control .......................................................................................................5.2
Indications during Remote Control ..........................................................................................5.2
Remote Control via IEC Bus....................................................................................................5.3
Setting the Device Address...........................................................................................5.3
Return to Manual Operation..........................................................................................5.3
Remote Control via RS-232-Interface ..................................................................................... 5.4
Setting the Transmission Parameters...........................................................................5.4
Return to Manual Operation..........................................................................................5.4
Limitations .....................................................................................................................5.5
Remote Control via RSIB Interface ......................................................................................... 5.6
Windows Environment ..................................................................................................5.6
Unix Enviroment – with Windows NT Controller ........................................................... 5.6
Remote Control ............................................................................................................. 5.6
Return to Manual Operation..........................................................................................5.6
Messages.......................................................................................................................................... 5.7
IEE/IEEE-Bus Interface Messages..........................................................................................5.7
RSIB Interface Messages........................................................................................................ 5.7
Device Messages (Commands and Device Responses) ........................................................5.8
Structure and Syntax of the Device Messages............................................................................. 5.9
SCPI Introduction..................................................................................................................... 5.9
Structure of a Command ......................................................................................................... 5.9
Structure of a Command Line................................................................................................5.12
Responses to Queries........................................................................................................... 5.12
Parameters............................................................................................................................5.13
Overview of Syntax Elements................................................................................................5.14
Instrument Model and Command Processing ............................................................................5.15
Input Unit ...............................................................................................................................5.15
Command Recognition.......................................................................................................... 5.16
Data Set and Instrument Hardware.......................................................................................5.16
Status Reporting System....................................................................................................... 5.16
Output Unit............................................................................................................................. 5.17
Command Sequence and Command Synchronization..........................................................5.17
Status Reporting System.............................................................................................................. 5.18
Structure of an SCPI Status Register.................................................................................... 5.18
Overview of the Status Registers ..........................................................................................5.20
Description of the Status Registers .......................................................................................5.21
Status Byte (STB) and Service Request Enable Register (SRE)................................5.21
IST Flag and Parallel Poll Enable Register (PPE)....................................................... 5.22
Event-Status Register (ESR) and Event-Status-Enable Register (ESE)..................... 5.22
STATus:OPERation Register......................................................................................5.23
STATus:QUEStionable Register .................................................................................5.24
STATus QUEStionable:ACPLimit Register................................................................. 5.25
1065.6016.12 I-5.1 E-1
Page 19
Contents - Remote Control - Basics FSE
STATus QUEStionable:FREQuency Register.............................................................5.26
STATus QUEStionable:LIMit Register ........................................................................ 5.27
STATus QUEStionable:LMARgin Register ................................................................. 5.28
STATus QUEStionable:POWer Register .................................................................... 5.29
STATus QUEStionable:SYNC Register ......................................................................5.30
STATus QUEStionable:TRANsducer Register ........................................................... 5.31
Application of the Status Reporting Systems......................................................................... 5.32
Service Request, Making Use of the Hierarchy Structure........................................... 5.32
Serial Poll ....................................................................................................................5.32
Parallel Poll.................................................................................................................. 5.33
Query by Means of Commands................................................................................... 5.33
Error-Queue Query...................................................................................................... 5.33
Resetting Values of the Status Reporting System................................................................. 5.34
1065.6016.12 I-5.2 E-1
Page 20
FSE Introduction
5 Remote Control - Basics
In this chapter you find:
instructions how to put the FSE into operation via remote control,
a general introduction to remote control of programmable ins truments. This includes the description
of the command str ucture and syntax according to the SCPI standard, the description of c ommand execution and of the status registers,
diagrams and tables describing the status registers used in the FSE. In chapter 6, all remote control functions are described in detail. The subsystems are listed by
alphabetical order according to SCPI. All commands and their parameters are listed by alphabetical order in the command list at the end of chapter 6.
Program examples for the FSE can be found in chapter 7. The remote control interfaces and their interface functions are described in chapter 8.
Introduction
The instrument is equipped with an IEC-bus interface accor ding to standard IEC 625.1/IEEE 488.2 and two RS-232 interfaces. The connector is located at the r ear of the instrum ent and permits to connect a controller for remote control.
The option FSE-B15, (controller function) together with the option FSE B17 (2nd IEC-bus interface) may also be used as a controller (see chapter 1, section "Option FSE-B17 - Second IEC/IEEE Interface). In addition, the instrument is equipped with an RSIB interface that allows instrum ent control by Visual C++ and Visual Basic programs
The instrument supports the SCPI version 1994.0 (Standard Commands for Programmable Instruments). T he SCPI standard is based on standard IEEE 488.2 and aim s at the standardization of device-specific commands, error handling and the status registers (see section "SCPI Introduction").
This section assumes basic knowledge of IEC-bus programming and operation of the controller. A description of the interface c omm ands is to be obtained from the relevant m anuals.
functions are matched to the function interface for IEC/IEEE-bus programming from National Instruments. The functions supported by the DLLs are listed in chapter 8.
The requirements of the SCPI standard placed on com m and syntax, error handling and configur ation of the status registers are explained in detail in the r espective sections. Tables provide a fast overview of the commands implem ented in the instrument and the bit assignm ent in the status regis ters. T he tables are supplemented by a comprehensive desc ription of every com m and and the s tatus register s. Detailed program examples of the main functions are to be found in chapter 7.
The program examples for IEC-bus programming are all written in Quick BASIC.
The RSIB interface
1065.6016.12 5.1 E-16
Page 21
Brief Instructions FSE
Brief Instructions
The short and simple operating sequence given below permits fast putting into operation of the instrument and setting of its bas ic functions. As a prerequisite, the IEC-bus addr es s , which is factory-set to 20, must not have been changed.
1. Connect instrument and controller using IEC-bus cable.
2. Write and start the following program on the controller:
CALL IBFIND("DEV1", analyzer%) ’Open port to the instrument CALL IBPAD(analyzer%, 20) ’Inform controller about instrument address CALL IBWRT(analyzer%, "*RST;*CLS") ’Reset instrument CALL IBWRT(analyzer%, ’FREQ:CENT 100MHz’) ’Set center frequency to 100 MHz CALL IBWRT(analyzer%, ’FREQ:SPAN 10MHz’) ’Set span to 10 MHz
CALL IBWRT(analyzer%, ’DISP:TRAC:Y:RLEV -10dBm’)
’Set reference level to -10 dBm
The instrument now performs a sweep in the frequency range of 95 MHz to 105 MHz.
3. To return to manual control, press the LOCAL key at the front panel
Switchover to Remote Control
On power-on, the instrument is always in the manual operating state ("LOCAL" state) and can be operated via the front panel. It is switched to remote control ("REMOTE" state)
IEC-bus as soon as it receives an addressed command from a controller. RS-232 as soon as it receives the command ’@REM’ from a controller. RSIB as soon as it receives an addressed command from a controller.
During remote control, operation via the f ront panel is disabled. The ins trument remains in the remote state until it is reset to the manual s tate via the front panel or via remote control interf aces. Switching from manual operation to remote control and vice versa does not affect the remaining instrument settings.
Indications during Remote Control
Remote control mode is indicated by the LED "REMOTE" on the instrument’s front panel. In this m ode the softkeys, the function fields and the diagram labelling on the display are not shown.
Note: Command SYSTem:DISPlay:UPDate ON activates all indications during remote control to
check the instrument settings.
1065.6016.12 5.2 E-16
Page 22
FSE Switchover to Remote Control
Remote Control via IEC Bus
Setting the Device Address
In order to operate the instrument via the IEC-bus, it must be addres sed using the s et IEC-bus addr ess. The IEC-bus address of the instrument is factory-set to 20. It can be changed m anually in the SETUP - GENERAL SETUP menu or via IEC bus. Addresses 0 to 31 are permissible.
Manually: ½ Call SETUP - GENERAL SETUP menu
½ Enter desired address in table GPIB ADDRESS ½ Terminate input using one of the unit keys (=ENTER).
Via IEC bus:
CALL IBFIND("DEV1", analyzer%) ’Open port to the instrument CALL IBPAD(analyzer%, 20) ’Inform controller about old address CALL IBWRT(analyzer%, "SYST:COMM:GPIB:ADDR 18")’Set instrument to new address CALL IBPAD(analyzer%, 18) ’Inform controller about new address
Return to Manual Operation
Return to manual operation is possible via the front panel or the IEC bus. Manually: ½ Press the LOCAL key.
Notes:–Before switchover, command proces sing must be completed as
otherwise switchover to remote control is effected immediately.
– T he LOCAL key can be disabled by the univers al command LLO
(see chapter 8) in order to prevent unintentional switchover. In this case, switchover to manual mode is only pos s ible via the IEC bus.
– T he LOCAL key can be enabled again by deactivating the REN
line of the IEC bus (see chapter 8).
Via IEC bus: ...
CALL IBLOC(analyzer%) ’Set instrument to manual operation. ...
1065.6016.12 5.3 E-16
Page 23
Switchover to Remote Control FSE
Remote Control via RS-232-Interface
Setting the Transmission Parameters
To enable an error-free and correct data transmission, the parameters of the unit and the controller should have the same setting. Parameters can be manually changed in menu SETUP-GENERAL SETUP in table COM PORT 1/2 or via remote control using the command
SYSTem:COMMunicate:SERial1|2:... .
The transmission parameters of the interfaces COM1 and COM2 are factory-set to the following values:
Instruments with Windows NT controller:
baudrate = 9600, data bits = 8, stop bits = 1, parity = NONE and owner = INSTRUMENT.
Manually: Setting interface COM1|2
½ Call SETUP-GENERAL SETUP menu ½ Select desired baudrate, bits, stopbit, parity and protocoll in table
COM PORT 1/2.
½ Set owner to Instrum ent or INSTR and DOS in table COM PORT 1/2 (with
option FSE-B15 only)
½ Terminate input using one of the unit keys (=ENTER).
Instruments with MS DOS controller or without controller:
baudrate = 9600, data bits = 8, stop bits = 1, parity = NONE, protocoll = NONE and owner = INSTRUMENT.
Manually: Setting interface COM1|2
½ Call SETUP-GENERAL SETUP menu ½ Select desired baudrate, bits, stopbit, parity and protocoll in table
COM PORT 1/2.
½ Set owner to Instrum ent or INSTR and DOS in table COM PORT 1/2 (with
MS DOS option FSE-B15 only)
½ Terminate input using one of the unit keys (=ENTER).
Return to Manual Operation
Return to manual operation is possible via the front panel or via RS-232 interface. Manually: ½ Press the LOCAL key.
Notes: Before switchover, command processing must be completed as
otherwise switchover to remote control is effected immediately.
– The LOCAL key can be disabled by the univ ersal command LLO
(see chapter 8) in order to prevent unintentional switc hover. In this case, switchover to manual mode is only possible via remote control.
– The LOCAL key can be enabled again by sending the control
codes "@LOC" via RS-232 (see chapter 8).
Via RS-232: ...
V24puts(port, ’@LOC’); Set instrument to manual operation. ...
1065.6016.12 5.4 E-16
Page 24
FSE Switchover to Remote Control
Limitations
The following limitations apply if the unit is remote-controlled via the RS-232-C interface:
No interface messages, some control codes are defined (see chapter 8).
Only the Common Comm ands *OPC? can be used for com mand synchronization, *WAI and *OPC
are not available.
Block data cannot be transmitted.
When W indows NT is booted, data are output via the COM interface because of automatic external device recognition. Therefor e, it is r ec ommended to clear the input buff er of the c ontro ller bef or e r emote operation of the instrument via the COM interface.
1065.6016.12 5.5 E-16
Page 25
Switchover to Remote Control FSE
Remote Control via RSIB Interface
Notes: The RSIB interface is only available for instruments equipped with controller option, FSE-B15.
Windows Environment
To access the measuring instruments via the RSIB interface the DLLs should be installed in the corresponding directories:
Instruments with Windows NT controller:
RSIB.DLL in Windows NT system directory or control application directory.
RSIB32.DLL in Windows NT system32 directory or control application directory.
On the measuring instrument the DLL is already installed in the corresponding directory.
Instruments with MS DOS controller
RSIB.DLL in Windows NT system directory or control application directory.
Unix Enviroment – with Windows NT Controller
In order to access the measuring equipment via the RSIB interfac e, c opy the librsib.so.X.Y file to a directory for which the control application has read rights. X.Y in the file name indicates the version
number of the library, for example 1.0 (for details see Chapter 8
).
Remote Control
The control is performed with Visual C++ or Visual Basic programs. The local link to the internal controller is established with the name ’@local. If a remote controller is used, the instrum ent IP address is to be indicated here(only with Windows NTcontroller) .
Via VisualBasic: internal controller: ud = RSDLLibfind (’@local’, ibsta, iberr, ibcntl)
remote controller: ud = RSDLLibfind (’82.1.1.200’, ibsta, iberr, ibcntl)
Return to Manual Operation
The return to manual operation can be performed via the front panel (LOCAL key) or the RSIB interface. Manually: ½ Press the LOCAL key.
Note: Before switchover, command processing must be completed as
otherwise switchover to remote control is effected immediately.
Via RSIB: ...
ud = RSDLLibloc (ud, ibsta, iberr, ibcntl); ...
1065.6016.12 5.6 E-16
Page 26
FSE Messages
Messages
The messages transf err ed via the data lines of the IEC bus or the RSIB interf ac e ( see c hapter 8) c an be divided into two groups:
interface messages anddevice messages.
Some control characters are defined for the control of the RS-232-interface (see chapter 8).
IEE/IEEE-Bus Interface Messages
Interface messages are trans fer red on the data lines of the IEC bus, the "AT N" contr ol line being active. They are used for communication between controller and instrument and can only be sent by a controller which has the IEC-bus control. Interface commands can be subdivided into
universal commands andaddressed commands.
Universal commands act on all devices connected to the IEC bus without previous addressing, addressed comm ands only act on devices previously addressed as listeners. The inter face messages relevant to the instrument are listed in chapter 8.
RSIB Interface Messages
The RSIB interface enables the instrument to be controlled by Visual C++ or Vis ual Bas ic pr ogr ams. The interface functions are matched to the function interface for IEC/IEEE-bus programming from National Instruments. The functions supported by interface are listed in chapter 8
.
1065.6016.12 5.7 E-16
Page 27
Messages FSE
Device Messages (Commands and Device Responses)
Device messages are transferred on the data lines of the IEC bus, the "ATN" control line not being active. ASCII code is used. The device messages are more or less equal for the different interfaces. A distinction is made according to the direction in which they are sent on the IEC bus:
Commands are messages the controller sends to the instrument. They operate the device
functions and request informations. The commands are subdivided according to two criteria::
1. According to the effect they have on the instrument: Setting commands cause instrument settings such as reset of the
instrument or setting the center frequency.
Queries cause data to be provided for output on the IEC-bus,
e.g. for identification of the device or polling the marker.
2. According to their definition in standard IEEE 488.2:
Common Commands are exactly defined as to their function and
notation in standard IEEE 488.2. They refer to functions such as managem ent of the standar-dized status registers, reset and selftest.
Device-specific commands refer to functions depending on the features of the
instrument such as f requency setting. A majority of these commands has also been standardized by the SCPI committee (cf. Section 3.5.1).
Device responses are messages the instrument sends to the controller after a query. They can
contain measurement results, instrument settings and information on the instrument status (cf. Section 3.5.4).
Structure and syntax of the device messages are described in the following section. T he com m ands are listed and explained in detail in chapter 6.
1065.6016.12 5.8 E-16
Page 28
FSE Structure and Syntax of the Device Messages
Structure and Syntax of the Device Messages
SCPI Introduction
SCPI (Standard Commands for Programmable Instruments) describes a standard command set for programming inst ruments, irres pective of the type of instrument or m anufacturer. T he goal of the SCPI consortium is to standar dize the device-specific com mands to a large extent. F or this purpose, a model was developed which defines the same functions inside a device or for different devices. Command systems were generated which are assigned to these func tions. T hus it is possible to address the sam e functions with identical commands. The command systems are of a hierarchical structure. Fig. 5-1 illustrates this tree structure using a section of com mand system SENSe, which controls the sensor functions of the devices. SCPI is based on standard IEEE 488.2, i.e. it uses the sam e syntactic basic elements as well as the common com m ands defined in this standard. Part of the syntax of the device r esponses is def ined with greater restrictions than in standard IEEE 488.2 (see Section "Responses to Queries").
Structure of a Command
The comm ands c onsist of a so-c alled header and, in m ost c ases , one or m ore parameters. Header and parameter are separated by a "white space" (ASCII code 0 to 9, 11 to 32 decimal, e.g. blank). The headers may consist of several key words. Queries are form ed by directly appending a question mark to the header.
Note: The commands used in the following examples are not in ev ery case implemented in the
instrument.
Common commands Common commands consist of a header preceded by an asterisk "*"
and one or several parameters, if any. Examples: *RST RESET, resets the device
*ESE 253 EVENT STATUS ENABLE, sets the bits of the
event status enable register
*ESR? EVENT STATUS QUERY, queries the
contents of the event status register.
1065.6016.12 5.9 E-16
Page 29
Structure and Syntax of the Device Messages FSE
Device-specific commands
Hierarchy: Device-specific commands are of hierarchical structure (see
Fig. 5-1). The different levels are represented by combined headers. Headers of the highest level (root level) have only one key word. This key word denotes a complete command system.
Example: SENSe This key word denotes the com mand system
SENSe.
For commands of lower levels, the complete path has to be specified, starting on the left with the highest level, the individual key words being separated by a colon ":".
Example: SENSe:FREQuency:SPAN:LINK STARt This command lies in the fourth level of the SENSe system. It
determines which parameter remains unchanged when the span is changed. If LINK is set to STARt, the values of CENT er and ST OP are adjusted when the span is changed.
SENSe
BANDwidth FUNCtion
Fig. 5-1 Tree structure the SCPI command systems using the SENSe system by way of example
Some key words occur in several levels within one comm and system . Their effect depends on the structure of the comm and, that is to say, at which position in the header of a command they are inserted.
Example: SOURce:FM:POLarity NORMal
FREQuency
STOP
This command contains key word POLarity in the third command level. It defines the polarity between modulator and modulation signal.
SOURce:FM:EXTernal:POLarity NORMal
This command contains key word POLarity in the fourth command level. It defines the polarity between modulation voltage and the resulting direction of the m odulation only for the external signal source indicated.
CENTer
DETector
SPAN OFFSetSTARt
HOLD LINK
1065.6016.12 5.10 E-16
Page 30
FSE Structure and Syntax of the Device Messages
Optional key words: Some command systems perm it cer tain key words to be optionally inserted
into the header or omitted. These key words are marked by square brackets in the descr iption. The full command length must be recognized by the instrument for reasons of compatibility with the SCPI standard. Some commands are considerably shortened by these optional key words.
Example: [SENSe]:BANDwidth[:RESolution]:AUTO
This command couples the resolution bandwidth of the instrument to other parameters. The following command has the same effect:
BANDwidth:AUTO
Note: An optional key word must not be omitted if its effect is specified
in detail by a numeric suffix.
Long and s hort form: The key words feature a long for m and a short form . Either the s hort form
or the long form can be entered, other abbreviations are not permissible. Beispiel: STATus:QUEStionable:ENABle 1= STAT:QUES:ENAB 1
Note: The short form is mark ed by upper-case letters, the long form
corresponds to the complete word. Upper- case and lower-c ase notation only serve the above purpose, the instrument itself does not make any difference between upper-case and lower­case letters.
Parameter: T he parameter must be separated from the header by a "white space". If
several parameters ar e specified in a command, they are separated by a comma ",". A f ew queries perm it the param eters MINim um , MAXim um and DEFault to be entered. For a description of the types of parameter, refer to Section 3.5.5.
Example: SENSe:FREQuency:STOP? MAXimum Response:
This query requests the maximal value for the stop frequency.
Numeric suffix: If a device features several functions or features of the same kind, e.g.
inputs, the desired function can be selec ted by a suffix added to the com­mand. Entries without suffix are interpreted like entries with the suffix 1.
Example:. SYSTem:COMMunicate:SERial2:BAUD 9600
This command sets the baudrate of the second serial interface.
3.5E9
1065.6016.12 5.11 E-16
Page 31
Structure and Syntax of the Device Messages FSE
Structure of a Command Line
A command line may consist of one or several comm ands. It is terminated by a <New Line>, a <New Line> with EOI or an EOI together with the last data byte. Quick BASIC automatically produces an EOI together with the last data byte.
Several commands in a comm and line are separated by a semicolon ";". If the next command belongs to a different command system, the semicolon is followed by a colon.
Example:
CALL IBWRT(analyzer, "SENSe:FREQuency:CENTer 100MHz;:INPut:ATTenuation 10")
This command line contains two commands. The first command is part of the SENSe system and is used to specify the center frequenc y of the analyzer. The second com mand is part of the INPut system and sets the attenuation of the input signal.
If the successive com mands belong to the sam e system, having one or several levels in comm on, the command line can be abbr eviated. T o this end, the s ec ond command after the s emicolon starts with the level that lies below the common levels (see also Fig. 5-1). The colon following the semicolon m ust be omitted in this case.
Example:
CALL IBWRT
CALL IBWRT(analyzer, "SENSe:FREQuency:STARt 1E6;STOP 1E9")
However, a new command line always begins with the complete path. Example: CALL IBWRT(analyzer, "SENSe:FREQuency:STARt
(analyzer, "SENSe:FREQuency:STARt 1E6;:SENSe:FREQuency:STOP 1E9")
This comm and line is represented in its f ull length and contains two comm ands separated from each other by the semicolon. Both commands are part of the SENSe command system, subsystem FREQuency, i.e. they have two common levels. When abbreviating the c ommand line, the second command begins with the level below SENSe:FREQuency. The colon after the semicolon is omitted.
The abbreviated form of the command line reads as follows:
1E6")
CALL IBWRT(analyzer, "SENSe:FREQuency:STOP 1E9")
Responses to Queries
A query is defined for each setting com mand unless explicitly specified otherwise. It is f or med by adding a question mark to the ass ociated setting command. Ac cording to SCPI, the responses to queries are partly subject to stricter rules than in standard IEEE 488.2.
1 The requested parameter is transmitted without header.
Example: INPut:COUPling? Response: DC
2. Maximum values, m inimum values and all further quantities, which are requested via a special text parameter are returned as numerical values. Example: SENSe:FREQuency:STOP? MAX Response: 3.5E9
3. Numerical values are output without a unit. Physical quantities are referred to the basic units or to the units set using the Unit command. Example: SENSe:FREQuency:CENTer? Response: 1E6 for 1 MHz
4. Truth values <Boolean values> are returned as 0 (for OFF) and 1 (for ON). Example: SENSe:BANDwidth:AUTO? Response: 1 for ON
5. Text (character data) is returned in a short form (see also Section 3.5.5). Example: SYSTem:COMMunicate:SERial:CONTrol:RTS?
1065.6016.12 5.12 E-16
Response(for standard): STAN
Page 32
FSE Structure and Syntax of the Device Messages
Parameters
Most commands require a parameter to be specified. The parameters must be separated from the header by a "white space". Permissible parameters are numerical values, Boolean parameters, text, character strings and block data. The type of parameter required for the respective comm and and the permissible range of values are specified in the command description (see Section 3.6).
Numerical values Numerical values can be entered in any form, i.e. with sign, decim al point and
exponent. Values exceeding the resolution of the instrum ent are rounded up or down. The value range is -9.9E37 to 9.9E37. The exponent is intr oduced by an "E" or "e". Entry of the exponent alone is not permissible. In the case of physical quantities, the unit can be entered. Permissible unit prefixes are G (giga), MA (mega), MOHM and MHZ are also perm issible), K (k ilo), M (m illi), U (micro) and N (nano). It the unit is missing, the basic unit is used.
Example:
SENSe:FREQuency:STOP 1.5GHz = SENSe:FREQuency:STOP 1.5E9
Special numerical The texts MINimum, MAXimum, DEFault, UP and DOWN are interpreted as
valuesspecial numerical values. In the case of a query, the numerical value is provided.
Example: Setting command: SENSe:FREQuency:STOP MAXimum
Query: SENSe:FREQuency:STOP? Response: 3.5E9
MIN/MAX MINimum and MAXimum denote the minimum and maximum value.
DEF DEFault denotes a preset value which has been stored in the EPROM. This
value conforms to the default setting, as it is called by the *RST command
UP/DOWN UP, DOW N increases or reduces the numerical value by one step. The step
width can be specified via an allocated step command for each parameter which can be set via UP, DOWN.
INF/NINF INFinity, Negative INFinity (NINF) Negative INFinity (NINF) represent the
numerical values -9.9E37 or 9.9E37, respec tively. INF and NINF are only sent as device reponses.
NAN Not A Number (NAN) represents the value 9.91E37. NAN is only sent as
device response. This value is not defined. Possible c auses ar e the divis ion by zero, the subtraction/addition of infinite and the representation of undefined values.
Boolean Parameters Boolean parameters represent two states. The ON state (logically true) is
represented by ON or a numerical value unequal to 0. T he OFF state ( logically untrue) is represented by OFF or the numerical value 0. 0 or 1 is provided in a query.
Example: Setting command: DISPlay:WINDow:STATe ON
Query: DISPlay:WINDow:STATe? Response: 1
1065.6016.12 5.13 E-16
Page 33
Structure and Syntax of the Device Messages FSE
Text Text parameters observe the syntactic rules for key words, i.e. they can be
entered using a short or long form. Like any parameter, they have to be separated from the header by a white space. In the case of a query, the short form of the text is provided.
Example: Setting command: INPut:COUPling GROund
Query: INPut:COUPling? Response GRO
Strings Strings must always be entered in quotation marks (’ or ").
Example: SYSTem:LANGuage "SCPI"
SYSTem:LANGuage ’SCPI’
Block data Block data are a transmission form at which is suitable for the transmission of
large amounts of data. A command using a block data parameter has the following structure:
Example: HEADer:HEADer #45168xxxxxxxx ASCII character # introduces the data block. The next number indicates how
many of the following digits describe the length of the data block . In the ex ample the 4 following digits indicate the length to be 5168 bytes. The data bytes follow. During the transmission of these data bytes all End or other contr ol signs are ignored until all bytes are transmitted..
or
Overview of Syntax Elements
The following survey offers an overview of the syntax elements.
The colon separates the key words of a command.
:
In a command line the separating semicolon m arks the uppermost command level.
The semicolon separates two commands of a command line.
;
It does n ot alter the path.
,
The comma separates several parameters of a c ommand. The question mark forms a query.
?
*
The asterisk marks a common command.
"
Double or single quotation marks introduce a string and terminate it.
The double dagger # introduces block data.
#
A "white space" (ASCII-Code 0 to 9, 11 to 32 decimal, e.g. blank) separates header a nd parameter.
1065.6016.12 5.14 E-16
Page 34
FSE Instrument Model and Command Processing
Instrument Model and Command Processing
The instrument model shown in Fig. 5-2 has been m ade viewed from the s tandpoint of the servicing of IEC-bus commands . The individual components work independently of each other and sim ultaneously. They communicate by means of so-called "messages".
Input unit with
IEC Bus
input puffer
Command
recognition
Data set
Status reporting-
system
Instrument hardware
Output unit with
IEC Bus
Fig. 5-2 Instrument model in the case of remote control by means of the IEC bus
output buf f er
Input Unit
The input unit receives com mands character by character from the IEC bus and collects them in the input buffer. The input buffer has a size of 256 characters. The input unit sends a message to the command recognition as soon as the input buffer is full or as soon as it receives a delimiter, <PROGRAM MESSAGE TERMINATOR>, as defined in IEEE 488.2, or the interface message DCL. If the input buffer is full, the IEC-bus traf fic is stopped and the data rec eived up to then are processed. Subsequently the IEC-bus traffic is continued. If, however, the buf fer is not yet full when receiving the delimiter, the input unit can already receive the next command during command recognition and execution. The receipt of a DCL clears the input buffer and immediately initiates a message to the command recognition.
1065.6016.12 5.15 E-16
Page 35
Instrument Model and Command Processing FSE
Command Recognition
The comm and recognition analyses the data received from the input unit. It proceeds in the order in which it receives the data. Only a DCL is serviced with priority, a GET (Group Execute T rigger), e.g., is only executed after the comm ands received before as well. Eac h recognized comm and is im mediately transferred to the data set but without being executed there at once. Syntactical errors in the comm and ar e rec ognized here and supplied to the s tatus r epor ting system . The rest of a command line after a syntax error is analysed further if possible and serviced. If the command recognition recognizes a delimiter or a DCL, it requests the data set to set the commands in the ins trum ent hardware as well now. Subsequently it is imm ediately prepared to process commands again. This means for the command servicing that further commands can already be serviced while the hardware is still being set ("overlapping execution").
Data Set and Instrument Hardware
Here the expression "instrument hardware" denotes the part of the instrument fulfilling the actual instrument function - signal generation, measurement etc. The controller is not included.
The instrument data base is a detailed reproduction of the instrument hardware in the software. IEC-bus setting comm ands lead to an alteration in the data set. The data base m anagem ent enters the
new values (e.g. frequency) into the data base, however, only passes them on to the hardware when requested by the command recognition.
The data are only checked for their com patibility among each other and with the instrum ent hardware immediately before they are transmitted to the instrument hardware. If the detection is made that an execution is not possible, an "execution error" is signalled to the status reporting system. The alter ation of the data base are cancelled, the instrument hardware is not reset.
IEC-bus queries induce the data set management to send the desired data to the output unit.
Status Reporting System
The status reporting system c ollects information on the instrum ent state and makes it available to the output unit on request. The exact structure and function are described in the following section.
1065.6016.12 5.16 E-16
Page 36
FSE Instrument Model and Command Processing
Output Unit
The output unit collects the inform ation requested by the controller, which it receives fr om the data set management. It proces ses it according to the SCPI rules and makes it available in the output buffer. The output buffer has a size of 4096 characters. If the information requested is longer, it is made available "in portions" without this being recognized by the controller. If the instrument is address ed as a talk er without the output buff er containing data or awaiting data from the data set management, the output unit sends error m essage "Quer y UNTERMINATED" to the status reporting system. No data are sent on the IEC bus, the c ontroller waits until it has reac hed its tim e lim it. This behaviour is specified by SCPI.
Command Sequence and Command Synchronization
What has been said above makes clear that all commands can potentially be carried out overlapping. Equally, setting commands within one command line are not absolutely serviced in the order in which they have been received.
In order to make sure that commands ar e actually carried out in a certain order, each comm and must be sent in a separate command line, that is to say, with a separate IBWRT()-call. In order to prevent an overlapping execution of comm ands, one of commands *OPC, *OPC? or *WAI must be used. All three commands cause a cer tain action only to be carried out after the hardware has been set and has settled. By a suitable programming, the contoller can be forced to wait for the respective action to occur (cf. Table 5-1).
Table 5-1 Synchronisation using *OPC, *OPC? and *WAI
Commnd Action after the hardware has settled Programming the controller
*OPC Sett i ng t he opteration-complete bit i n t he ESR - Setting bit 0 in the ESE
*OPC? Writing a "1" into the output buffer A ddressing the instrument as a talker
*WAI Continuing the IEC-bus handshake Sending the next command
- Setting bit 5 in the SRE
- Waiting for service request (SRQ)
An example as to command synchronization can be found in chapter 7 "Program Examples".
1065.6016.12 5.17 E-16
Page 37
Status Reporting System FSE
Status Reporting System
The status reporting system ( cf. Fig. 5-3) stores all information on the present operating state of the instrument, e.g. that the instrum ent presently carries out an AUTORANGE and on errors which have occurred. This inf ormation is stored in the status registers and in the error queue. T he status registers and the error queue can be queried via IEC bus.
The information is of a hierarchic al structure. T he register status byte (STB) defined in IEEE 488.2 and its associated mask regist er service r equest enable (SRE) for m the upper mos t level. The STB receives its information f rom the standard event status register ( ESR) which is also defined in IEEE 488.2 with the associated mask register standard event s tatus enable ( ESE) and r egister s ST ATus:OPERation and STATus:QUEStionable which are defined by SCPI and contain detailed information on the instrument.
The IST flag ("Individual ST atus") and the parallel poll enable regis ter (PPE) alloc ated to it are also part of the status reporting system. T he IST flag, like the SRQ, com bines the entire instrument status in a single bit. The PPE fulfills an analog function for the IST flag as the SRE for the service request.
The output buffer contains the messages the instrum ent returns to the controller. It is not part of the status reporting system but determines the value of the MAV bit in the STB and thus is represented in Fig. 5-3.
Table 5-12 at the end of this chapter compris es the diff erent com mands and events c ausing the st atus reporting system to be reset.
Structure of an SCPI Status Register
Each SCPI register consists of 5 parts which each have a width of 16 bits and have different func tions (cf. Fig. 5-2). The individual bits are independent of each other, i.e. each hardware status is assigned a bit number which is valid for all five parts. For example, bit 3 of the STATus:OPERation register is assigned to the hardware status "wait for trigger" in all f ive par ts. Bit 15 ( the most significant bit) is se t to zero for all parts. Thus the contents of the register parts can be process ed by the controller as positive integer.
15 14 13 12 CONDition part 3 2 1 0
15 14 13 12 PTRansition part 3 2 1 0
15 14 13 12 NTRansition part 3 2 1 0
15 1 4 13 12 EVENt p art 3 2 1 0
to higher- o rder r eg ister
& & & & & & & & & & & & & & & &
15 14 13 12 ENABle part 3 2 1 0
Sum b it
+
& = logical AND
= logical OR
+
of all bits
Fig. 5-2 The status-register model
1065.6016.12 5.18 E-16
Page 38
FSE Status Reporting System
CONDition part The CONDition part is directly written into by the hardware or the sum bit of
the next lower register. Its contents reflects the current ins trum ent status . T his register part can only be read, but not written into or cleared. Its contents is not affected by reading.
PTRansition part The Positive-TRansition part acts as an edge detector. When a bit of the
CONDition part is changed from 0 to 1, the associated PTR bit decides whether the EVENt bit is set to 1. PTR bit =1: the EVENt bit is set. PTR bit =0: the EVENt bit is not set. This part can be written into and read at will. Its contents is not af fected by reading.
NTRansition part The Negative-TRansition part also acts as an edge detec tor . When a bit of the
CONDition part is changed from 1 to 0, the associated NTR bit decides whether the EVENt bit is set to 1. NTR-Bit = 1: the EVENt bit is set. NTR-Bit = 0: the EVENt bit is not set. This part can be written into and read at will. Its contents is not af fected by reading.
With these two edge register parts the user can define which state transition of the condition part (none, 0 to 1, 1 to 0 or both) is stored in the EVENt part.
EVENt part The EVENt part indicates whether an event has occurred since the last
reading, it is the "memory" of the condition part. It only indicates events passed on by the edge filters. It is permanently updated by the instrument. This part can only be read by the user. During reading, its contents is set to zero. In linguistic usage this part is often equated with the entire register.
ENABle part The ENABle part determines whether the associated EVENt bit c ontributes to
the sum bit (cf. below). Each bit of the EVENt part is ANDed with the associated ENABle bit (symbol ’&’). The results of all logical operations of this part are passed on to the sum bit via an OR function (symbol ’+’). ENABle-Bit = 0: the associated EVENt bit does not contribute to the sum bit ENABle-Bit = 1:if the associated EVENT bit is "1", the sum bit is set to "1" as
well. This part can be written into and read by the user at will. Its contents is not affected by reading.
Sum bit As indicated above, the sum bit is obtained f rom the EVENt and ENABle part
for each register. The r esult is then entered into a bit of the CONDition part of the higher-order register. The instrument autom atic ally generates the sum bit f or each register . T hus an event, e.g. a PLL that has not locked, can lead to a service request throughout all levels of the hierarchy.
Note: The service request enable register SRE defined in IEEE 488.2 can be taken as ENABle
part of the STB if the STB is structured according to SCPI. By analogy, the ESE can be taken as the ENABle part of the ESR.
1065.6016.12 5.19 E-16
Page 39
Status Reporting System FSE
Overview of the Status Registers
15
not used
14
Subrange limit attained 13 12 11 10
9
Subrange 10
8
Subrange 9
7
Subrange 8
6
Subrange 7
5
Subrange 6
4
Subrange 5
3
Subrange 4
2
Subrange 3
1
Subrange 2
0
Subrange 1
STATus:QUEStionable:TRANsducer
& = log ic al AND
= logical OR of all bits
SRQ
-&-
-&-
-&-
-&-
-&-
SRE
-&-
-&-
-&-
-&-
-&-
-&-
PPE
IST flag
7
RQS/MSS
6 5
ESB MAV
4 3 2 1 0
STB
Error/event
queue
bla
15 14 13 12 11 10
15 14 13 12 11 10
STATus:QUEStionable
-&-
-&-
-&-
-&-
-&-
-&-
-&-
Output
buffer
-&-
ESE ESR
not used PROGram run n ing INSTrument summary bit
9 8
HCOPy in progress CORRecting
7
WAIT for ARM
6
WAIT for TRIGGER
5
MEASuring
4
SWEeping
3
RANGing
2
SETTling
1 0
CALibrating
STATus:OPERation
not used COMMand warning TRANsducer break ACPLimit SYNC LMARgin
9
LIMit
8
CALibration (= UNCAL)
7
MODulation
6
PHASe
5
FREQuency
4
TEMPerature
3
POWer
2
TIME
1
CURRent
0
VOLTage
7
Power on
6
User Request
5
Command Error
4
Execution Error
3
Device Dependent Error
2
Query Error
1
Reques t Control
0
Operation Complete
15
not used 14 13
ALT2 LOWer FAIL (screen B) 12
ALT2 UPPer FAIL (screen B) 11
ALT1 LOWer FAIL (screen B) 10
ALT1 UPPer FAIL (screen B)
9
ADJ LOWer FAIL (screen B)
8
ADJ UPPer FAIL (screen B)
7 6 5
ALT2 LOWer FAIL (screen A)
4
ALT2 UPPer FAIL (screen A)
3
ALT1 LOWer FAIL (screen A)
2
ALT1 UPPer FAIL (screen A)
1
ADJ LOWer FAIL (screen A)
0
ADJ UPPer FAIL (screen A)
STATus:QUEStionable:ACPLimit
15
not used 14 13 12 11 10
9 8 7
LMAR gin 8 FAIL
6
LMAR gin 7 FAIL
5
LMAR gin 6 FAIL
4
LMAR gin 5 FAIL
3
LMAR gin 4 FAIL
2
LMAR gin 3 FAIL
1
LMAR gin 2 FAIL
0
LMAR gin 1 FAIL
STATus:QUEStionable:LMARgin
15
not used 14 13 12 11 10
LO LEVel (screen B)
9
LO UNLoc ked (scree n B)
8 7 6 5 4 3 2
LO LEVel (screen A)
1
LO UNLoc ked (scree n A)b
0
OVEN COLD
STATus:QUEStionable:FREQuency
15
not used 14 13 12 11 10
9 8 7 6 5 4 3
CARRier overload
2
No carrier
1
SYNC not found
0
BURSt not found
STATus:QUEStionable:SYNC
15
not used 14 13 12 11 10
9 8 7
LIMit 8 FAIL
6
LIMit 7 FAIL
5
LIMit 6 FAIL
4
LIMit 5 FAIL
3
LIMit 4 FAIL
2
LIMit 3 FAIL
1
LIMit 2 FAIL
0
LIMit 1 FAIL
STATus:QUEStionable:LIMit
not used
15 14 13 12 11
IF_OVe rl oa d (s creen B)
10
UNDerload Option B7 (screen B)
9
OVERload (screen B)
8 7 6 5 4 3
IF_OVe rl oa d (s creen A)
2
UNDerload Opt ion B7 (screen A)
1
OVERload (screen A)
0
STATus:QUEStionable:POWer
Fig. 5-3 Overview of the status registers
1065.6016.12 5.20 E-16
Page 40
FSE Status Reporting System
Description of the Status Registers
Status Byte (STB) and Service Request Enable Register (SRE)
The STB is already defined in IEEE 488.2. It provides a rough overview of the instrument status by collecting the pieces of information of the lower registers. It can thus be com pared with the CONDition part of an SCPI register and assum es the highest level within the SCPI hierarchy. A special f eature is that bit 6 acts as the sum bit of the remaining bits of the status byte. The STATUS BYTE is read out using the command "*STB?" or a serial poll.
The STB implies the SRE. It corresponds to the ENABle part of the SCPI registers as to its function. Each bit of the STB is assigned a bit in the SRE. Bit 6 of the SRE is ignored. If a bit is set in the SRE and the associated bit in the STB changes f rom 0 to 1, a Service Request (SRQ) is generated on the IEC bus, which triggers an interrupt in the controller if this is appropriately configured and c an be f urther processed there. The SRE can be set using command "*SRE" and read using "*SRE?".
Table 5-2 Meaning of the bits in the status byte
Bit No. Meaning
2
3
4
5
6
Error Queue not empty
The bit is set when an entry is m ade i n the error queue. If this bit is enabl ed by the SRE, each entry of the error queue generates a Service Request. Thus an error c an be recognized and specified in greater detail by polling the error queue. The poll provides an informative error message. This proc edure i s to be recommended si nce it considerably reduces the problems involved with IEC­bus control.
QUEStionable status sum bit
The bit is set if an EVENt bit is set in the QUEStionable-Stat us register and the associated ENABle bit is set to
1. A set bit indicates a questionable instrument status, which can be specified in greater detail by polling the QUEStionable-Status register.
MAV bit (message available)
The bit is set if a message is available in the out put buffer which can be read. This bit can be used to enable data to be automatically read from the instrument t o the controller (cf. chapter 7, program examples).
ESB bit
Sum bit of the event s tatus register. It i s set if one of the bits in the event status register is set and enabled in the event status enable regis ter. Setting of this bit i mplies an error or an event which can be spec i fied in greater detail by polling the event status register.
MSS bit (master status summary bit)
The bit is set if the i nstrument triggers a servi ce request. This is the case if one of the other bits of this registers is set together with its mask bit in the servi ce request enable register SRE.
7
OPERation status register sum bit
The bit is set if an EVENt bit is set in the OPERation-Stat us register and the associated ENABle bit is set to 1. A set bit indicates that the instrument i s just performing an action. The type of action can be determined by polling the OPERation-stat us register.
1065.6016.12 5.21 E-16
Page 41
Status Reporting System FSE
IST Flag and Parallel Poll Enable Register (PPE)
By analogy with the SRQ, the IST flag combines the entire status information in a single bit. It can be queried by means of a parallel poll or using command "*IST?".
The parallel poll enable register (PPE) deter mines which bits of the STB contribute to the IST f lag. The bits of the STB are ANDed with the corresponding bits of the PPE, with bit 6 being used as well in contrast to the SRE. The Ist flag results from the ORing of all results. The PPE can be set using commands "*PRE" and read using command "*PRE?".
Event-Status Register (ESR) and Event-Status-Enable Register (ESE)
The ESR is already defined in IEEE 488.2. It can be compared with the EVENt part of an SCPI r egister. The event status register can be read out using command "*ESR?". The ESE is the associated ENABle part. It can be s et us ing c ommand "*ESE" and r ead using comm and "*ESE?".
Table 5-3 Meaning of the bits in the event status register
Bit No. Meaning
0
1
2
3
4
5
Operation Complete
This bit is set on recei pt of the command *OP C exact l y when all previous commands have been executed.
Request Control
This bit is set if the instrument requests the controller functi on. Thi s is the case when hardcopy is output ted to a printer or a plotter via the IEC-bus.
Query Error
This bit is set if ei ther the controller wants to read data from the instrument without havi ng send a query, or if it does not fetch requested data and sends new instructions to t he i nstrument instead. The cause is often a query which is faulty and hence cannot be executed.
Device-dependent Error
This bit is set if a devi ce-dependent error occurs. An error message with a number between -300 and -399 or a positive error number, which denotes the error in greater detail, is entered i nto the error queue (cf. chapter 9, Error Messages).
Execution Error
This bit is set if a received command is syntactically correct, however, cannot be performed for other reasons. An error message with a number bet ween -200 and -300, which denotes the error in greater detail, is ent ered into the error queue (cf. chapter 9, Error Messages).
Command Error
This bit is set if a command which is undefined or syntactically incorrec t is received. An error mes sage with a number between -100 and -200, which denotes the error in greater detai l , is entered into the rror queue (cf. chapter 9, -Error Messages).
6
7
User Request
This bit is set on pressing the LOCAL key.
Power On (supply voltage on)
This bit is set on switc hi ng on the instrument.
1065.6016.12 5.22 E-16
Page 42
FSE Status Reporting System
STATus:OPERation Register
In the CONDition part, this register contains information on which actions the instrument is being executing or, in the EVENt part, inform ation on which ac tions the ins tr ument has executed s ince the las t reading. It can be read using commands "STATus:OPERation:CONDition?" or "STATus :OPERation[:EVENt]?".
Table 5-4 Meaning of the bits in the STATus.OPERation register
Bit No. Meaning
0
1
2
3
4
5
6
7
CALibrating
This bit is set as l ong as the instrument is performing a calibration.
SETTling
This bit is set as l ong as the new status is settling after a setting command. It is onl y set if the settling time is longer than the command processing time.
RANGing
This bit is set as l ong as the instrument is changing a range (e.g. Autorange).
SWEeping
This bit is set while the instrument is performing a sweep.
MEASuring
This bit is set while the instrument is performing a measurement.
WAIT for TRIGGER
This bit is set as l ong as the instrument is waiting for a trigger event.
WAIT for ARM
This bit is set as l ong as the instrument is waiting for an arming event.
CORRecting
This bit is set while the instrument is performing a correction.
8
9-12 Device dependent
13
14
15 This bit is always 0
HardCOPy in progress
This bit is set while the instrument is printi ng a hardcopy.
INSTrument Summary Bit
This bit is set when one or more logi cal instruments i s reporting a status m essage.
PROGram running
This bit is set while the instrument is performing a program.
The FSE supports bits 0 and 8.
1065.6016.12 5.23 E-16
Page 43
Status Reporting System FSE
STATus:QUEStionable Register
This register comprises information about indefinite states which may occur if the unit is operated without meeting the specifications. It can be queried by commands STATus:QUEStionable: CONDition? and STATus:QUEStionable[:EVENt]?.
Table 5-5 Meaning of bits in STATus:QUEStionable register
Bit No. Meaning
0
1
2
3
4
5
6
7
8
9
VOLTage
This bit is set if a questionable voltage occurs.
CURRent
This bit is set if a questionable current occurs.
TIME
This bit is set if a questionable time occ urs.
POWer
This bit is set if a questionable power occurs (cf. also section "STATus: QUE Stionable:POW erRegi ster")
TEMPerature
This bit is set if a questionable temperature occ urs.
FREQuency
The bit is set if a frequenc y i s questionable (cf. section "STATus:QUEStionable:FREQuency Register")
PHASe
The bit is set if a phase val ue i s questionable.
MODulation
The bit is set if a modulation is performed ques tionably.
CALibration
The bit is set if a measurement is performed uncalibrated (=^ label "UNCAL")
LIMit (unit-dependent)
This bit is set if a limit value is violated (see also section ST ATus:QUEStionable:LIMit Register)
10
11
12
13
14
15 This bit is always 0.
LMARgin (unit-dependent)
This bit is set if a margin is violated (see also section STATus:QUEStionable:LMARgin Regist er)
SYNC (unit-dependent) This bit is set if , during measurements with Option B7 (Signal Vector Anal ysis), the synchronization with
midamble or a successful search for burs ts cannot be performed (see al so STATus:QUESt i onabl e: SYNC Register)
ACPLimit (unit-dependent) This bit is set if a l i mit for the adjacent channel power measurement is viol ated (see also section
STATus:QUESti onabl e: ACPLimit Regist er)
TRANsducer break
This bit is set when the limit of the transducer s et subrange is attained.
COMMand Warning
This bit is set if the instrument ignores parameters when executing a command.
The FSE supports bits 3, 5, 7, 8, 9, 10, 11, 12 and 13, bits 7 (MO Dulation) and 11 (SYNC) only with option FSE-B7, Vector Signal Analysis’.
1065.6016.12 5.24 E-16
Page 44
FSE Status Reporting System
STATus QUEStionable:ACPLimit Register
This register Tcomprises information about the observance of limits during adjacent power measurements. It can be queried with commands ’STATus:QUEStionable:ACPLimit :CONDition?’ and ’STATus:QUEStionable:ACPLimit[:EVENt]?
Table 5- Meaning of bits in STATus:QUEStionable:ACPLimit register
Bit No. Meaning
0
1
2
3
4
5
6 not used
7 not used
8
ADJ UPPer FAIL(Screen A)
This bit is set if t he l i mit is exceeded in the upper adjacent channel.
ADJ LOWer FAIL (Screen A)
This bit is set if t he l i mit is exceeded in the lower adjacent channel .
ALT1 UPPer FAIL (Screen A)
This bit is set if t he l i mit is exceeded in the upper 1st alternate channel.
ALT1 LOWer FAIL (Screen A)
This bit is set if t he l i mit is exceeded in the lower 1st alternate channel.
ALT2 UPPer FAIL (Screen A)
This bit is set if t he l i mit is exceeded in the upper 2nd alternate channel.
ALT2 LOWer FAIL (Screen A)
This bit is set if t he l i mit is exceeded in the lower 2nd alternate channel .
ADJ UPPer FAIL (Screen B)
This bit is set if t he l i mit is exceeded in the upper adjacent channel.
9
10
11
12
13
14 not used
15 This bit is always 0.
ADJ LOWer FAIL (Screen B)
This bit is set if t he l i mit is exceeded in the lower adjacent channel .
ALT1 UPPer FAIL (Screen B)
This bit is set if t he l i mit is exceeded in the upper 1st alternate channel.
ALT1 LOWer FAIL (Screen B)
This bit is set if t he l i mit is exceeded in the lower 1st alternate channel.
ALT2 UPPer FAIL (Screen B)
This bit is set if t he l i mit is exceeded in the upper 2nd alternate channel.
ALT2 LOWer FAIL (Screen A)
This bit is set if t he l i mit is exceeded in the lower 2nd alternate channel .
1065.6016.12 5.25 E-16
Page 45
Status Reporting System FSE
STATus QUEStionable:FREQuency Register
This register comprises information about the reference and local oscillator. It can be queried with commands STATus:QUEStionable:FREQuency:CONDition? and "STATus :QUEStionable:FREQuency[:EVENt]?.
Table 5-6 Meaning of bits in STATus:QUEStionable:FREQuency register
Bit No. Meaning
0
1
2
3 not used
4 not used
5 not used
6 not used
7 not used
8 not used
9
OVEN COLD
This bit is set if the reference os cillator has not yet attained its operating temperature. ’OCXO’ will then be displayed.
LO UNLocked (Screen A) This bit is set if the local oscillator no longer locks. ’LO unl’ will then be displayed.
LO LEVel (Screen A) This bit is set if the level of the local osc illator is smaller than the nominal value. ’LO LVL’ will then be displayed.
LO UNLocked (Screen B) This bit is set if the local oscillator no longer locks.’ LO unl’ will then be displayed.
10
11 not used
12 not used
13 not used
14 not used
15 This bit is always 0.
LO LEVel (Screen B) This bit is set if the level of the local osc illator is smaller than the nominal value. ’LO LVL’ will then be displayed.
1065.6016.12 5.26 E-16
Page 46
FSE Status Reporting System
STATus QUEStionable:LIMit Register
This register comprises information about the observance of limit lines. It can be queried with commands STATus:QUEStionable:LIMit:CONDition? and STATus:QUEStionable:LIMit [:EVENt]?.
Table 5-7 Meaning of bits in STATus:QUEStionable:LIMit register
Bit No. Meaning
0
1
2
3
4
5
6
7
LIMit 1 FAIL
This bit is set if limit line 1 is violated.
LIMit 2 FAIL
This bit is set if limit line 2 is violated.
LIMit 3 FAIL
This bit is set if limit line 3 is violated.
LIMit 4 FAIL
This bit is set if limit line 4 is violated.
LIMit 5 FAIL
This bit is set if limit line 5 is violated.
LIMit 6 FAIL
This bit is set if limit line 6 is violated.
LIMit 7 FAIL
This bit is set if limit line 7 is violated.
LIMit 8 FAIL
This bit is set if limit line 8 is violated.
8 not used
9 not used
10 not used
11 not used
12 not used
13 not used
14 not used
15 This bit is always 0.
1065.6016.12 5.27 E-16
Page 47
Status Reporting System FSE
STATus QUEStionable:LMARgin Register
This register comprises information about the observance of limit margins. It can be queried with commands STATus:QUEStionable:LMARgin:CONDition? and "STATus:QUEStionable :LMARgin[:EVENt]?.
Table 5-8 Meaning of bits in STATus:QUEStionable:LMARgin register
Bit No. Meaning
0
1
2
3
4
5
6
7
LMARgin 1 FAIL
This bit is set if limit margin 1 is violated.
LMARgin 2 FAIL
This bit is set if limit margin 2 is violated.
LMARgin 3 FAIL
This bit is set if limit margin 3 is violated.
LMARgin 4 FAIL
This bit is set if limit margin 4 is violated.
LMARgin 5 FAIL
This bit is set if limit margin 5 is violated.
LMARgin 6 FAIL
This bit is set if limit margin 1 is violated.
LMARgin 7 FAIL
This bit is set if limit margin 7 is violated.
LMARgin 8 FAIL
This bit is set if limit margin 8 is violated.
8 not used
9 not used
10 not used
11 not used
12 not used
13 not used
14 not used
15 This bit is always 0.
1065.6016.12 5.28 E-16
Page 48
FSE Status Reporting System
STATus QUEStionable:POWer Register
This register comprises all information about possible overloads of the unit. It can be queried with commands STATus:QUEStionable :POWer:CONDition? and "STATus :QUEStionable:POWer [:EVENt]?.
Table 5-9 Meaning of bits in STATus:QUEStionable:POWer register
Bit No. Meaning
0
1
2
3 not used
4 not used
5 not used
6 not used
7 not used
8
9
OVERload (Screen A) This bit is set if the RF input is overloaded. ’OVLD’ will then be displayed.
UNDerload (Screen A) - Option FSE-B7 This bit is set if, during measurements in vector analyzer mode without capture buffer us ed, the lower level lim it
in the IF path is violated.
IF_OVerload (Screen A) This bit is set if the IF path is overloaded. ’IFOVLD’ will then be displayed.
OVERload (Screen B) This bit is set if the RF input is overloaded. ’OVLD’ will then be displayed.
UNDerload (Screen B) - Option FSE-B7 This bit is set if , during measurements without capture buffer used, the lower level l i mit in the IF path is vi ol ated.
10
11 not used
12 not used
13 not used
14 not used
15 This bit is always 0.
IF_OVerload (Screen B) This bit is set if the IF path is overloaded. ’IFOVLD’ will then be displayed.
1065.6016.12 5.29 E-16
Page 49
Status Reporting System FSE
STATus QUEStionable:SYNC Register
This register comprises information about sync and burst events related to Vector Analyzer mode, option FSE-B7, and to GSM measurements, options FSE-K10/20/30 and FSE-K11/21/31). It can be queried with commands STATus:QUEStionable:SYNC:CONDition? and "STATus :QUEStionable:SYNC[:EVENt]?.
Table 5-10 Meaning of bits in STATus:QUEStionable:SYNC register
Bit No. Meaning
0
1
2
3
4 to 14 not used
15 This bit is always 0.
BURSt not found
This bit is set if a burst was not found.
SYNC not found
This bit is set if t he sync sequence of midamble was not found.
No carrier
This bit is set if the carrier power determined in the pre-meas urement is 20 dB belowof the expected signal power (options FSE-K10/ FSE-K11).
Carrier overload
This bit is set if the carrier power determined in the pre-measurement is 4 dB above of the expected signal power (options FSE-K10/ FSE-K11).
The ’SYNC not found’ and ’BURSt not found’ bits are set with all measurements evaluating this information. The bits are recalculated f or each sweep so that they show the current status at the end of a sweep. GSM measurem ents (options FSE-K10 and FSE-K11) carrying along the two bits synchronously with the sweep:
- CPW Carrier Power activated with ’Sync To Midamble’ (*)
- PVT Power versus Time activated with ’Sync To Midamble’ (*)
- PFE Phase/Frequency Error
- MAC Modulation Accuracy
- TAA Trigger AutoAdjust
* With GMSK modulation, t he PVT and CPW m easurements do not perform a burs t search. The burs t search is only ac tive
with 8PSK modulation (EDGE).
The Carrier Overload’ and ’No Carrier’ bits are reset at the beginning of each GSM measurement (options FSE-K10 and FSE-K11) and, if required, set at the end of the pre-m easurement. If single-s tep measurements (CPW) are performed, the bits are set after the initial step and reset again at the beginning of the next. GSM measurements with bit setting as required:
- CPW Carrier Power (first step only, measurement of full power)
- PVT Power versus Time (setting possible after each of the two pre-measurements)
- MOD Modulation Spectrum
- TRA Transient Spectrum (**)
** With FSE-K10 (mobile) and power coupling OFF selected, a pre-measurement is not performed. Measuring the carrier
power is therefore not possible and so t he t wo bits are not set.
1065.6016.12 5.30 E-16
Page 50
FSE Status Reporting System
STATus QUEStionable:TRANsducer Register
This register indicates that a transducer hold point is attained (bit 15) and what range is to be swept next (bit 0 to 10). The sweep can be continued with command INITiate2:CONMeasure. It can be queried with comm ands STATus:QUEStionable:TRANsducer:CONDition? and "STATus :QUEStionable:TRANsducer[:EVENt]?.
Table 5-11 Meaning of bits in STATus:QUEStionable:TRANsducer register
Bit No. Meaning
0
1
2
3
4
5
6
7
8
9
Range 1
This bit is set when subrange 1 is at tained.
Range 2
This bit is set when subrange 2 is at tained.
Range 3
This bit is set when subrange 3 is at tained.
Range 4
This bit is set when subrange 4 is at tained.
Range 5
This bit is set when subrange 1 is at tained.
Range 6
This bit is set when subrange 6 is at tained.
Range 7
This bit is set when subrange 7 is at tained.
Range 8
This bit is set when subrange 8 is at tained.
Range 9
This bit is set when subrange 9 is at tained.
Range 10
This bit is set when subrange 10 is at tained.
10
11
12
13
14
15 This bit is always 0.
not used
not used
not used
not used
Subrange limit
This bit is set when the transducer is at the point of changeover from one range to another.
1065.6016.12 5.31 E-16
Page 51
Status Reporting System FSE
Application of the Status Reporting Systems
In order to be able to effectively use the status reporting system , the information contained there mus t be transmitted to the controller and further processed there. There are several methods which are represented in the following. Detailed program examples are to be found in chapter 7, Program Examples.
Service Request, Making Use of the Hierarchy Structure
Under certain circums tanc es, the ins tr ument can send a service request ( SRQ) to the contr oller. Usually this service request initiates an interrupt at the c ontroller, to which the control program can react with corresponding actions. As evident f rom Fig. 5-3, an SRQ is always initiated if one or sever al of bits 2, 3, 4, 5 or 7 of the status byte are set and enabled in the SRE. Each of these bits combines the inform ation of a further register, the error queue or the output buffer. The cor responding setting of the ENABle parts of the status registers c an achieve that arbitrary bits in an arbitrary status register initiate an SRQ. In order to make use of the possibilities of the service request, all bits should be set to "1" in enable registers SRE and ESE.
Examples (cf. Fig. 5-3 and chapter 7, Program Examples, as well): Use of command "*OPC" to generate an SRQ at the end of a sweep.
½ Set bit 0 in the ESE (Operation Complete) ½ Set bit 5 in the SRE (ESB)?
After its settings have been completed, the instrument generates an SRQ.
The SRQ is the only possibility for the instrument to bec ome active on its own. Eac h controller program should set the instrument such that a service request is initiated in the case of malfunction. The program should react appropriately to the service request. A detailed exam ple for a service reques t routine is to be found in chapter 7, Program Examples.
Serial Poll
In a serial poll, just as with comm and "*STB", the st atus byte of an instrument is queried. However, the query is realized via interface messages and is thus c learly faster. The serial-poll method has already been defined in IEEE 488.1 and used to be the only standard possibility for different instrum ents to poll the status byte. The method also works with instruments which do not adhere to SCPI or IEEE 488.2.
The quick-BASIC command for ex ec uting a s erial poll is "IBRSP( )". Ser ial poll is mainly used to obtain a fast overview of the state of several instruments connected to the IEC bus.
1065.6016.12 5.32 E-16
Page 52
FSE Status Reporting System
Parallel Poll
In a parallel poll, up to eight instruments are s imultaneously requested by the controller by means of a single command to transmit 1 bit of inf orm ation eac h on the data lines, i.e., to set the data line alloc ated to each instrument to logically "0" or "1". By analogy to the SRE register which determ ines under which conditions an SRQ is generated, there is a parallel poll enable register (PPE) which is ANDed with the STB bit by bit as well considering bit 6. The results are ORed, the res ult is then sent ( possibly inverted) as a response in the parallel poll of the controller. The result can also be queried without parallel poll by means of command "*IST".
The instrument first has to be set for the parallel poll using quick-BASIC command "IBPPC()". This command allocates a data line to the ins trument and determines whether the res ponse is to be inver ted. The parallel poll itself is executed using "IBRPP()".
The parallel-poll method is mainly used in order to quickly find out after an SRQ which instrum ent has sent the service request if there are many instrum ents connected to the IEC bus. To this effect, SRE and PPE must be set to the same value. A detailed example as to the parallel poll is to be found in chapter 7, Program Examples.
Query by Means of Commands
Each part of every status register can be read by means of queries. The individual commands are indicated in the detailed description of the registers. What is returned is always a number which represents the bit pattern of the register queried. Evaluating this number is effect ed by the controller program.
Queries are usually used after an SRQ in order to obtain more detailed inform ation on the cause of the SRQ.
Error-Queue Query
Each error state in the instrum ent leads to an entry in the error queue. The entries of the error queue are detailed plain-text error messages which can be looked at in the ERROR menu via m anual control or queried via the IEC bus using command "SYSTem:ERRor?". Each call of "SYSTem:ERRor?" provides an entry from the error queue. If no error m essages are stored there any mor e, the instrum ent responds with 0, "No error".
The error queue should be queried after every SRQ in the controller program as the entr ies des c ribe the cause of an error mor e precisely than the status registers. Especially in the test phase of a controller program the error queue should be quer ied regularly since faulty commands from the contr oller to the instrument are recorded there as well.
1065.6016.12 5.33 E-16
Page 53
Status Reporting System FSE
Resetting Values of the Status Reporting System
Table 5-12 comprises the diff erent commands and events causing the status reporting system to be reset. None of the commands, except for *RST and SYSTem:PRESet influences the functional instrument settings. In particular, DCL does not change the instrument settings.
Table 5-12 Resetting instrument functions
Event Switching on supply
Effect 0 1
Clear STB,ESR
Clear SRE,ESE
Clear PPE
Clear EVENTt parts of the registers
Clear Enable parts of all OPERation and QUEStionable registers, Fill Enable parts of all other registers with "1".
Fill PTRansition parts with "1" , Clear NTRansition parts
Clear error queue yes yes
voltage DCL,SDC
Power-On-Status-
Clear
yes
yes
yes
yes
yes
yes
(Device Clear,
Selected Device
Clear)







*RST or
SYSTem:PRESet
STATus:PRESet *CLS
yes
yes
yes
yes
yes
Clear output buffer yes yes yes 1) 1) 1)
Clear command processing and input buffer
1) Every command being the first in a command line, i.e., im mediately following a <PROGRAM MESSAGE TERMINATOR> clears the output buffer.
yes yes yes

1065.6016.12 5.34 E-16
Page 54
FSE Contents - Description of Commands
Contents - Chapter 6 "Remote Control - Description of Commands"
6 Description of Commands.................................................................................. 6.1
Notation ............................................................................................................................................6.1
Common Commands....................................................................................................................... 6.4
ABORt Subsystem...........................................................................................................................6.8
CALCulate Subsystem.....................................................................................................................6.8
CALCulate:DELTamarker Subsystem..................................................................................... 6.9
CALCulate:DLINe Subsystem ...............................................................................................6.15
CALCulate:FEED Subsystem................................................................................................ 6.18
CALCulate:FORMat and CALCulate:FSK Subsystems.........................................................6.19
CALCulate:LIMit Subsystem..................................................................................................6.20
CALCulate:MARKer Subsystem............................................................................................ 6.36
CALCulate:MATH Subsystem ...............................................................................................6.61
CALCulate:X and CALCulate:UNIT Subsystem ....................................................................6.62
CALibration Subsystem................................................................................................................ 6.63
CONFigure Subsystem..................................................................................................................6.65
CONFigure:BTS Subsystem..................................................................................................6.65
CONFigure:BURSt Subsystem..............................................................................................6.73
CONFigure:MS Subsystem ...................................................................................................6.77
CONFigure:SPECtrum Subsystem........................................................................................6.85
CONFigure:SPURious Subsystem........................................................................................6.87
DIAGnostic Subsystem................................................................................................................. 6.89
DISPlay Subsystem........................................................................................................................6.91
FETCh Subsystem....................................................................................................................... 6.101
FETCh:BURSt Subsystem .................................................................................................. 6.101
FETCh:PTEMplate Subsystem............................................................................................6.111
FETCh:SPECtrum Subsystem ............................................................................................ 6.112
FETCh:SPURious Subsystem............................................................................................. 6.115
FORMat Subsystem..................................................................................................................... 6.117
HCOPy Subsystem ......................................................................................................................6.119
INITiate Subsystem...................................................................................................................... 6.125
INPut Subsystem .........................................................................................................................6.127
INSTrument Subsystem ..............................................................................................................6.130
MMEMory Subsystem.................................................................................................................. 6.132
OUTPut Subsystem .....................................................................................................................6.143
READ Subsystem......................................................................................................................... 6.145
READ:BURSt Subsystem.................................................................................................... 6.145
READ:SPECtrum Subsystem.............................................................................................. 6.159
READ:SPURious Subsystem ..............................................................................................6.161
1065.6016.12 I-6.1 E-16
Page 55
Contents - Description of Commands FSE
SENSe Subsystem.......................................................................................................................6.163
SENSe:ADEMod Subsystem...............................................................................................6.163
SENSe:AVERage Subsystem .............................................................................................6.165
SENSe:BANDwidth Subsystem...........................................................................................6.167
SENSe:CORRection-Subsystem.........................................................................................6.171
SENSe:DETector Subsystem.............................................................................................. 6.181
SENSe:DDEMod Subsystem............................................................................................... 6.182
SENSe:FILTer Subsystem .................................................................................................. 6.190
SENSe:FREQuency Subsystem..........................................................................................6.193
SENSe:MIXer - Subsystem .................................................................................................6.197
SENSe:MSUMmary Subsystem.......................................................................................... 6.201
SENSe:POWer Subsystem.................................................................................................6.203
SENSe:ROSCillator Subsystem.......................................................................................... 6.206
SENSe:SWEep Subsystem.................................................................................................6.207
SENSe:TV Subsystem......................................................................................................... 6.211
SOURce Subsystem ....................................................................................................................6.212
STATus Subsystem..................................................................................................................... 6.214
SYSTem Subsystem .................................................................................................................... 6.226
TRACe Subsystem....................................................................................................................... 6.233
TRIGger Subsystem..................................................................................................................... 6.235
UNIT Subsystem ..........................................................................................................................6.240
Alphabetical List of Commands.................................................................................................6.241
Table of Softkeys with IEC/IEEE-Bus Command Assignment ................................................6.259
Basic Instrument - Signal Analysis Mode ............................................................................6.259
FREQUENCY Key Group.......................................................................................... 6.259
LEVEL Key Group.....................................................................................................6.261
INPUT Key.................................................................................................................6.262
MARKER Key Group................................................................................................. 6.263
LINES Key Group...................................................................................................... 6.267
TRACE Key Group....................................................................................................6.269
SWEEP Key Group ................................................................................................... 6.271
Basic Instrument - General Device Settings........................................................................6.274
DATA VARIATION Key Group .................................................................................. 6.274
SYSTEM Key Group..................................................................................................6.274
CONFIGURATION Key Group..................................................................................6.277
STATUS Key Group..................................................................................................6.279
HARDCOPY Key Group............................................................................................ 6.280
MEMORY Key Group................................................................................................6.281
USER Key ................................................................................................................. 6.283
Operating Mode Vector-Signal Analyzer (Option FSE-B7).................................................. 6.284
CONFIGURATION Key Group - Digital Demodulation.............................................. 6.284
CONFIGURATION Key Group - Analog Demodulation ............................................6.288
FREQUENCY Key Group.......................................................................................... 6.289
LEVEL Key Group.....................................................................................................6.290
INPUT Key.................................................................................................................6.291
MARKER Key Group................................................................................................. 6.291
LINES Key Group...................................................................................................... 6.293
1065.6016.12 I-6.2 E-16
Page 56
FSE Contents - Description of Commands
TRACE Key Group....................................................................................................6.294
SWEEP Key Group ................................................................................................... 6.295
TRIGGER Key Group - Digital Demodulation ........................................................... 6.295
TRIGGER Key Group - Analog Demodulation ..........................................................6.296
Operating Mode Tracking Generator (Option FSE-B8 to B11)............................................6.297
CONFIGURATION Key Group..................................................................................6.297
Operating Mode TV Demodulation (Option FSE-B3) ..........................................................6.298
CONFIGURATION Key Group..................................................................................6.298
SWEEP Key Group ................................................................................................... 6.298
Operating Mode GSM BTS Analyzer (Option FSE-K11)..................................................... 6.299
CONFIGURATION Key Group..................................................................................6.299
Operating Mode GSM MS Analyzer (Option FSE-K10)....................................................... 6.309
CONFIGURATION Key Group..................................................................................6.309
External Mixer Output (Option FSE-B21) ............................................................................6.319
INPUT Key Group......................................................................................................6.319
1065.6016.12 I-6.3 E-16
Page 57
Contents - Description of Commands FSE
1065.6016.12 I-6.4 E-16
Page 58
FSE Notation
6 Description of Commands
Notation
In the following sections, all commands implem ented in the instrument are f irst listed in tables and then described in detail, separated according to the command system. The notation corr esponds to the one of the SCPI standards to a large extent. The SCPI conformity information can be taken from the individual description of the commands.
Table of Commands
Command: In the command column, the table provides an overview of the com m ands
and their hierarchical arrangement (see indentations).
Parameter: The parameter column indicates the requested parameters together with
their specified range.
Unit: The unit column indicates the basic unit of the physical parameters.
Remark: In the remark column an indication is made on:
– whether the command does not have a query form, – whether the command has only one query form – whether this c ommand is im plemented only with a certain option of the
instrument
Indentations The different levels of the SCPI comm and hierarchy are represented in the
table by means of indentations to the right. The lower the level is, the farther the indentation to the right is. Please observe that the complete notation of the command always includes the higher levels as well.
Example: :SENSe:FREQuency:CENTer is represented in the table as
follows:
:SENSe first level
:FREQuency second level
:CENTer third level
Individual description In the individual description, the complete notation of the command is
given. An example for each command, the *RST value and the SCPI information is written out at the end of the individual description. The modes for which a command can be used are indicated by the following abbreviations:
A Spectrum analysis A-F Spectrum analysis - frequency domain only A-Z Spectrum analysis - time domain only (zero span) VA Vector signal analysis (option FSE-B7) VA-D Vector signal analysis - digital demodulation (option FSE-B7) VA-A Vector signal analysis - analog demodulation (option FSE-B7) BTS GSM BTS analysis (option FSE-K11) MS GSM MS analysis (option FSE-K10)
Note: The spectrum analysis (analyzer) mode is implemented in the
basic unit. For the other modes, the corresponding options are required.
1065.6016.12 6.1 E-16
Page 59
Notation FSE
Upper/lower case notation Upper/lower case letters serve to mar k the long or short form of the k ey
words of a command in the description (see Chapter 5). The instrument itself does not distinguish between upper and lower case letters.
Special characters | A selection of key words with an identical effect exists for several
commands. These key words are indicated in the same line, they are separated by a vertical stroke. Only one of these key words has to be indicated in the header of the command. The effect of the command is independent of which of the key words is indicated.
Example:SENSe:FREQuency:CW|:FIXed
The two following commands of identical meaning can be formed. They set the frequency of the constantly frequent signal to 1 kHz:
SENSe:FREQuency:CW 1E3 = SENSe:FREQuency:FIXed 1E3 A vertical stroke in indic ating the parameter s m arks alternative poss ibilities
in the sense of "or". The effect of the c ommand is dif ferent, depending on which parameter is entered.
Example:Selection of the parameters for the command
INPut:COUPling AC | DC
If parameter AC is selected, only the AC content is fed through, in the case of DC, the DC as well as the AC content.
[ ] Key words in square brack ets can be om itted when composing the header
(cf. Chapter 5, Section "Optional Keywords"). The full command length must be accepted by the instrument for reasons of com patibility with the SCPI standards. Parameters in square brackets can optionally be incorporated in the command or omitted as well.
{ } Parameters in braces can optionally be incorporated in the command either
not at all, once or several times.
Description of parameters Due to the standardization, the parameter section of SCPI commands
consists always of the same syntactical elements. SCPI has specified a series of definitions therefor e, which are used in the tables of comm ands. In the tables, these established definitions are indic ated in angled brac kets (<...>) and will be briefly explained in the following (see also Chapter 5, Section "Parameters").
<Boolean> T his indication refers to parameters which can adopt two states, "on" and
"off". The "off " state may either be indicated by the keyword OFF or by the numeric value 0, the "on" state is indicated by ON or any numeric value other than zero. Parameter queries are always returned the num eric value 0 or 1.
1065.6016.12 6.2 E-16
Page 60
FSE Notation
<numeric_value>
<num> These indications mark parameters which may be entered as numeric
values or be set using specific keywords (character data). The keywords given below are permitted: MINimum This keyword sets the parameter to the smallest possible
value. MAXimum This keyword sets the parameter to the largest possible value. DEFault This keyword is used to reset the parameter to its default
value. UP This keyword increments the parameter value. DOWN This keyword decrements the parameter. The numeric values associated to MAXimum/MINimum/DEFault can be
queried by adding the corresponding keywords to the command. They must be entered following the quotation mark.
Example:SENSe:FREQuency:CENTer? MAXimum returns the maximum possible numeric value of the center frequency as
result.
<arbitrary block program data>
This keyword is provided for commands the parameters of which cons is t of a binary data block.
1065.6016.12 6.3 E-16
Page 61
Common Commands FSE
Common Commands
The common com mands are tak en from the IEEE 488.2 (IEC 625- 2) standard. Same com mands have the same effect on different devices. The headers of these commands consist of an asterisk "*" followed by three letters. Many common comm ands refer to the status reporting system which is described in detail in Chapter 5.
Command Designation Parameter Remark
*CAL? Calibration Query query only
*CLS Clear Status no query
*ESE Event Status Enable 0 to 255
*ESR? Standard Event Status Query 0 to 255 query only
*IDN? Identification Query <string> query only
*IST? Individual Status Query 0 to 255 query only
*OPC Operation Complete
*OPT? Option Identification Query query only
*PCB Pass Cont rol Back 0 to 30 no query
*PRE Parallel P ol l Regi ster Enable 0 to 255
*PSC Power On Status Cl ear 0 | 1
*RST Reset no query
*SRE Service Request Enable 0 to 255
*STB? Status Byte Query query only
*TRG Trigger no query
*TST? Self Test Query query only
*WAI Wait to continue no query
*CAL?
CALIBRATION QUERY triggers a calibration of the instrument and subsequently query the
calibration status. Any responses > 0 indicate errors.
*CLS
CLEAR STATUS sets the status byte (STB), the standard event regis ter (ESR) and the EVENt- part
of the QUEStionable and the OPERation register to zero. The command does not alter the mask and transition parts of the registers. It clears the output buffer.
1065.6016.12 6.4 E-16
Page 62
FSE Common Commands
*ESE 0 to 255
EVENT STATUS ENABLE sets the event status enable register to the value indicated. Quer y *ESE?
returns the contents of the event status enable register in decimal form.
*ESR?
STANDARD EVENT STATUS QUERY returns the contents of the event status r egister in decimal
form (0 to 255) and subsequently sets the register to zero.
*IDN?
IDENTIFICATION QUERY queries the instrument identification.
The instrument identification consists of the following elements which are separated by commas:
Manufacturer Device (analyzer model) Serial number of the instrument Firmware version number Example: "Rohde&Schwarz, FSEA30, 825082/007, 1.67"
*IST?
INDIVIDUAL STATUS QUERY returns the contents of the IST flag in decim al form (0 | 1). T he IST
flag is the status bit which is sent during a parallel poll (cf. Chapter 5).
*OPC
OPERATION COMPLETE sets bit 0 in the event status register when all prec eding c om m ands have
been executed. This bit can be used to initiate a service request (cf. Chapter 5).
*OPC?
OPERATION COMPLETE QUERY writes message "1" into the output buffer as soon as all
preceding commands have been executed (cf. Chapter 5).
1065.6016.12 6.5 E-16
Page 63
Common Commands FSE
*OPT?
OPTION IDENTIFICATION QUERY queries the options included in the instrument and returns a list
of the options installed. The options are separated from each other by means of commas.
Position Option
1 FSE-B3 TV Demodulator 2 FSE-B4 Low Phase Noise & OCXO 3 FSE-B5 FFT-Filter 4 reserved 5 FSE-B7 Vector Signal Analysis 6 FSE-B8 Tracking Generator 3.5 GHz 7 FSE-B9 Tracking Generator 3.5 GHz with I/Q modulator 8 FSE-B10 Tracking Generator 7 GHz 9 FSE-B11 Tracking Generator 7 GHz with I/Q modulator 10 FSE-B12 Output Attenuator for Track i ng Generator 11 FSE-B13 1-dB Attenuator 12 reserved 13 FSE-B15 controller option 14 to 18 reserved 19 FSE-B21 External Mixer Output 20 to 21 reserved 22 FSE-B24 Frequency Extension to 44GHz 24 to 25 reserved
26 FSE-K10 27 FSE-K11 29 FSE-K20 30 FSE-K21 31 FSE-K30 31 FSE-K31
GSM Test Software, Mobile GSM Test Software, Base Station GSM Test Software, Edge Mobile GSM Test Software, EDGE Base Station GSM Test Software, 850 GHz band Mobile GSM Test Software, 850 GHz band Base Stat i on
Example: 0, FSE-B4, 0, 0, FSE-B7, 0, 0, 0, FSE-B11, FSE-B12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,..
*PCB 0 to 30
PASS CONTROL BACK indicates the controller address which the IEC-bus control is to be retur ned
to after termination of the triggered action.
*PRE 0 to 255
PARALLEL POLL REGISTER ENABLE sets parallel poll enable register to the value indicated.
Query *PRE? returns the contents of the parallel poll enable register in decimal form.
1065.6016.12 6.6 E-16
Page 64
FSE Common Commands
*PSC 0 | 1
POWER ON STATUS CLEAR determines whether the contents of the ENABle registers is
maintained or reset in switching on. *PSC = 0 causes the contents of the status registers to be maintained. Thus a service request
can be triggered in switching on in the case of a cor responding configuration of status registers ESE and SRE.
=
*PSC Query *PSC? reads out the contents of the power-on-status-clear flag. The response can be 0 or 1.
*RST
RESET sets the instrument to a defined default status. The command essentially corresponds to
pressing the [PRESET] key. The default setting is indicated in the description of the commands.
*SRE 0 to 255
SERVICE REQUEST ENABLE sets the service request enable register to the value indicated. Bit 6
(MSS mask bit) remains 0. This com mand determines under which c onditions a service request is triggered. Query *SRE? reads the contents of the service r equest enable r egis ter in dec imal form. Bit 6 is always 0.
0 resets the registers.
*STB?
READ STA TUS BYTE QUERY reads out the contents of the status byte in decimal form.
*TRG
TRIGGER triggers a measurement. This command corresponds to
Section "TRIGger subsystem", as well).
*TST?
SELF TEST QUERY triggers all selftests of the instrum ent and outputs an error code in decimal
form.
*WAI
WAIT-to-CONTINUE only permits the servicing of the subsequent commands after all preceding
commands have been executed and all signals have settled (cf. Chapter 5 and "*OPC" as well).
INITiate:IMMediate (cf.
1065.6016.12 6.7 E-16
Page 65
ABORt / CALCulate Subsystem FSE
ABORt Subsystem
The ABORt subsystem contains the commands for aborting triggered actions. An action can be triggered again immediately after being aborted. All commands trigger events which is why they are not assigned any *RST value.
COMMAND PARAMETERS UNIT COMMENT
ABORt -- -- no query
:ABORt
This command aborts a current measurement and resets the trigger system.
Example: "ABOR;INIT:IMM" Features: *RST value: 0
SCPI: conforming
Modes: A, VA, BTS, MS
CALCulate Subsystem
The CALCulate subsystem contains commands for converting instrument data, transforming and carrying out corrections. These functions are car ried out subsequent to data acquistion, i.e., following the SENSe subsystem.
In the split-screen representation, a distinction is made between CALCulate1 and CALCulate2: CALCulate1 =^ screen A; CALCulate2 =^ screen B
For setting REAL/IMAG PART in Vector Analyzer mode a distinction is also m ade between CALCulate3 and CALCulate4 in the split-screen representation:
CALCulate3 =^ screen C; CALCulate4 =^ screen D
1065.6016.12 6.8 E-16
Page 66
FSE CALCulate Subsystem
CALCulate:DELTamarker Subsystem
The CALCulate:DELTamarker subsystem checks the delta-marker functions in the instrument.
COMMAND PARAMETERS UNIT COMMENT
CALCulate<1|2>
:DELTamarker<1 to 4>
[:STATe] :MODE :AOFF :TRACe :X
:RELative? :Y? :MAXimum
[:PEAK]
:APEak
:NEXT
:RIGHt
:LEFT :MINimum
[:PEAK]
:NEXT
:RIGHt
:LEFT :FUNCtion
:FIXed
[:STATe] :RPOint
:Y
:OFFSet
:X
:PNOise
[:STATe] :RESult?
:STEP
[:INCRement]
:AUTO
<Boolean> ABSolute|RELative
<numeric_value> <numeric_value>
--
--
--
--
--
--
--
--
--
--
--
<Boolean>
<numeric_value> <numeric_value> <numeric_value>
<Boolean>
--
<numeric_value> <Boolean>
--
no query
-­HZ | S | SYM
--
--
--
--
--
--
--
--
--
--
--
DBM DB HZ |S | SYM
-- query only
HZ |S | SYM
--
query only query only
no query no query (vector signal analysis ) no query no query no query
no query no query no query no query
:CALCulate<1|2>:DELTamarker<1 to 4>[:STATe] ON | OFF
This command switches on or off the selected delta marker. If no indication is made, delta marker 1 is selected automatically.
Example: ":CALC:DELT3 ON" Features: *RST value: OFF
SCPI: device-specific
Modes: A, VA, BTS, MS
1065.6016.12 6.9 E-16
Page 67
CALCulate Subsystem FSE
:CALCulate<1|2>:DELTamarker<1 to 4>:MODE ABSolute | RELative
This command switches over between relative and absolute input of frequency of the delta marker.
Example: ":CALC:DELT:MODE ABS" Features: *RST value: REL
SCPI: device-specific Modes: A, VA, BTS, MS In the RELative mode, the frequency of the delta marker is programmed relative to the reference
marker. In the ABSolute mode, the frequency is defined by the absolute values.
:CALCulate<1|2>:DELTamarker<1 to 4>:AOFF
This command switches off all active delta markers.
Example: ":CALC:DELT:AOFF" Features: *RST value: -
SCPI: device-specific
Modes: A, VA, BTS, MS
:CALCulate<1|2>:DELTamarker<1 to 4>:TRACe 1 to 4
This command assigns the selected delta marker to the indicated measuring curve.
Example: ":CALC:DELT3:TRAC 2" Features: *RST value: -
SCPI: device-specific
Modes: A, VA, BTS, MS
:CALCulate<1|2>:DELTamarker<1 to 4>:X 0 to MAX (frequency | sweep time | symbols)
This command positions the selected delta marker to the indicated frequency (span > 0) or time (span = 0). The query always returns the absolute value of frequency or time.
Example: ":CALC:DELT:X 10.7MHz" Features: *RST value: -
SCPI: device-specific Modes: A, VA, BTS, MS The SYM unit is only valid in Vector Signal Analysis mode.
:CALCulate<1|2>:DELTamarker<1 to 4>:X:RELative?
This command queries the frequency (span > 0) or time (span = 0) of the selected delta marker relative to the reference marker.
Example: ":CALC:DELT:X:REL?" Features: *RST value: -
SCPI: device-specific Modes: A, VA, BTS, MS
1065.6016.12 6.10 E-16
Page 68
FSE CALCulate Subsystem
:CALCulate<1|2>:DELTamarker<1 to 4>:Y?
This command queries the value of the selected marker.
Example: ":CALC:DELT:Y?" Features: *RST value: -
SCPI: device-specific Modes: A, VA, BTS, MS In complex presentations (vector signal analysis - polar diagrams), the real and the imaginary
component as well as magnitude and phase are output separated by a comma.
:CALCulate<1|2>:DELTamarker<1 to 4>:MAXimum[:PEAK]
This command positions the delta marker to the current maximum value in the trace memory.
Example: ":CALC:DELT:MAX" Features: *RST value: -
SCPI: device-specific Modes: A, VA, BTS, MS This command is an event which is why it is not assigned an *RST value and has no query.
:CALCulate<1|2>:DELTamarker<1 to 4>:MAXimum:APEak
This command positions the delta marker to the maximum absolute value of the trace.
Example: ":CALC:DELT:MAX:APE" Features: *RST value: -
SCPI: device-specific Modes: VA This command is an event which is why it is not assigned an *RST value and has no query.
:CALCulate<1|2>:DELTamarker<1 to 4>:MAXimum:NEXT
This command positions the delta marker to the next smaller maximum value in the trace memory.
Example: ":CALC:DELT:MAX:NEXT" Features: *RST value: -
SCPI: device-specific Modes: A, BTS, MS This command is an event which is why it is not assigned an *RST value and has no query.
:CALCulate<1|2>:DELTamarker<1 to 4>:MAXimum:RIGHt
This command positions the delta marker to the next smaller maximum value to the right of the current value (i.e., in ascending X direction) in the trace memory.
Example: ":CALC:DELT:MAX:RIGH" Features: *RST value: -
SCPI: device-specific Modes: A, BTS, MS This command is an event which is why it is not assigned an *RST value and has no query.
1065.6016.12 6.11 E-16
Page 69
CALCulate Subsystem FSE
:CALCulate<1|2>:DELTamarker<1 to 4>:MAXimum:LEFT
This command positions the delta marker to the next smaller maximum value to the left of the current value (i.e., in descending X direction) in the trace memory.
Example: ":CALC:DELT:MAX:LEFT" Features: *RST value: -
SCPI: device-specific
Modes: A, BTS, MS Modes: R, A
This command is an event which is why it is not assigned an *RST value and has no query.
:CALCulate<1|2>:DELTamarker<1 to 4>:MINimum[:PEAK]
This command positions the delta marker to the current minimum value in the trace memory.
Example: ":CALC:DELT:MIN" Features: *RST value: -
SCPI: device-specific Modes: A, VA, BTS, MS This command is an event which is why it is not assigned an *RST value and has no query.
:CALCulate<1|2>:DELTamarker<1 to 4>:MINimum:NEXT
This command positions the delta marker to the next higher minimum value in the trace memory.
Example: ":CALC:DELT:MIN:NEXT" Features: *RST value: -
SCPI: device-specific Modes: A, BTS, MS This command is an event which is why it is not assigned an *RST value and has no query.
:CALCulate<1|2>:DELTamarker<1 to 4>:MINimum:RIGHt
This command positions the delta marker to the next higher minimum value to the right of the current value (ie in ascending X direction).
Example: ":CALC:DELT:MIN:RIGH" Features: *RST value: -
SCPI: device-specific Modes: A, BTS, MS This command is an event which is why it is not assigned an *RST value and has no query.
:CALCulate<1|2>:DELTamarker<1 to 4>:MINimum:LEFT
This command positions the delta marker to the next higher minimum value to the left of the current value (ie in descending X direction).
Example: ":CALC:DELT:MIN:LEFT" Features: *RST value: -
SCPI: device-specific Modes: A, BTS, MS This command is an event which is why it is not assigned an *RST value and has no query.
1065.6016.12 6.12 E-16
Page 70
FSE CALCulate Subsystem
:CALCulate<1|2>:DELTamarker<1 to 4>:FUNCtion:FIXed[:STATe] ON | OFF
This command switches the relative measurement to a fixed reference value on or off.
Example: ":CALC:DELT:FUNC:FIX ON" Features: *RST value: OFF
SCPI: device-specific. Modes: A, VA-D, BTS, MS The reference value is independent of the current trace.
:CALCulate<1|2>:DELTamarker<1 to 4>:FUNCtion:FIXed:RPOint:Y <numeric_value>
This command defines a new fixed reference value for the relative measurement.
Example: ":CALC:DELT:FUNC:FIX:RPO:Y -10dBm" Features: *RST value: - (FUNction:FIXed[:STATe] is set to OFF)
SCPI: device-specific Modes: A, VA The reference value is independent of the current trace.
:CALCulate<1|2>:DELTamarker<1 to 4>:FUNCtion:FIXe d:RPOint:Y:OFFSet <numeric_value>
This command defines an additional level offset for the relative measurement.
Example: ":CALC:DELT:FUNC:FIX:RPO:Y:OFFS 10dB" Features: *RST value: 0 dB
SCPI: device-specific Modes: A, VA The level offset is included in the output of the level value.
:CALCulate<1|2>:DELTamarker<1 to 4>:FUNCtion:FIXed:RPOint:X <numeric_value>
This command defines the new fixed reference frequency, time or symbols for the relative measurement.
Example: ":CALC:DELT:FUNC:FIX:RPO:X 10.7MHz" Features: *RST value: - (FUNction:FIXed[:STATe] is set to OFF)
SCPI: device-specific Mode: A The reference value is independent of the current trace. With span = 0, the reference time, otherwise
the reference frequency is defined.
:CALCulate<1|2>:DELTamarker<1 to 4>:FUNCtion:PNOise[:STATe] ON | OFF
This command switches the measurement of the phase noise on or off.
Example: ":CALC:DELT:FUNC:PNO ON" Features: *RST value: OFF
SCPI: device-specific Mode: A When the phase noise is measured, the correction values for the bandwidth and the log amplifier are
automatically considered. The measurement uses the reference values defined by FUNCtion:FIXed:RPOint:X or :Y.
1065.6016.12 6.13 E-16
Page 71
CALCulate Subsystem FSE
:CALCulate<1|2>:DELTamarker<1 to 4>:FUNCtion:PNOise:RESult?
This command queries the result of the phase noise measurement.
Example: ":CALC:DELT:FUNC:PNO:RES?" Features: *RST value: -
SCPI: device-specific Modes: A, BTS, MS This command is only a query which is why it is not assigned an *RST value.
:CALCulate<1|2>:DELTamarker<1 to 4>:STEP[:INCRement] <numeric_value>
This command defines the delta marker step width.
Example: ":CALC:DELT:STEP 10kHz" (frequency domain)
":CALC:DELT:STEP 5ms" (time domain)
Features: *RST value: - (STEP is set to AUTO)
SCPI: device-specific
Mode: A
:CALCulate<1|2>:DELTamarker<1 to 4>:STEP:AUTO ON | OFF
This command switches the automatic adaptation of the marker step width on or off.
Example: ":CALC:DELT:STEP:AUTO OFF" Features: *RST value: ON
SCPI: device-specific Mode: A With AUTO ON, the step width is 10% of the span.
1065.6016.12 6.14 E-16
Page 72
FSE CALCulate Subsystem
CALCulate:DLINe Subsystem
The CALCulate:DLINe subsystem check s the display lines in the instrument, i.e., the level, frequency and time lines (depending on the X-axis) as well as threshold and reference lines.
COMMAND PARAMETERS UNIT COMMENT
CALCulate<1|2> :DLINe<1|2>
:STATe
:THReshold
:STATe
:CTHReshold
:STATe
:RLINe
:STATe
:FLINe<1|2>
:STATe
:TLINe<1|2>
:STATe
<numeric_value>
<Boolean> <numeric_value>
<Boolean> <numeric_value>
<Boolean> <numeric_value>
<Boolean> <numeric_value> <Boolean> <numeric_value> <Boolean>
DBM | DB | DEG | RAD | S | HZ | PCT
DBM | DB | DEG | RAD | S | HZ | PCT
DBM | DB | DEG | RAD | S | HZ | PCT
DBM | DB | DEG | RAD | S | HZ | PCT
HZ
S | SYM
:CALCulate<1|2>:DLINe<1|2> MINimum to MAXimum (depending on current unit)
This command defines the position of the display line.
Example: ":CALC:DLIN -20dBm" Features: *RST value: - (STATe to OFF)
SCPI: device-specific Modes: A, VA, BTS, MS The display lines mark the given level in the display. The units DEG, RAD, S, and HZ are only valid in
conjunction with option Vector Signal Analysis, FSE-B7.
:CALCulate<1|2>:DLINe<1|2>:STATe ON | OFF
This command switches the display line on or off.
Example: ":CALC:DLIN2:STAT OFF" Features: *RST value: OFF
SCPI: device-specific Modes: A, VA, BTS, MS
1065.6016.12 6.15 E-16
Page 73
CALCulate Subsystem FSE
:CALCulate<1|2>:THReshold MINimum to MAXimum (depending on current unit)
This command defines the position of the thresholds.
Example: ":CALC:THR -82dBm" Features: *RST value: - (STATe to OFF)
SCPI: device-specific Modes: A, VA, BTS, MS For marker scan functions MAX PEAK, NEXT PEAK etc., the threshold serves as the lowest limit for
maximum or minimum search. The units DEG, RAD, S, and HZ are only valid in conjunction with option Vector Signal Analysis, FSE-B7.
:CALCulate<1|2>:THReshold:STATe ON | OFF
This command switches the threshold on or off.
Example: ":CALC:THR:STAT ON" Features: *RST value: OFF
SCPI: device-specific
Modes: A, VA, BTS, MS
:CALCulate<1|2>:CTHReshold MINimum to MAXimum (depending on the current unit)
This command defines the position of a threshold line (base line), below which all measured values are cleared.
Example: ":CALC:CTHR -82dBm" Features: *RST value: - (STATe to OFF)
SCPI: device-specific Mode: A, VA, BTS, MS The units DEG, RAD, S, and HZ are only valid in conjunction with option Vector Signal Analysis,
FSE-B7.
:CALCulate<1|2>:CTHReshold:STATe ON | OFF
This command is for switching on or off the threshold line (base line), below which all measured values are cleared.
Example: ":CALC:CTHR:STAT ON" Features: *RST value: OFF
SCPI: device-specific
Mode: A, VA, BTS, MS
:CALCulate<1|2>:RLINe MINimum to MAXimum (depending on the current unit)
This command defines the position of the reference line.
Example: ":CALC:RLIN -10dBm" Features: *RST value: - (STATe to OFF)
SCPI: device-specific Modes: A, VA, BTS, MS The reference line serves as a reference for the arithmetic operation of traces. The units DEG, RAD,
S, and HZ are only valid in conjunction with option Vector Signal Analysis, FSE-B7.
1065.6016.12 6.16 E-16
Page 74
FSE CALCulate Subsystem
:CALCulate<1|2>:RLINe:STATe ON | OFF
This command switches the reference line on or off.
Example: ":CALC:RLIN:STAT ON" Features: *RST value: OFF
SCPI: device-specific
Modes: A, VA, BTS, MS
:CALCulate<1|2>:FLINe<1|2> 0 GHz to f
This command defines the position of the frequency lines.
Example: ":CALC:FLIN2 120MHz" Features: *RST value: - (STATe to OFF)
SCPI: device-specific Modes: A-F, VA, BTS, MS The frequency lines mark the given frequencies in the display. Frequency lines are only valid for a
SPAN >0.
:CALCulate<1|2>:FLINe<1|2>:STATe ON | OFF
This command switches the frequency line on or off.
Example: ":CALC:FLIN2:STAT ON" Features: *RST value: OFF
SCPI: device-specific
Modes: A-F, VA, BTS, MS
:CALCulate<1|2>:TLINe<1|2> 0 to 1000s
This command defines the position of the time lines.
max
Example: ":CALC:TLIN 10ms" Features: *RST value: - (STATe to OFF)
SCPI: device-specific Modes: A-Z, VA, BTS, MS The time lines mark the given times in the display. Time lines are only valid for a SPAN = 0.
:CALCulate<1|2>:TLINe<1|2>:STATe ON | OFF
This command switches the time line on or off.
Example: ":CALC:TLIN2:STAT ON" Features: *RST value: OFF
SCPI: device-specific Modes: A-Z, VA, BTS, MS
1065.6016.12 6.17 E-16
Page 75
CALCulate Subsystem FSE
CALCulate:FEED Subsystem
The CALCulate:FEED subsystem selects the measured data in operating m ode vector signal analysis. This subsystem is only valid in connection with option FSE-B7, Vector Signal Analysis.
COMMAND PARAMETERS UNIT COMMENT
CALCulate<1|2>
:FEED <string> Vector Signal Analysi s/
:CALCulate<1|2>:FEED <string>
This command selects the measured data that are to be displayed. Parameter: <string>::= ‘XTIM:DDEM:MEAS’ |
‘XTIM:DDEM:REF’ | ‘XTIM:DDEM:ERR:MPH’ | ‘XTIM:DDEM:ERR:VECT’ | ‘XTIM:DDEM:SYMB’ | ‘XTIM:AM’ | ‘XTIM:FM’ | ‘XTIM:PM’ | ‘XTIM:AMSummary’ | ‘XTIM:FMSummary’ | ‘XTIM:PMSummary’ | ‘TCAP’
no query
Features: *RST value: ‘XTIM:DDEM:MEAS’
SCPI: conforming Mode: VA The string parameters have the following meaning: ‘XTIM:DDEM:MEAS’ Test signal (filtered, synchronized to symbol clock)
‘XTIM:DDEM:REF’ Reference signal (internally generated from demodulated test
signal) ‘XTIM:DDEM:ERR:MPH’ Error signal (magnitude and phase error) ‘XTIM:DDEM:ERR:VECT’ Vector error signal ‘XTIM:DDEM:SYMB’ Symbol table (demodulated bits and table with modulation errors)
'XTIM:AM' Demodulated AM signal (analog demodulation) 'XTIM:FM' Demodulated FM signal (analog demodulation) 'XTIM:PM' Demodulated PM signal (analog demodulation) 'XTIM:AMSummary' AM-Summary Marker (analog demodulation) 'XTIM:FMSummary' FM-Summary Marker (analog demodulation) 'XTIM:PMSummary' PM-Summary Marker (analog demodulation) ‘TCAP’ Test signal in capture buffer
1065.6016.12 6.18 E-16
Page 76
FSE CALCulate Subsystem
CALCulate:FORMat and CALCulate:FSK Subsystems
The CALCulate:FORMat and CALCulate:FSK subsystems determ ine further processing and c onversion of measured data in operating mode vector signal analysis. This sub system is only valid in connection with option FSE-B7, Vector Signal Analysis.
COMMAND PARAMETERS UNIT COMMENT
CALCulate<1|2>
:FORMat MAGNitude | PHASe | UP Hase |
RIMag | FREQuency | IEYE | QEYE | TEYE | FEYE | COMP | CONS
:FSK
:DEViation
:REFerence <numeric_value> HZ Vector Signal A nal ysis
:CALCulate<1|2>:FORMat MAGNitude | PHASe | UPHase | RIMag | FREQuency | IEYE | QEYE |
TEYE | FEYE | COMP | CONS
This command defines the display of the traces.
Example: ":CALC:FORM CONS" Features: *RST value: MAGNitude
SCPI: conforming Mode: VA-D The availability of the parameters depends on the selected data (see command
:CALCulate:FEED). Available for selection measurement signal, reference signal and modulation error
(CALCulate:FEED ‘XTIM:DDEM:MEAS’,‘XTIM:DDEM:REF) ,‘XTIM:DDEM:ERR:MPH’): MAGNitude Display of the magnitude in the time domain (only available for settings
:CALCulate:FEED ‘XTIM:DDEM:ERR:MPH’ (error signal) or ‘XTIM:DDEM:MEAS’ (measurement signal) or ‘XTIM:DDEM:REF’
(reference signal)
PHASe | UPHase Display of the phase in the time domain with or without (”unwrapped”)
limitation to ±180°
RIMag Display of the time characteristic of inphase and quadrature
component FREQuency Display of the frequency response in the time domain COMP Display of the polar vector diagram (complex) CONS Display of the polar vector diagaram (constellation)
Vector Signal Analysi s
Available for selection measurement signal and reference signal (CALCulate:FEED ‘XTIM:DDEM:MEAS’,‘XTIM:DDEM:REF):
IEYE | QEYE Eye diagram of the inphase or quadrature component TEYE Display of the trellis diagram FEYE Eye diagram of FSK modulation
:CALCulate<1|2>:FSK:DEViation:REFerence <numeric_value>
This command defines the reference value of the frequency deviation for FSK modulation.
Example: ":CALC:FSK:DEV:REF 20kHz" Features: *RST value: -
SCPI: device-specific
Mode: VA-D
1065.6016.12 6.19 E-16
Page 77
CALCulate Subsystem FSE
CALCulate:LIMit Subsystem
The CALCulate:LIMit subsystem com pr ises the limit lines and the corresponding limit checks. Limit lines can be defined as upper and lower limit lines . The individual values of the limit lines correspond to the values of the X-axis (CONTrol) which have to have the same number.
COMMAND PARAMETERS UNIT COMMENT
CALCulate<1|2>
:LIMit<1 to 8>
:ACTive? :TRACe :STATe :UNIT
CATalog? :CONTrol
[:DATA] :DOMain :OFFSet :MODE :UNIT
:SHIFt :SPACing
:UPPer
[:DATA]
:STATe :OFFSet
:MARGin
:MODE :SHIFt
:SPACing
:LOWer
[:DATA]
:STATe :OFFSet
:MARGin
:MODE :SHIFt
:SPACing :FAIL? :CLEar
[:IMMediate]
[:TIME]
<numeric_value> <Boolean> DBM | DBPW | DB P T | WATT | DB UV |
DBMV | VOLT | DBUA | AMPere | DB | DBUV_MHZ | DBMV_MHZ | DBUA_MHZ | DBUV_M | DBUA_M | DBUV_MMHZ | DBUA_MMHZ | DEG | RAD | S | HZ | PCT | UNITLESS
<numeric_value>,<numeric_value>.. FREQuency | TIME <numeric_value> RELative | ABSolute
S | SYM <numeric_value> LINear | LOGarithmic
<numeric_value>,<numeric_value>..
<Boolean> <numeric_value>
<numeric_value>
RELative | ABSolute <numeric_value>
LINear | LOGarithmic
<numeric_value>,<numeric_value>..
<Boolean> <numeric_value>
<numeric_value>
RELative | ABSolute <numeric_value>
LINear | LOGarithmic
--
--
HZ | S | SYM
HZ | S | SYM
HZ | S | SYM
DBM | DB | DEG | RAD | S | HZ | PCT
-­DB | DEG | RAD |
S | HZ | PCT DB| DEG | RAD |
S | HZ | PCT
-­DB | DEG | RAD|
S | HZ | PCT
DBM | DB | DEG | RAD | S | HZ | PCT
-­DB| DEG | RAD |
S | HZ | PCT DB| DEG | RAD |
S | HZ | PCT
-­DB | DEG | RAD |
S | HZ | PCT
--
--
Query only
Query only
Vector Signal Analysi s
query only
no query
1065.6016.12 6.20 E-16
Page 78
FSE CALCulate Subsystem
COMMAND PARAMETERS UNIT COMMENT
CALCulate<1|2>
:LIMit<1 to 8>
:COMMent :COPY :NAME :DELete
:BURSt
:PTEMplate?
:POWer?
:PFERror?
:MACCuracy? :SPECtrum
:MODulation?
:FAILs?
:EXCeptions?
:SWITching?
:FAILs?
:SPURious?
:FAILs?
:MARGin :ACPower
[:STATe]
:ACHannel
:STATe :RESult?
:ALTernate<1|2>
:STATe :RESult?
<string> 1 to 8 | < name> <string>
--
--
--
--
--
-­ARFCn | TXBand | RXBand |
COMBined | DCSRx1800 ARFCn | TXBand | RXBand |
COMBined | DCSRx1800 ARFCn | TXBand | RXBand |
COMBined | DCSRx1800
TXBand | OTXBand | RXBand | IDLeband
TXBand | OTXBand | RXBand | IDLeband
<numeric_value>
<Boolean> <numeric_value>, <numeric_value> <Boolean>
-­<numeric_value>, <numeric_value> <Boolean>
--
DB
DB; DB
DB; DB
Option FSE-K11 or FSE-K10 query only query only query only query only, option FSE-K20/K21 Option FSE-K11 or FSE-K10 query only
query only
query only
query only; Option FSE-K11or FSE-K10 query only query only; Option FSE-K11 or FSE-K10
query only
query only
query only
:CALCulate<1|2>:LIMit<1 to 8>:ACTive?
This command queries the names of all activated limit lines. The names are output in alphabetical order. If no limit line is activated, an empty string will be output. The numeric suffixes in CALCulate<1|2> and LIMit<1 to 8> are not significant.
Example: ":CALC:LIM:ACT?" Features: *RST value: -
SCPI: device-specific
Mode: A, VA, BTS, MS
:CALCulate<1|2>:LIMit<1 to 8>:TRACe 1 to 4
This command assigns a trace to a limit line.
Example: ":CALC:LIM2:TRAC 2" Features: *RST value: 1
SCPI: device-specific
Modes: A, VA, BTS, MS
1065.6016.12 6.21 E-16
Page 79
CALCulate Subsystem FSE
:CALCulate<1|2>:LIMit<1 to 8>:STATe ON | OFF
This command switches the limit check for the selected limit line on or off. With limit check switched off, the limit line is disabled.
Example: ":CALC:LIM:STAT ON" Features: *RST value: OFF
SCPI: conforming Modes: A, VA, BTS, MS The result of the limit check can be queried with CALCulate:LIMit:FAIL?.
:CALCulate<1|2>:LIMit<1 to 8>:UNIT D BM | DBP W | DBPT | WA T T | DB UV | DBM V | V OL T |D BU A
| AMPere | DB | DBUV_MHZ | DBMV_MHZ | DBUA_MHZ | DBUV_M | DBUA_M | DBUV_MMHZ | DBUA_MMHZ | UNITLESS|
This command defines the unit of the selected limit line.
Example: ":CALC:LIM:UNIT DBUV" Features: *RST value: DBM
SCPI: device-specific Modes: A, VA, BTS, MS DBUV_MHZ and DBUA_MHZ denote the units DBUV/MHZ or DBUA/MHZ.
Upon selection of the unit DB the limit line is automatically switched to the relative mode. For units different from DB the limit line is automatically switched to the absolute mode.
The units DEG, RAD, S, HZ are available in the vector analysis mode only.
:CALCulate<1|2>:LIMit:CATalog?
This command reads out the names of all limit lines stored on the harddisk. Syntax of output format: <Sum of file lengths of all subsequent files>,<free memory on hard disk>,
<1st file name>,,<1st file length>,<2nd file name>,,<2nd file length>,....,<nth file name>,
<nth file length>
Example: ":CALC:LIM:CAT?" Feature: *RST value: -
SCPI: device-specific
Mode: A, VA, BTS, MS
:CALCulate<1|2>:LIMit<1 to 8>:CONTrol[:DATA] <numeric_value>,<numeric_value>..
This command defines the X-axis values (frequencies or times) of the upper or lower limit lines.
Example: ":CALC:LIM:CONT 1MHz,30MHz,300MHz,1GHz" Features: *RST value: - (LIMit:STATe is set to OFF)
SCPI: conforming Modes: A, VA, BTS, MS The number of values for the CONTrol axis and the corresponding UPPer- and/or LOWer limit lines
have to be identical. Available units are HZ | S | SYM, SYM only for vector signal analyzer mode.
1065.6016.12 6.22 E-16
Page 80
FSE CALCulate Subsystem
:CALCulate<1 |2>:LIMit<1 to 8>:CONTrol:DOMain FREQuency | TIME
This command defines the X-axis in the frequency or time domain.
Example: ":CALC:LIM:CONT:DOM TIME" Features: *RST value: FREQuency
SCPI: device-specific
Modes: A, VA, BTS, MS
:CALCulate<1|2>:LIMit<1 to 8>:CONTrol:OFFSet <numeric_value>
This command defines an offset for the X-axis value of the selected relative limit line in the frequency or time domain.
Example: ":CALC:LIM:CONT:OFFS 100us" Features: *RST value: 0
SCPI: device-specific
Modes: A, VA
:CALCulate<1 |2>:LIMit<1 to 8>:CONTrol:MODE RELative | ABSolute
This command selects the relative or absolute scaling for the X-axis of the selected limit line.
Example: ":CALC:LIM:CONT:MODE REL" Features: *RST value: ABSolute
SCPI: device-specific Modes: A, VA, BTS, MS Upon selection of RELative, the unit is switched to DB.
:CALCulate<1|2>:LIMit<1 to 8>:CONTrol:UNIT[:TIME] S | SYM
This command defines the unit of the x-axis scaling of limit lines.
Example: ":CALC:LIM:CONT:UNIT SYM" Features: *RST value: S
SCPI: device-specific
Mode: VA
:CALCulate<1|2>:LIMit<1 to 8>:CONTrol:SHIFt <numeric_value>
This command shifts a limit line which has been specified for relative frequencies or times (X-axis).
Example: ":CALC:LIM:CONT:SHIF 50kHz" Features: *RST value: --
SCPI: device-specific Modes: A, VA, BTS, MS This command is an event which is why it is not assigned an *RST value and has no query.
1065.6016.12 6.23 E-16
Page 81
CALCulate Subsystem FSE
:CALCulate<1|2>:LIMit<1 to 8>:CONTrol:SPACing LINear | LOGarithmic
This command makes a selection between linear and logarithmic interpolation for determining the limit line from the frequency points.
Example: ":CALC:LIM:CONT:SPAC LIN" Features: *RST value: LIN
SCPI: device-specific
Modes: A, VA, BTS, MS
:CALCulate<1|2>:LIMit<1 to 8>:UPPer[:DATA] <numeric_value>,<numeric_value>..
This command defines the values for the upper limit lines.
Example: ":CALC:LIM:UPP -10,0,0,-10" Features: *RST value: - (LIMit:STATe is set to OFF)
SCPI: conforming Modes: A, VA, BTS, MS The number of values for the CONTrol axis and the corresponding UPPer limit line have to be
identical. The unit must be identical with the unit selected by command CALC:LIM:UNIT. If the measured values exceed the UPPer limit line, the limit check signals errors.
The unit must be identical with the unit selected by CALC:LIM:UNIT. The units DEG, RAD, S, and HZ are available in the vector signal analysis mode only.
:CALCulate<1 |2>:LIMit<1 to 8>:UPPer:STATe ON | OFF
This command defines the selected limit line as upper limit line.
Example: ":CALC:LIM:UPPer:STAT ON" Features: *RST value: OFF
SCPI: conforming Modes: A, VA, BTS, MS The limit check is switched on with command CALCulate:LIMit:STATe ON. The result of the limit
check can be queried with CALCulate:LIMit<1 to 8>:FAIL?.
:CALCulate<1|2>:LIMit<1 to 8>:UPPer:OFFSet <numeric_value>
This command defines an offset for the Y-axis of the selected relative upper limit line.
Example: ":CALC:LIM:UPP:OFFS 3dB" Features: *RST value: 0
SCPI: device-specific
Modes: A, VA
:CALCulate<1|2>:LIMit<1 to 8>:UPPer:MARGin <numeric_value>
This command defines the margin of the selected upper limit line.
Example: ":CALC:LIM:UPP:MARG 10dB" Features: *RST value: 0
SCPI: device-specific Modes: A, VA, BTS, MS
1065.6016.12 6.24 E-16
Page 82
FSE CALCulate Subsystem
:CALCulate<1|2>:LIMit<1 to 8>:UPPer:MODE RELative | ABSolute
This command selects the relative or absolute scaling for the Y-axis of the selected upper limit line.
Example: ":CALC:LIM:UPP:MODE REL" Features: *RST value: ABSolute
SCPI: device-specific
Modes: A, VA, BTS, MS
:CALCulate<1|2>:LIMit<1 to 8>:UPPer:SHIFt <numeric_value>
This command shifts a limit line, which has relative values for the Y-axis (levels or linear units such as volt).
Example: ":CALC:LIM:UPP:SHIF 20dB" Features: *RST value: --
SCPI: device-specific Modes: A, VA, BTS, MS This command is an event which is why it is not assigned an *RST value and has no query.
:CALCulate<1 |2>:LIMit<1 to 8>:UPPer:SPACing LINear | LOGarithmic
This command makes a selection between linear and logarithmic interpolation for the upper limit line.
Example: ":CALC:LIM:UPP:SPAC LIN" Features: *RST value: LIN
SCPI: device-specific
Modes: A, VA, BTS, MS
:CALCulate<1|2>:LIMit<1 to 8>:LOWer[:DATA] <numeric_value>,<numeric_value>..
This command defines the values for the selected lower limit line.
Example: ":CALC:LIM:LOW -30,-40,-40,-30" Features: *RST value: - (LIMit:STATe is set to OFF)
SCPI: conforming Modes: A, VA, BTS, MS The number of values for the CONTrol axis and the corresponding LOWer limit line have to be
identical.If the measured values violate the LOWer limit line, the limit check signals errors. The unit must be identical with the unit selected by command CALC:LIM:UNIT.
The units DEG, RAD, S, and HZ are available in the vector signal analysis mode only.
1065.6016.12 6.25 E-16
Page 83
CALCulate Subsystem FSE
:CALCulate<1|2>:LIMit<1 to 8>:LOWer:STATe ON | OFF
This command defines the selected limit line as lower limit line.
Example: ":CALC:LIM:LOWer:STAT ON" Features: *RST value: OFF
SCPI: conforming Modes: A, VA, BTS, MS The limit check is switched on with command CALCulate:LIMit:STATe ON. The result of the limit
check can be queried with
:CALCulate<1|2>:LIMit<1 to 8>:LOWer:OFFSet <numeric_value>
This command defines an offset for the Y-axis of the selected relative lower limit line.
Example: ":CALC:LIM:LOW:OFFS 3dB" Features: *RST value: 0
SCPI: device-specific Modes: A, VA
CALCulate:LIMit:FAIL?.
:CALCulate<1|2>:LIMit<1 to 8>:LOWer:MARGin <numeric_value>
This command defines the margin of the selected lower limit line.
Example: ":CALC:LIM:LOW:MARG 10dB" Features: *RST value: 0
SCPI: device-specific
Modes: A, VA, BTS, MS
:CALCulate<1|2>:LIMit<1 to 8>:LOWer:MODE RELative | ABSolute
This command selects the relative or absolute scaling for the Y-axis of the selected lower limit line.
Example: ":CALC:LIM:LOW:MODE REL" Features: *RST value: ABSolute
SCPI: device-specific
Modes: A, VA, BTS, MS
:CALCulate<1|2>:LIMit<1 to 8>:LOWer:SHIFt <numeric_value>
This command shifts a limit line, which has relative values for the Y-axis (levels or linear units such as volt).
Example: ":CALC:LIM:LOW:SHIF 20dB" Features: *RST value: --
SCPI: device-specific Modes: A, VA, BTS, MS This command is an event which is why it is not assigned an *RST value and has no query.
1065.6016.12 6.26 E-16
Page 84
FSE CALCulate Subsystem
:CALCulate<1|2>:LIMit<1 to 8>:LOWer:SPACing LINear | LOGarithmic
This command makes a selection between linear and logarithmic interpolation for the lower limit line.
Example: ":CALC:LIM:LOW:SPAC LIN" Features: *RST value: LIN
SCPI: device-specific
Modes: A, VA, BTS, MS
:CALCulate<1|2>:LIMit<1 to 8>:FAIL?
This command queries the result of the limit check.
Example: ":CALC:LIM:FAIL?" Features: *RST value: -
SCPI: conforming Modes: A, VA, BTS, MS The result of the limit check responds with 0 in case of PASS and with 1 in case of FAIL. For measurements spectrum due to modulation and spectrum due to transients (options FSE-K10
and FSE-K11), the result of the limit check is queried with this command in frequency sweep mode.
:CALCulate<1|2>:LIMit<1 to 8>:CLEar[:IMMediate]
This command deletes the result of the current limit check.
Example: ":CALC:LIM:CLE" Features: *RST value: -
SCPI: conforming Modes: A, VA, BTS, MS This command is an event which is why it is not assigned an *RST value.
:CALCulate<1|2>:LIMit<1 to 8>:COMMent <string>
This command defines a comment for the limit line selected.
Example: ":CALC:LIM:COMM ’Upper limit for spectrum’" Features: *RST value: blank comment
SCPI: device-specific Modes: A, VA, BTS, MS
1065.6016.12 6.27 E-16
Page 85
CALCulate Subsystem FSE
:CALCulate<1|2>:LIMit<1 to 8>:COPY 1 to 8 | <name>
This command copies one limit line onto another one. Parameter: 1 to 8 ::= number of the new limit line or, alternatively:
<name> ::= name of the new limit line given as a string
Example: ":CALC:LIM1:COPY 2"
":CALC:LIM1:COPY ’GSM2’"
Features: *RST value: --
SCPI: device-specific Modes: A, VA, BTS, MS The name of the limit line may contain a maximum of 8 characters. This command is an "event"
which is why it is not assigned an *RST value and has no query.
:CALCulate<1 |2>:LIMit<1 to 8>:NAME <name of limit line>
This command assigns a name to a limit line numbered 1 to 8. If a limit line of the given name doesn’t exist previously, a limit line with this name is created. The values of a previous limit line with the selected line number are kept and the current unit is used. If no limit line with the selected line number was defined yet, the correct values for the x and y axis have to be entered before the new limit line will be saved (using commands CALCulate:LIMit:CONTrol:DATA and CALCulate:LIMit:LOWer|UPPer:DATA).
Example: ":CALC:LIM1:NAME ’GSM1’" Features: *RST value: ’REM1’ to ’REM8’ for lines 1 to 8
SCPI: device-specific Modes: A, VA, BTS, MS The name of the limit line may contain a maximum of 8 characters.
:CALCulate<1 |2>:LIMit<1 to 8>:DELete
This command deletes the limit line selected.
Examples: ":CALC:LIM1:DEL" Features: *RST value: --
SCPI: device-specific Modes: A, VA, BTS, MS This command is an "event" which is why it is not assigned an *RST value and has no query.
1065.6016.12 6.28 E-16
Page 86
FSE CALCulate Subsystem
:CALCulate<1|2>:LIMit<1 to 8>:BURSt:PTEMplate?
This command queries the result of the limit check for a power vs. time measurement. Parameter: The result is displayed in character data form. Possible values are:
PASSED limit not exceeded FAILED limit exceeded RUNNING measurement not completed
Examples: ":CALC:LIM:BURS:PTEM?" Features: *RST value: --
SCPI: device-specific Modes: BTS, MS This command is a query and therefore not assigned a *RST value.
If no measurement has been carried out yet, a query error is triggered off. The numeric suffixes <1|2> or <1 to 8> are not significant for this command.
:CALCulate<1|2>:LIMit<1 to 8>:BURSt:POWer?
This command queries the total result of the carrier power measurement. Parameter: The result is displayed in character data form. Possible values are:
PASSED limit not exceeded
FAILED limit exceeded
ABORTED measurement aborted
RUNNING measurement not completed
Examples: ":CALC:LIM:BURS:POW?"
Result: PASSED Features: *RST value: --
SCPI: device-specific Modes: BTS, MS This command is a query and therefore not assigned a *RST value.
If the command is triggered off before the carrier power measurement was started for the first time, a query error results. The numeric suffixes <1|2> or <1 to 8> are not significant for this command.
:CALCulate<1|2>:LIMit<1 to 8>:BURSt:PFERror?
This command queries the total result of the phase/frequency measurement. Parameter: Result 1 limit not exceeded
0 limit exceeded
Example: ":CALC:LIM:BURS:PFER?"
Result:1
Features: *RST value: --
SCPI: device-specific Modes: BTS, MS This command is a query and therefore not assigned a *RST value.
If the command is triggered off before the phase/frequency measurement was started for the first time, a query error results. The numeric suffixes <1|2> or <1 to 8> are not significant for this command.
1065.6016.12 6.29 E-16
Page 87
CALCulate Subsystem FSE
:CALCulate<1|2>:LIMit<1 to 8>:BURSt:MACCuracy?
This command queries the total result of the modulation accuracy measurement. Parameter: 1 limit not exceeded
0 limit exceeded
Example: ":CALC:LIM:BURS:MACC?"
Result:1
Features: *RST value: --
SCPI: device-specific Modes: BTS, MS This command is a query and therefore not assigned a *RST value.
If the command is triggered off before the cphase-frequency measurement was started for the first time, a query error results. The numeric suffixes <1|2> or <1 to 8> are not significant for this command. This command is only available in conjunction with option FSE-K20 / FSE-K21 .
:CALCulate<1|2>:LIMit<1 to 8>:SPECtrum:MODulation? ARFCn | TXBand | RXBand | COMBined |
DCSRx1800
This command queries the total result of the spectrum due to modulation measurement for list mode. For frequency mode, the limit violations are queried with command CALCulate:LIMit:FAIL?.
Parameter: The result is displayed in character data form. Possible values are:
PASSED limit not exceeded
FAILED limit exceeded
ABORTED measurement aborted
RUNNING measurement not completed
Examples: ":CALC:LIM:SPEC:MOD? RXB"
Result: PASSED Features: *RST value: --
SCPI: device-specific Modes: BTS, MS ARFCn ARFCN ± 1.8 MHz TXBand TX-band
RXBand RX-band COMBined ARFCN ± 1.8 MHz / TX-band DCSRx1800 RX-Band DCS 1800 (option FSE-K10 only)
This command is a query and therefore not assigned a *RST value. The numeric suffixes <1|2> or <1 to 8> are not significant for this command.
1065.6016.12 6.30 E-16
Page 88
FSE CALCulate Subsystem
:CALCulate<1|2>:LIMit<1 to 8>:SPECtrum:MODulation:FAILs? ARFCn | TXBand | RXBand |
COMBined | DCSRx1800
This command queries the number of limit violations of the spectrum due to modulation measurement for list mode.The number of limit violations is the total of all violations above and below the carrier. For frequency mode, the limit violations are queried with command
CALCulate:LIMit:FAIL?.
Examples: ":CALC:LIM:SPEC:MOD:FAIL? RXB" Features: *RST value: --
SCPI: device-specific Modes: BTS, MS ARFCn ARFCN ± 1.8 MHz
TXBand TX-band RXBand RX-band COMBined ARFCN ± 1.8 MHz / TX-band DCSRx1800 RX-Band DCS 1800 (option FSE-K10 only)
This command is a query and therefore not assigned a *RST value The numeric suffixes <1|2> or <1 to 8> are not significant for this command.
:CALCulate<1|2>:LIMit<1 to 8>:SPECtrum:MODulation:EXCeptions? ARFCn | TXBand | RXBand |
COMBined | DCSRx1800
This command queries the number of limit violations of the spectrum due to modulation measurement which are marked as exceptions. This command is only available for list mode.
Examples: ":CALC:LIM:SPEC:MOD:EXC? RXB" Features: *RST value: --
SCPI: device-specific Modes: BTS, MS ARFCn ARFCN ± 1.8 MHz
TXBand TX-band RXBand RX-band COMBined ARFCN ± 1.8 MHz / TX-band DCSRx1800 RX-Band DCS 1800 (option FSE-K10 only
This command is a query and therefore not assigned a *RST value. The numeric suffixes <1|2> or <1 to 8> are not significant for this command.
1065.6016.12 6.31 E-16
Page 89
CALCulate Subsystem FSE
:CALCulate<1|2>:LIMit<1 to 8>:SPECtrum:SWITching?
This command queries the total result of the spectrum due to switching transients measurements for list mode. For frequency mode, the limit violations are queried with command
CALCulate:LIMit:FAIL?
Parameter: The result is displayed in character data form. Possible values are:
PASSED limit not exceeded
FAILED limit exceeded
ABORTED measurement aborted
RUNNING measurement not completed
Examples: ":CALC:LIM:SPEC:SWIT?"
Result: PASSED Features: *RST value: --
SCPI: device-specific Modes: BTS, MS This command is a query and therefore not assigned a *RST value. The numeric suffixes <1|2> or
<1 to 8> are not significant for this command.
:CALCulate<1|2>:LIMit<1 to 8>:SPECtrum:SWITching:FAILs?
This command queries the number of limit violations of the spectrum due to switching transient measurement for list mode.The number of limit violations is the total of all violations above and below the carrier. For frequency mode, the limit violations are queried with command
CALCulate:LIMit:FAIL?.
Examples: ":CALC:LIM:SPEC:SWIT:FAIL?" Features: *RST value: --
SCPI: device-specific Modes: BTS, MS This command is a query and therefore not assigned a *RST value. The numeric suffixes <1|2> or
<1 to 8> are not significant for this command.
:CALCulate<1|2>:LIMit<1 to 8>:SPURious? TXBand | OTXBand | RXBand | IDLeband
This command queries the total result of the spurious emissions measurement. Parameter: The result is displayed in character data form. Possible values are:
PASSED limit not exceeded
FAILED limit exceeded
ABORTED measurement aborted
RUNNING measurement not completed
Examples: ":CALC:LIM:SPUR? OTXB"
Result:PASSED
Features: *RST value: --
SCPI: device-specific Modes: BTS, MS TXBand TX-band
OTXBand Not TX-band RXBand RX-band (option FSE-K11 only) IDLeband IDLeband (option FSE-K10 only)
This command is a query and therefore not assigned a *RST value. The numeric suffixes <1|2> or <1 to 8> are not significant for this command.
1065.6016.12 6.32 E-16
Page 90
FSE CALCulate Subsystem
:CALCulate<1|2>:LIMit<1 to 8>:SPURious:FAILs? TXBand | OTXBand | RXBand | IDLeband
This command queries the number of limit violations of the spurious emissions measurement.
Examples: ":CALC:LIM:SPUR:FAIL? OTXB" Features: *RST value: --
SCPI: device-specific Modes: BTS, MS TXBand TX-band
OTXBand Not TX-band RXBand RX-band (option FSE-K11 only) IDLeband IDLeband (option FSE-K10 only)
This command is a query and therefore not assigned a *RST value. The numeric suffixes <1|2> or <1 to 8> are not significant for this command.
:CALCulate<1|2>:LIMit<1 to 8>:MARGin 0 to 100DB
This command sets/changes the value of the margin (safe difference to the actual limit) for the limit check.
Examples: ":CALC:LIM:MARG 6DB" Features: *RST value: 3DB
SCPI: device-specific Modes: BTS, MS The numeric suffixes <1|2> or <1 to 8> are not significant for this command.
:CALCulate<1 |2>:LIMit<1 to 8>:ACPower[:STATe] ON | OFF
This command switches on and off the limit check for adjacent channel power measurements. The commands CALC:LIM:ACP:ACH:STAT or CALC:LIM:ACP:ALT:STAT must be used in addition to specify whether the limit check is to be performed for the upper/lower adjacent channel or for the alternate adjacent channels.
Examples: ":CALC:LIM:ACP ON" Features: *RST value: OFF
SCPI: device-specific Modes: A, VA The numeric suffixes <1|2> or <1 to 8> are not significant for this command.
:CALCulate<1|2>:LIMit<1 to 8>:ACPower:ACHannel 0 to 100 dB, 0 to 100 dB
This command defines the limit for the upper/lower adjacent channel for adjacent channel power measurements.
Parameter: The first (second) numeric value is the limit for the upper (lower) adjacent
channel.
Examples: ":CALC:LIM:ACP:ACH 30DB, 30DB" Features: *RST value: 0 dB
SCPI: device-specific Modes: A, VA The numeric suffixes <1|2> or <1 to 8> are not significant for this command.
1065.6016.12 6.33 E-16
Page 91
CALCulate Subsystem FSE
:CALCulate<1|2>:LIMit<1 to 8>:ACPower:ACHannel:STATe ON | OFF
This command activates the limit check for the adjacent channel when adjacent channel power measurement is performed. Before, the limit check must be activated using CALC:LIM:ACP ON.
Examples: ":CALC:LIM:ACP:ACH:STAT ON" Features: *RST value: OFF
SCPI: device-specific Modes: A, VA The numeric suffixes <1|2> or <1 to 8> are not significant for this command.
:CALCulate<1|2>:LIMit<1 to 8>:A CPower:ACHannel:RESult?
This command queries the result of the limit check for the upper/lower adjacent channel when adjacent channel power measurement is performed.
Parameter: The result is returned in the form <result>, <result> where
<result> = PASSED | FAILED, and where the first returned value denotes the
lower, the second denotes the upper adjacent channel.
Examples: ":CALC:LIM:ACP:ACH:RES?" Features: *RST value: --
SCPI: device-specific Modes: A, VA
This command is a query and therefore not assigned a *RST value. If the power measurement of the adjacent channel is switched off, the command triggers a query error. The numeric suffixes <1|2> or <1 to 8> are not significant for this command.
:CALCulate<1|2>:LIMit<1 to 8>:ACPower:ALTernate<1|2> 0 to 100DB, 0 to 100 dB.
This command defines the limit for the first/second alternate adjacent channel for adjacent channel power measurements.
Parameter: The first (second) numeric value is the limit for the lower (upper) alternate
adjacent channel. The numeric suffix after ALTernate<1|2> denotes the first
or the second alternate channel.
Examples: ":CALC:LIM:ACP:ALT2 30DB 30DB" Features: *RST value: 0DB
SCPI: device-specific Modes: A, VA
The numeric suffixes <1|2> or <1 to 8> are not significant for this command.
1065.6016.12 6.34 E-16
Page 92
FSE CALCulate Subsystem
:CALCulate<1|2>:LIMit<1 to 8>:ACPower:ALTernate<1|2>:STATe ON | OFF
This command activates the limit check for the first/second alternate adjacent channel for adjacent channel power measurements. Before, the limit check must be activated using CALC:LIM:ACP ON.
Examples: ":CALC:LIM:ACP:ALT2:STAT ON" Features: *RST value: OFF
SCPI: device-specific Modes: A, VA
The numeric suffixes <1|2> or <1 to 8> are not significant for this command.
:CALCulate<1 |2>:LIMit<1 to 8>:ACPower:ALTernate<1|2>:RESult?
This command queries the result of the limit check for the first/second alternate adjacent channel for adjacent channel power measurements.
Parameter: The result is returned in the form <result>, <result> where
<result> = PASSED | FAILED and where the first (second) returned value
denotes the lower (upper) alternate adjacent channel.
Examples: ":CALC:LIM:ACP:ALT2:RES?" Features: *RST value: --
SCPI: device-specific Modes: A, VA This command is a query and therefore not assigned a *RST value. If the power measurement of the
adjacent channel is switched off, the command triggers a query error. The numeric suffixes <1|2> or <1 to 8> are not significant for this command.
1065.6016.12 6.35 E-16
Page 93
CALCulate Subsystem FSE
CALCulate:MARKer Subsystem
The CALCulate:MARKer subsystem checks the marker functions in the instrument.
COMMAND PARAMETERS UNIT COMMENT
CALCulate<1|2>
:MARKer<1 to 4>
[:STATe] :AOFF :TRACe :X
:SLIMits
[:STATe]
:COUNt
:RESolution :FREQuency?
:COUPled
[:STATe] :LOEXclude :Y? :MAXimum
[:PEAK]
:APEak
:NEXT
:RIGHt
:LEFT :MINimum
[:PEAK]
:NEXT
:RIGHt
:LEFT :STEP
[:INCRement]
:AUTO :PEXCursion :READout :FUNCtion
:NDBDown
:STATe :RESult?
:FREQuency? :ZOOM :NOISe
[:STATe]
:RESult? :DEModulation
:SELect
[:STATe]
:HOLDoff :SFACtor
:STATe
:RESult?
:FREQuency?
<Boolean>
<numeric_value> <numeric_value>
<Boolean> <Boolean> <numeric_value>
--
<Boolean> <Boolean>
--
--
--
--
--
--
--
--
--
--
<numeric_value> <Boolean> <numeric_value> MPHase | RIMaginary
<numeric_value> <Boolean>
--
-­<numeric_value>
<Boolean>
--
AM|FM <Boolean> <numeric_value>
<expr> <Boolean>
--
--
--
-­HZ | S | SYM
-­HZ
--
--
--
--
--
--
--
--
--
--
--
HZ | S | SYM
-­DB
DB
--
-­HZ
--
S
--
--
no query
query only
query only
no query no query,
Vector Signal Analysi s no query no query no query
no query no query no query no query
Vector Signal Analysi s
query only query only no query
query only
query only query only
1065.6016.12 6.36 E-16
Page 94
FSE CALCulate Subsystem
COMMAND
CALCulate<1|2>
:MARKer
:FUNCtion
:STRack
[:STATe] :ADEMod
:AM
:FM
:PM
:AFRequency
:FERRor
:SINad
:CARRier
:DDEMod
:RESult?
:POWer
:SELect
:RESult?
:PRESet
:CFILter
[:STATe] :SUMMary
[:STATE]
:MAXimum
[:RESult?]
[:RESult?]
[:RESult?]
[:RESult?]
[:RESult?]
[:STATe] :RESult?
[:RESult?]
[:STATe] :RESult? :AVERage
:RESult?
:PHOLd
:RESult?
PARAMETERS UNIT COMMENT
<Boolean>
PPEak | MPEak | MIDDle | RMS
PPEak | MPEak | MIDDle | RMS | RDEV
PPEak | MPEak | MIDDle | RMS
<Boolean>
MERM | MEPK | MEPS | PERM | PEPK | PEPS |EVRM | EVPK | EVPS | IQOF | IQIM | ADR | FERR | DEV | FSRM | FSPK | FSPS | RHO | FEPK | DTTS
ACPower | CPOWer | OBANdwidth | OBWidth | CN | CN0
ACPower | CPOWer | OBANdwidth | OBWidth | CN | CN0
NADC | TETRA | PDC | PHS | CDPD | FWCDm a | RWCDma | F8CDma | R8CDma | F19Cdma | R19Cdma | FW3Gppcdma | RW3Gppcdma | M2CDma | D2CDma | NONE | FO8Cdma | RO8Cdma | FO19CDMA | RO19CDMA | TCDMa
<Boolean> OFF
<Boolean>
<Boolean>
Option Vector Analyzer
query only
query only
query only
query only
query only
query only
query only Option Vector Analyzer
query only
query only
no query
Option Vector Analyzer query only
query only
query only
1065.6016.12 6.37 E-16
Page 95
CALCulate Subsystem FSE
COMMAND
CALCulate<1|2>
:MARKer
:FUNCtion
:SUMMary
:CENTer :CSTep :STARt :STOP :MSTep :REFerence
:PPEak
[:STATe] :RESult? :AVERage
:RESult?
:PHOLd
:RESult?
:MPEak
[:STATe] :RESult? :AVERage
:RESult?
:PHOLd
:RESult?
:MIDDle
[:STATe] :RESult? :AVERage
:RESult?
:PHOLd
:RESult?
:RMS
[:STATe] :RESult? :AVERage
:RESult?
:PHOLd
:RESult?
:MEAN
[:STATe] :RESult? :AVERage
:RESult?
:PHOLd
:RESult? :PHOLd :AVERage :AOFF
PARAMETERS UNIT COMMENT
Option Vector Analyzer
<Boolean>
query only
query only
query only Option Vector Analyzer
<Boolean>
query only
query only
query only Option Vector Analyzer
<Boolean>
query only
query only
query only
<Boolean>
query only
query only
query only
<Boolean>
query only
query only
query only <Boolean> <Boolean>
no query
no query
no query
no query
no query
no query
no query
1065.6016.12 6.38 E-16
Page 96
FSE CALCulate Subsystem
:CALCulate<1|2>:MARKer<1 to 4>[:STATe] ON | OFF
This command switches on or off the currently selected marker. If no indication is made, marker 1 is selected automatically.
Example: ":CALC:MARK3 ON" Features: *RST value: OFF
SCPI: device-specific
Modes: A, VA, BTS, MS
:CALCulate<1|2>:MARKer<1 to 4>:AOFF
This command switches off all active markers.
Example: ":CALC:MARK:AOFF" Features: *RST value: -
SCPI: device-specific Modes: A, VA, BTS, MS This command is an event which is why it is not assigned an *RST value and has no query.
:CALCulate<1|2>:MARKer<1 to 4> :TRACe 1 to 4
This command assigns the selected marker (1 to 4) to the indicated test curve.
Example: ":CALC:MARK3:TRAC 2" Features: *RST value -
SCPI: device-specific
Modes: A, VA, BTS, MS
:CALCulate<1|2>:MARKer<1 to 4>:X 0 to MAX (frequency | sweep time | symbols)
This command positions the selected marker to the indicated frequency (span > 0) or time (span = 0).
Example: ":CALC:MARK:X 10.7MHz" Features: *RST value: -
SCPI: device-specific Modes: A, VA, BTS, MS The unit SYM is available only in the vector signal analysis mode.
:CALCulate<1 |2>:MARKer<1 to 4>:X:SLIMits[:STATe] ON | OFF
This command switches between a limited (ON) and unlimited (OFF) search range.
Example: ":CALC:MARK:X:SLIM ON" features: *RST value: OFF
SCPI: device-specific Modes: A, VA
1065.6016.12 6.39 E-16
Page 97
CALCulate Subsystem FSE
:CALCulate<1|2>:MARKer<1 to 4>:COUNt ON | OFF
This command switches on or off the frequency counter at the marker position.
Example: ":CALC:MARK:COUN ON" Features: *RST value: OFF
SCPI: device-specific
Mode: A
:CALCulate<1|2>:MARKer<1 to 4>:COUNt:RESolution 0.1 | 1 | 10 | 100 | 1000 | 10000 Hz
This command specifies the resolution of the frequency counter.
Example: ":CALC:MARK:COUN:RES 1kHz" Features: *RST value: 1kHz
SCPI: device-specific Mode: A The numeric suffix in MARKer<1 to 4> is not significant.
:CALCulate<1|2>:MARKer<1 to 4>:COUNt:FREQuency?
This command queries the result of the frequency counter.
Example: ":CALC:MARK:COUN:FREQ?" Features: *RST value: -
SCPI: device-specific Modes: A, BTS, MS
This command is only a query and thus has no *RST value.
:CALCulate<1|2>:MARKer<1 to 4>:COUPled[:STATe] ON | OFF
This command switches the coupling of markers on or off.
Example: ":CALC:MARK:COUP ON" Features: *RST value: OFF
SCPI: device-specific Modes: VA
The numeric suffix in MARKer<1 to 4> is not significant.
:CALCulate<1|2>:MARKer<1 to 4>:LOEXclude ON | OFF
This command switches the local oscillator suppression on or off.
Example: ":CALC:MARK:LOEX ON" Features: *RST value: OFF
SCPI: device-specific Mode: A-F The numeric suffixes 1|2 and 1 to 4 are not significant.
1065.6016.12 6.40 E-16
Page 98
FSE CALCulate Subsystem
:CALCulate<1|2>:MARKer<1 to 4>:Y?
This command queries the selected marker value.
Example: ":CALC:MARK:Y?" Features: *RST value: -
SCPI: device-specific
Modes: A, VA, BTS, MS
:CALCulate<1|2>:MARKer<1 to 4>:MAXimum[:PEAK]
This command positions the marker to the current maximum value in the trace memory.
Example: ":CALC:MARK:MAX" Features: *RST value: -
SCPI: device-specific Modes: A, VA, BTS, MS
This command is an event which is why it is not assigned an *RST value and has no query.
:CALCulate<1|2>:MARKer<1 to 4>:MAXimum:APEak
This command positions the marker to the maximum absolute value of the trace.
Example: ":CALC:MARK:MAX:APE" Features: *RST value: -
SCPI: device-specific Mode: VA This command is an event which is why it is not assigned an *RST value and has no query.
:CALCulate<1|2>:MARKer<1 to 4>:MAXimum:NEXT
This command positions the marker to the next lower maximum value in the trace memory.
Example: ":CALC:MARK:MAX:NEXT" Features: *RST value: -
SCPI: device-specific Modes: A, BTS, MS
This command is an event which is why it is not assigned an *RST value and has no query.
:CALCulate<1|2>:MARKer<1 to 4>:MAXimum:RIGHt
This command positions the marker to the next smaller maximum value to the right of the current value (i.e., in ascending X direction) in the trace memory.
Example: ":CALC:MARK:MAX:RIGH" Features: *RST value: -
SCPI: device-specific Modes: A, BTS, MS
This command is an event which is why it is not assigned an *RST value and has no query.
1065.6016.12 6.41 E-16
Page 99
CALCulate Subsystem FSE
:CALCulate<1|2>:MARKer<1 to 4>:MAXimum:LEFT
This command positions the marker to the next smaller maximum value to the left of the current value (i.e., in descending X direction) in the trace memory.
Example: ":CALC:MARK:MAX:LEFT" Features: *RST value: -
SCPI: device-specific Modes: A, BTS, MS
This command is an event which is why it is not assigned an *RST value and has no query.
:CALCulate<1|2>:MARKer<1 to 4>:MINimum[:PEAK]
This command positions the marker to the current minimum value in the trace memory.
Example: ":CALC:MARK:MIN" Features: *RST value: -
SCPI: device-specific Modes: A, VA, BTS, MS
This command is an event which is why it is not assigned an *RST value and has no query.
:CALCulate<1|2>:MARKer<1 to 4>:MINimum:NEXT
This command positions the marker to the next higher minimum value in the trace memory.
Example: ":CALC:MARK:MIN:NEXT" Features: *RST value: -
SCPI: device-specific Modes: A, BTS, MS
This command is an event which is why it is not assigned an *RST value and has no query.
:CALCulate<1|2>:MARKer<1 to 4>:MINimum:RIGHt
This command positions the marker to the next higher minimum value to the right of the current value (ie in ascending X direction).
Example: ":CALC:MARK:MIN:RIGH" Features: *RST value: -
SCPI: device-specific Modes: A, BTS, MS
This command is an event which is why it is not assigned an *RST value and has no query.
:CALCulate<1|2>:MARKer<1 to 4>:MINimum:LEFT
This command positions the marker to the next higher minimum value to the left of the current value (ie in descending X direction).
Example: ":CALC:MARK:MIN:LEFT" Features: *RST value: -
SCPI: device-specific Modes: A, BTS, MS
is command is an event which is why it is not assigned an *RST value and has no query.
1065.6016.12 6.42 E-16
Page 100
FSE CALCulate Subsystem
:CALCulate<1|2>:MARKer<1 to 4>:STEP[:INCRement] <numeric_value>
This command defines the marker step width.
Example: ":CALC:MARK:STEP 10kHz" (frequency domain)
CALC:MARK:STEP 5ms" (time domain)
Features: *RST value: - (STEP is set to AUTO)
SCPI: device-specific Mode: A This command sets STEP:AUTO to OFF. The numeric suffix in MARKer<1 to 4> is not significant.
:CALCulate<1|2>:MARKer<1 to 4>:STEP:AUTO ON | OFF
This command switches the automatic adaptation of the marker step width on or off.
Example: ":CALC:MARK:STEP:AUTO OFF" Features: *RST value: ON
SCPI: device-specific Mode: A With AUTO ON, the step width is 10% of the span. The numeric suffix in MARKer<1 to 4> is not
significant.
:CALCulate<1|2>:MARKer<1 to 4>:PEXCursion <numeric_value>
This command defines the peak excursion.
Example: ":CALC:MARK:PEXC 10dB" Features: *RST value: 6dB
SCPI: device-specific Modes: A, VA, BTS, MS
The numeric suffix in MARKer<1 to 4> is not significant.
:CALCulate<1|2>:MARKer<1 to 4>:READout MPHase | RIMaginary
This command determines the type of the marker display.
Example: ":CALC:MARK:READ RIM" Features: *RST value: -
SCPI: device-specific Mode: VA-D
The numeric suffix in MARKer<1 to 4> is not significant.
1065.6016.12 6.43 E-16
Loading...